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This paper examines the origin of cyclical motion in a class of deterministic infinite horizon 
problems that arise in dynamic economics. For this class of problems the optimal solution 
converges to a unique equilibrium point. Conditions are given under which the motion in a 

• neighbourhood of the equilibrium point is cyclical. These conditions involve certain asymmetric 
stock-flow interaction terms that arise in the local equations of motion about the equilibrium 
point. The results are used to show how cyclical motion can arise in a rational expectations 
equilibrium for a competitive industry. 

1. Introduction 

This paper is part of a preliminary attempt to understand the forces that 
lead to cyclical motion in dynamic economic models that arise from the 
maximising behaviour of economic agents. While it is quite clear that 
uncertainty constitutes a major reason for the presence of cyclical be- 
haviour in many economic problems, 1 in this paper I choose to focus 
attention on the sources of cyclical behaviour in the simplest deterministic 
framework. In order that the sources of cyclical behaviour should not appear 
ad hoc, in order that the model should appear at least in a preliminary way 
to be arbitrage proof, I concentrate attention on dynamical processes that 
arise from intertemporal maximising behaviour on the part of economic 
agents. To keep the analysis simple, I select a class of deterministic infinite 
horizon maximum problems for which we have the beginnings of a relatively 
complete theory and in which a unique equilibrium point or stationary state 
is the sole element of the to-limit set of an optimal trajectory: this is the class 
of strictly concave, undiscounted, infinite horizon maximum problems where 
optimality is in the sense of the overtaking criterion. 

*This research was supported by a grant from the National Science Foundation SOC 7 6 -  
16838. I am grateful to William Brock, Robert Lucas and Jos6 Scheinkman for helpful 
discussions. 

~See Magill (1977a) where spectral analysis is used to examine the cyclical properties of the 
long-run stationary stochastic process. See also Brock-Magill (1978). 
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The paper is arranged as follows. In section 2 the basic maximum problem 
is laid out, along with some of the basic definitions and properties needed in 
the subsequent analysis. Particular attention is paid to those properties that 
are required to make a local analysis in the neighbourhood of an equilibrium 
point meaningful. The results of Brock-Haurie (1976) are used to set the 
problem up in such a way that an optimal solution to the infinite horizon 
problem exists which has the additional property that it converges to a 
unique equilibrium point, whose existence is also assured. This justifies the 
subsequent local analysis of the nature of the motion in a neighbourhood of 
the equilibrium point, in that the system will always be observed in any such 
neighbourhood after a sufficient interval of time. 

To characterise the nature of the motion in a neighbourhood of the 
equilibrium point the notion of a symmetric and an asymmetric equilibrium 
point is introduced in section 3. An equilibrium point is symmetric (asym- 
metric) when a certain n x n  matrix of stock-flow interaction terms that 
appears in the linearised Euler-Lagrange equations is symmetric (asym- 
metric). It is the symmetry or asymmetry of this matrix that plays the crucial 
role in determining whether cyclical motion arises. I show .that cyclical 
motion in a neighbourhood of the equilibrium point only arises when the 
equilibrium is asymmetric. This condition is necessary, but it is not in 
general sufficient. To obtain a precise characterisation of cyclical motion, the 
linearised Euler-Lagrange equations are first reduced by a non-singular 
transformation to a normal form. This form of the equations of motion is 
then used is section 4, after certain additional structural assumptions have 
been made, to obtain a precise characterisation of the conditions under 
which there is cyclical motion in a neighbourhood of the equilibrium point. 
It should be pointed out that these structural assumptions are rather harsh, 
so that an important part of the problem in the general case still remains to 
be solved. 

In section 5 these results are used to throw light on the way in which 
technological forces can lead to cyclical motion in a rational expectations 
equilibrium for a competitive industry. In the Lucas (1967) and Mortensen 
(1973) framework of the adjustment cost theory of the firm these technologi- 
cal forces are found to arise from asymmetries in the effect of adjustments in 
one capital good on the productivity of another capital good. The analysis of 
this section may be viewed as part of a highly preliminary attempt to 
develop a theory of the business cycle based on the theory of resource 
allocation, that meets two important tenets proposed by Lucas (1976): first, 
that the sequence of prices and quantities be determined through a process of 
competitive equilibrium, and second, that the expectations of agents be 
rational, in the sense that the anticipated sequence of prices formed on the 
basis of their expectations, coincides with tile actual sequence of prices 
generated on the markets by their maximising behaviour. It should perhaps 
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be pointed out, however, that such a formulation is in turn preliminary to a 
theory in which the concept of equilibrium is itself reformulated so as to take 
account of the fact that in a world with imperfect information, in which the 
organisation of markets is costly, the complete clearing of markets at each 
instant of time is unlikely to prove worthwhile. This phenomenon is in turn 
intimately connected with the presence of cyclical behaviour in the process of 
intertemporal resource allocation. 

When the analysis of this paper is applied to the class of discounted 
infinite horizon maximum problems, as in Magill (1978b), a complex 
interaction arises between the skew-symmetric forces and the stability or 
instability of equilibrium. In some instances the presence of the skew- 
symmetric forces induces a stabilising effect, in other instances a destabilising 
effect. 

On a historical note I might add that in the classical investigations of 
Lotka (1924) and Volterra (1931) on the evolution of interacting p r ed a to r -  
prey biological species, it is precisely the presence of a fundamental skew- 
symmetric matrix arising from the predator-prey interactions, that gives rise 
to the cyclical behaviour in the number of individuals of each species. 2 

2. The basic maximum problem 

Let k(t), tEl=[O,  oo) denote the state of the economic system at the 
instant t, where k(t)EK (the state space), a convex subset of R", n>__l, k(t) is 
typically a vector of capital stocks of n different commodities. 

Definition. 

for which 

For  fixed k o eK,  the class of absolutely continuous paths 

I 

k(t) = ko + S [¢(z) dz : I--*K, (1) 
0 

t 

IIk(t)ll~llkoll+Yll~(~)lld~<~o for all t e l ,  (1') 
0 

where II II denotes the standard Euclidean norm, is called the class of feasible 
paths and is denoted by ~ .  It is convenient to let {k, k} denote the path (1). 

Let H~_R ~, s > l ,  denote the parameter space. We consider a vector of 
exogenous parameters n ~ H  and a real valued instantaneous profit (utility) 

2 F o r  a n  excellent exposition of the Lotka-Volterra theory in English tile reader is referred to 
the book by D'Ancona (1954). See also Samuelson's (1971) discussion. 
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function 

L(k, f ;  zr):K x R ~ x H ~ R ,  

satisfying the following: 

Assumption I. (Concavity, differentiability). 
function on K × R" for all 7r e H, where r_>_ 2. 
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(2) 

L(-;n)  is a C" strictly concave 

The explicitdependence of L(k,/~;rc) on the parameter ~ is sometimes 
omitted to simplify the notation. The function L and the feasible paths 
lead to the following: 

Maxinmm Problem. Find a feasible path {k,/~} ~ such that 

T 

lim [ (L(k(t), [¢(t))- L(~(t), ~(t))) dt > 0, (Jl) 
T~co 0 

for all {J~,~} e ~ .  The path { k , k } e ~  is said to be optimal. 

Defini¢ion. Let ~* denote the class of absolutely continuous price paths 

I 

p(t) = Po + [/~(~) dr :I -~ R n, (3) 
0 

for which 
! 

[[p(t)ll<[]po][+ ![[~(r)l[d~ <oo for all t e l .  

We let {/~,p} denote the path (3). 

Definition. A feasible path {k,/~}e~ is competitive if there exists an 
absolutely continuous path of prices {/hp} e:~* such that 

L(k(t), k(t)) + p(t)l~(t) + ~(t)k(t) > L(E(t), ~'(t)) + p(t)~'(t) + ~(t)E(t), 

(4) 

for all (~'(t), ~'(t))eK x R ~, for almost all t e l .  

Remark. (1,p(t)) denotes the vector of (imputed) output prices and -/~(t) 
the vector of (imputed) rental costs at time t ~ I so that 

L( k(t), ~(t)) + p(t)fc(t) + ~(t)k(t) 
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is the (imputed) profit which is maximised at almost every 
competitive path. 

Lemma I. 
only if 

~,  p) = - (L k, L~) for  ahnost all t ~ I ,  

which in turn is equivalent to the Euler-Lagrange equation 

d 
Lk --d-[ (L£) = L k -- L~£ ]~ -- Ltk ~ = O. 

(ii) 

203 

instant by a 

(i) I f  Assumption 1 holds then { k , k } ~  is competitive if  and 

(5) 

(_w) 

A competitive path {k, l~} ~ which satisfies the transversality condition 

lim p(t)k(t)<ct for  some constant a, 
I ~ 0 0  . 

is optimal among paths {~, ~') ~ which satisfy 

lim p(t)~(t)>fl for  some constant ft. 
l ~ 0 0  

Proof. (i) Immediate from (4). (ii) See Magill (1977b, lemma 2, p. 177). • 

Definition. A path { k , / ~ } ~  which satisfies (.LP) with k'(t)=~(t)--0, for all 
t e I, is called an equilibrium point (stationary state); 

8 = ((k*, n) ~ K x lllLk(k*, 0; n) = 0) 

is called the equilibrium set for the maximum problem (J[). 

Definition. The function qb(k;Tz):K × H - o R  defined by the line-integral 

k 

• ~b(k;Tr)=~S Lk(~,0;lz)'dJ~, 
0 

where y denotes the line-segment joining 0 and k, is called the stead)' state 
profitfimction, in view of eq. (4). 

Remark. The steady state profit function attains a maximum at an equilib- 
rium point. 
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Definition. Let (k*,~z)~J °. The local coordinates around the equilibrium 
point k*=  k*0z ) are defined by 

x = k - k * .  

Let ~ '  denote the class of absolutely continuous paths {x,:~} for which 
(k, ~} e ~ .  The second variation problem about k*, 

inf --½ ~ L°(x(t), Yc(t)) dt, (vii') 
{x,.¢}~' 0 

where 

L°(x'xJ=[ JLL   Lt~-JL~J' 
and where the asterisk indicates that the Hessian matrices are evaluated at 
(k*,0; ~), has associated with it the Euler-Lagrange equations 

L~[~X + (L~'k -- L~'~)~ - Ltkx = O, (£P') 

which are the linearised equations for (£,'7) about  k*. 
In order to be sure that the linearised equations (LP') reveal the local 

topological structure of the solution of (J/) in the neighbourhood of an 
equilibrium point we need to distinguish certain types of equilibria. 

Definition. An equilibrium point k*=k*(~) is called regular (hyperbolic) if 
2i~O(Re(21)~O), i=1  ..... 2n, where 2i~C is a root of the characteristic 
polynomial 

, 2 D(2i) = [L~)., + (Ltk -- Lt~)).i- Lt~[ = 0. (6) 

We let d ' (d  h) denote the set of regular (hyperbolic) equilibria in 6 ~. 

Lemma 2. Let k*=k*(~) where (k*,~)~8, then k*ed"  if and only if 

A = [tkk(k*, 0;n)] -fi 0. (7) 

Proof If 21 . . . . .  3.2, denote the roots of (6), then for some a ~ 0  

D ( ; . )  = ~(; .~ - ; . ) . . .  0.2.- ;-), 

so that A =( -1 )"D(0)  = ( - 1 ) " a 2 1 . . . 2 2 , ~ 0  if and only if k * e d  ~. [] 
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Remark. An equilibrium point k* is said to be isolated if there is a 
neighbourhood of k* containing no other equilibrium points than k*. In 
view of Lemma 2, it follows from the implicit function theorem, that regular 
equilibria are isolated. A regular equilibrium poin t  k*(n) is a point of 
intersection of the n, ( n -  1)-dimensional hypersurfaces 

Lk,(k*,O;n)=O, i=  1,.. . ,n, (8) 

in R ~. Thus an equilibrium point k*(n) is regular if and only if the gradients 

(Lkikl . . . .  , Lk~k.), i =  1 ..... n, 

exist and are linearly independent. 

Remark. Hyperbolic equilibria are of importance in the analysis that 
follows since it is only for these equilibria that the linearised equations (.Se') 
reveal the topological structure of the trajectories that are solutions of (L#) in 
a neighbourhood of an equilibrium point. Since hyperbolic equilibria are the 
important subset of the set of regular equilibria for which the linear theory is 
applicable, it is desirable to have a sufficient condition ensuring the existence 
of such equilibria. 

Assumption 2. (Productivity). There exist ~,/7~, i =  1 .. . . .  n, such that 

K_={keR"l - -oo<k~<k,<f i<oo ,  i=1  .. . . .  n}~K,  

and for all j = 1 . . . .  , n, 

Lki(k I ..... k_j . . . . .  kn, 0 . . . .  ,0; r 0 > 0, 

Lk~(k t . . . . .  /~j .. . . .  kn ,0 , . . . ,0 ;n)<0,  

for all k,~(k~,l?~),i~-j. 

Lemma 3. I f  Assu!nptions I, 2 are satisfied an d if n • 11 is a parameter value 
f o r  which L°(x,~;n) is negatit, e definite then there exists a hyperbolic 

equilibrium point k* EK_ 

Proof It follows from the classical index theorem of Kronecker-Poincar6 
(1886, ch. XVIII) and Assumption 2 that there exists a regular equilibrium 
point k*~K_. Theorem 2 of Levhari-Liviatan (1972) and the fact that 
/.?(x,:~;n) is negative definite implies that no root of the characteristic 
polynomial (6) can be pure imaginary, so that Re(2~)~0, i = l  .. . . .  211, and k* 
is a hyperbolic equilibrium point. • 
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Remark. In view of Assumption 1 the equilibrium point k* in Lemma 3 is 
unique. 

Remark. Assumption 2 is a natural economic condition on the productivity 
of each of the capital goods. For each capital good j, the marginal profit 
(LQ from an additional unit of j must b e  positive (negative) when the 
endowment of this capital good is sufficiently small (large), independent of 
the endowments of the other capital goods (i-fij). 

The following proposition assures us that under certain additional con- 
ditions a solution of the maximum problem (~,/l) exists. This solution has, 
furthermore, the important property that it converges to the equilibrium 
point k*. 

Proposition I. Let the assumptions of Lemma 3 be satisfied and let k* denote 
the associated equilibrium point. I f  the feasible paths are restricted to the 
subset o ~  for which (k(t) , f ;( t))eKxQ for all t~I , .where K × Q  is a 
compact convex subset of R" ×R" and if there exists (E,~)eJ ~ such that for 
some 0 < T < o o ,  E(t)=k* for all t>_T, then (i) there exists an optimal path 
(k, ~ ) ~ ,  and (ii) k(t)~k* as t~oo. 

Proof" The result follows from Lemma 3 above and from Theorem 4.1 and 
Corollary 4.1 in Brock-Haurie (1976). • 

3. Symmetric and asymmetric equilibria and transformation to normal form 

To obtain a more complete understanding of the behaviour of an optimal 
path in a neighbourhood of the equilibrium point k* we need to make a 
distinction between two different types of equilibria that can arise. 

Definition. Le t  (k*,rr)eo ~. k* will be called a symmetric (asymmetric) 
equilibrium point if 

L~k(k*, O; zr) - L~(k*, O; 7r) = 0 ( ~ 0). 

Lemma 4. I f  k* is an asymnzetric equilibrium point then Lgk-Lt£ is a skew- 
symmetric matrix. 

Proof L~'k=(L*~) ' implies (L~k--L~)'=--(L'~k--L*£). • 

Definition. Let k * ~ d  h. A solution of (w/f) will be called locally cyclical 
(locally monotone) in a neighbourhood of k* if the characteristic polynomial 
D(2) has at least one (no) pair of complex conjugate roots. 
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In the analysis that follows we restrict our attention to those parameter 
values n ~ H for which the following assumption is satisfied: 

Assumption 1'. (Definiteness). (k*,n)~6 ~ is such that L°(x,~;n) is negative 
definite. 

To simplify the notation we let 

A = - L t ~ ,  B = - L t , . ,  N=--L*~, C = N - - N ' ,  (9) 

so that the linearised Euler-Lagrange equation (.Se') reduces to 

Bi~-C.Cc- Ax =O, (,~,,) 

where A and B are positive definite (symmetric) matrices in view of 
Assumption 1' and C is a skew-symmetric matrix by Lemma 4. 

Definition. Let E and F be n x n matrices with real coefficients, and let F be 
a positive definite (symmetric) matrix. We say that cqe C is an eigenvalue of 
E in the metric o fF  and w ~ C  ", wi¢0,  is an associated eigenvector if 

(E-~iF)w~=O. (10) 

Lemma 5. (i) A has n real positive eigenvalues, al . . . .  ,a~, and n real as- 
sociated eigenvectors, w ~ ..... ~ ,  in the metric of B. (ii) I f  the eigenvalues are 
placed in order of decreasing magnitude, 

~1 > ~ 2 > . . . > ~ , > 0 ,  

then the following maximum property holds 

~i = max x'Ax = wVAw ~, i = 1,..., n, 

~ ,={xeR"[x 'Bx=l ,  x'B,,J=O, j = l  . . . .  , i - 1 ) :  

Proof (i) follows from Theorem 8 in Gantmacher  (1960, p. 310) and the 
fact that A and B are positive definite (symmetric) matrices. (ii) This is the 
well-known Courant-Fischer result, see Gantmacher  (1960, theorem 11, p. 
319). • 

Lemma 5 and the fact that A =  --~b~k(k*;~z) lead naturally to the following: 

Definition. ~zl,...,~, will be called the steady state profit rates and wl,. . . ,w" 
the directions of maxinmm profit. 
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With these definitions and properties in mind we obtain a complete 
characterisation of the behaviour of an optimal path in a neighbourhood of 
a symmetric equilibrium point. 

Proposition 2. Let Assumption I' be satisfied. I f  k* is a symmetric equilib- 
rium point then (i) a solution of (J[) ig locally monotone in a neighbourhood 
of k*, (ii) the eigenvalues ++_21 ..... +2, of the linearised Euler-Lagrange 
equation (f£a,) are determined by the steady state profit rates, 

2t= + x//~i, i=1  ... . .  n, 

and the eigenvectors of (.L~') coincide with the directions of maximum profit 
W 1, . . . . ,  W n. 

Proof (i) follows from (ii) and the fact that cq >0, i =  1 . . . .  , n. (ii) follows at 
once from (..~") and the definition (10). [] 

Remark. It is evident that only the negative eigenvalues 2 i = - V / ~ ,  i 
= 1,..., n, are used in characterising a solution of (J[') and hence of (J[) in a 
neighbourhood of k*. 

Lemma 6. There exists a non-singular transformation to principal 
coordinates 

x=Wy ,  (11) 

which reduces tlre linearised Euler-Lagrange equations (Sf') to tlre normal 
form 

y- rp -dy=O,  (~") 

where 

F= 12 0 ... . ~ =  
• 9 

I_-~'1. -Y2. ... 

l "'. ~X01 • 

Proof. 
eigenvectors IV= [wt . . .  w"] may be chosen in such a way that 

By Theorem 9 in Gantmacher (1960, p. 314) the n x n  matrix of 

W ' B W = I =  I i  ".. i 1  , W ' A W = d =  ... 00~ " 
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Under the transformation (11), (~ ' )  reduces to 

where 

W ' B W y -  W'CWp-- W'A Wy= j ; - r £ -  d y = O ,  

W'CW=F.  • (12) 

Remark. At a symmetric equilibrium point, the linearised Euler-Lagrange 
equations (.~") in principal coordinates separate into n independent one- 
sector systems. At an asymmetric equilibrium point there is a skew- 
symmetric interaction between the n sectors (or capital goods). The term F~ 
imposes velocity dependent rotational forces on the economic system which, 
under conditions to be examined in the next section lead to cyclical motion 
in a neighbourhood of the equilibrium point k*. 

It should be noted that the skew-symmetric terms F~ have not been 
artificially introduced. These terms arise naturally from the structure of the 
maximum problem (Jr) in the neighbourhood of an asymmetric equilibrium 
point and are present in maximum problems of a quite general form. It is 
these skew-symmetric forces that may be viewed as the cause of cyclical 
behaviour for the class of maximising problems considered in this paper. 

4. Characterising locally cyclical motion 

In this section I will show that if certain additional structural assumptions 
are made then we can obtain a precise statement of the conditions under 
which a solution of (J[) is locally cyclical in a neighbourhood of the 
equilibrium point k*. I consider two cases. In the first case an assumption is 
made that reduces the number of interaction terms in the matrix F so that it 
reduces to block-diagonal form, while d is an arbitrary positive definite 
diagonal matrix. In the second case the eigenvalues of d are assumed to be 
identical, or by continuity, to differ by a very small amount, F being an 
arbitrary skew-symmetric matrix. It remains an interesting open problem to 
obtain a precise statement of the conditions under which the motion in a 
neighbourhood of k* is locally cyclical in the general case where d is an 
arb i t ra ry  positive definite diagonal matrix and F is an arbitrary skew- 
symmetric matrix. 

Proposition 3. 
the principal coordinates Yl,...,Y,, such that 

F= 

Let Assumption 1' be satisfied. I f  there exists a re-ordering of 

° l  ol ,=l ..... ° ' .  ~ 

F~./2 L --~i (13) 
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where (n/2)=n/2 when n is even, (,I/2)=(11+1)/2 when n is odd and where 
Ft,+ 1)/2 = [0 ]  when !, is odd, then a solution o f  (J[)  is locally cyclical (locally 
monotone) in a neighbourhood o f  k* if  and only i f  

17i1 > ( < ) l x / ~ -  x /~r  [ , i = l  . . . . .  (n/2), (14) 

where (cti, cq.) are the components o f  s l  associated with 7i. 

Proof. (L~'") decomposes into (!,/2) pairs of second order differential equa- 
tions when  !, is even [ (11/2)-1  when !, is odd] .  For  each such pair the 
characteristic polynomial is 

D (2,) = 24 + (72 -- ct i - ot r)).~ + ct,cq. = 0, i = 1 ..... (n/2). 

Let 2 i = l q + i v  i and let 2 ~ = ~ , = a i + i b i ,  then 

a,=½(cq + c q . -  72), b , = ½ ~ ,  

where 

n,=7,~-(v~- ,  +v~ , . )  2 , 

so that 22 = ~i implies 

1 {b,'~ 0 i 

which in turn implies 

,,,=½ 

J , = 7 ~ - ( J ~ , - 4 ~ , . )  ~, 

O,=x/-a,+ ~ ,  

(15) 

Thus the roots of the characteristic polynomial are given by 

2 , = ½ ( + x / - H , + x / - ~ - J ~ ) ,  i = i  . . . . .  (,,/2). (16) 

In view of Assumption 1', x//~i>0, x /~r  >0, from which we readily deduce 
that the roots are complex if and only if d i> 0, i =  1 . . . .  , (,1/2). • 

Remark.  Let , t ' =  W ' N W = { v o }  then Assumption 1' implies 

~,+v~,.>lv2,-,.2,1+lv,,.~,-,I 
z lv~ , - , .2 , - v2 , .= , - , l=H,  e=l ... .  ,(,,12), 



M.J.P. Magill, The origin of cyclical motion 211 

so that in view of (16), the characteristic polynomial has no pure imaginary 
roots, in accordance with the result of Levhari-Liviatan (1972, theorem 8, p. 
91). 

Under Assumption 1' the trajectory which minimises (JT') is asymptoti- 
cally stable. Cyclical motion, when it arises, is therefore damped and the n 
roots in (16) which characterise the trajectory have negative real parts (as 
observed earlier). We may ask how a change in the magnitude I ,1 or any one 
of the components of the basic skew-symmetric matrix F affects (i) the real 
parts and hence the magnitude of the damping and (ii) the imaginary parts 

• and hence the period of the cycles. 

Corollary. I f  the components (yi(t), yr(t)) are cyclical, for  any i=  1 ... . .  (n/2), 
then an increase in the skew-symmetric component H leads to (i) a reduction 
in the exponential damping, and (ii) a reduction in the period of  the o'cles for  
the components (yi(t), yi.(t)). 

Proof  Set 2~=lt~+ivi and use (15), then (i) is immediate and (ii) follows 
from the fact that the period of each cycle is (2rt/v~). • 

Remark. A sufficient condition for F to have the block-diagonal form (13) is 
that the matrices in (9) have the block diagonal form 

0 7 A = ".. , B =  ".. N= 

At./21 B(n/2 

o] 
°o 

Ntn/2 

Larl ar2 ' brl by2 ' N i  Lnrl nr2_l' 

for i = l  . . . . .  (n/2), where the last elements Atn/2 p B{n/2 ~ and Ntn/2 ) reduce to 
scalars when n is odd. 

The cycling condition (14), stated in terms of the derived coefficients 
(cq, ctr;)~) may be transformed into a condition on the coefficients of the 
original matrices (A~,B~;N~). Since the matrix of eigenvectors tV is block- 
diagonal, 

W= 

0] 
°o.  ,~ 



212 

this implies 

I w;B,w,I--I w,l=l~,l = 1 

Thus 

so that 

where 
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so that W,= 1 / ~ .  

y,=lW, lg,=g,/~ where g , = " , 2 - " r a ,  

~,, ~,, = ( l l N ) ( A , 1 2  +__ x/(,a,/2) 2-]A,I IB,I), 

Ai=ailbi.2-Far2bil--2ai2bi2. 

Thus the cycling condition (14) becomes 

I g , I > I A , - 2 ~ I B , I I  . (17) 

When A and B are both diagonal this reduces to the simple condition 

Ig , l> l , c~ , ,b , . 2 -~ l .  (17') 

Proposition 4. Let Assumption.l' be satisfied. I f  al =a2 . . . . .  an=a*, then a 
solution of (.1[) is locally cyclical in a neighbourhood of k* if and only if k* is 
an asymmetric equilibrium point. 

Proof Since cq =~2 . . . . .  ~.=~*,  ~¢=c~*I and the eigenvalue problem for 
(~"),  

(22I  - F 2 - - d ) w - - - - 0 ,  (18) 

reduces to an eigenvalue problem for F, 

F - ~ @ ) I J w = O .  (19) 

It is well-known that the eigenvalues of a skew-symmetric matrix are pure 
imaginary [Gantmacher (1960, p. 285)-I. Let 

___iyl . . . . .  - I - / 7 ( n / 2 ) ,  

where ~,t,/2)=0 when n is odd, denote the eigenvalues of F and let 2=ll+iv 
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denote an eigenvalue of (18). Then by (19), for some j =  1 ..... (n/2), 

(2 2 - ct*)/). ---- i),j, 

so that 

= ,. = ( - / / 2 ) .  

Thus the eigenvalues of (18) are given by 

).l = + ,,/c~* - (7ff2) 2 + i (7j /2) ,  j = 1 . . . . .  (n/Z), 

from which the result follows. • 
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5. Cyclical motion in rational expectations equilibrium 

In several recent contributions Lucas (1975, 1976) has emphasised the 
importance of developing a theory of the business cycle in which prices and 
quantities are determined at each instant of time through competitive 
equilibrium and in which the expectations of agents are rational in the sense 
of Muth (1961). Lucas has also emphasised the role of uncertainty in 
generating the observed pattern of business cycles. 

In this section I will use the results of the previous sections to examine a 
rational expectations equilibrium for a competitive industry with a fixed 
finite number of firms in which each firm behaves according to the standard 
Lucas (1967) and Mortensen (1973) adjustment cost theory of the firm. The 
analysis of rational expectations for the industry is made possible by the 
introduction of an extended integrand similar to that employed by Brock-  
Magill (1978) and Scheinkman (1976) and originally introduced by Lucas 
and Prescott (1971). 

While the presence of uncertainty is of undisputed importance in generat- 
ing the observed pattern of business cycles, it may well be of interest to seek 
causes of cycling which are independent of the presence of uncertainty but 
which are consistent with the postulates of competitive equilibrium and 
rational expectations. Thus while the analysis of this section in no way 
pretends to form a theory of the business cycle, it seeks to explore the ways 
in which technological forces arising from the recursive nature of the 
production process may act on representative firms within an.industry so as 
to cause cycling in the process of competitive equilibrium over time. 

Consider therefore an industry composed of M representative firms, each 
producing the same industry good with the aid of 12 capital goods. I assume 
that each firm forms identical expectations about the industry's product's 
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price path which is a measurable function 

r(t): [0, oo)~R + . (20) 

The instantaneous flow of profit of the representative firm is given by 
r(t)f(k(t), f~(t)), where f (k ,  ~) ~ C z, incorporates both adjustment costs and the 
cost of purchasing new capital equipment and is a strictly concave function 
in (k, k), where k=(k  t ..... kn) denotes the vector of capital goods. To simplify 
the analysis and make possible the application of the results of the previous 
sections I assume that the representative firm faces a zero interest rate. Let 
K = R  "+ denote the non-negative orthant, then for a fixed initial capital 
endowment ko~K, the firm manager seeks an absolutely continuous capital 
expansion path 

k(t) = k o + i ~(r) dr : I ~ K ,  
0 

satisfying (1'), which maximises, in the sense of the overtaking criterion (all), 
the future stream of profit 

T 

lim j" r(t)(f(k(t), ~(t))- f(~(t) ,  ~(t)))dt>0, (R) 
T ~ ° °  0 

for all {E, 
The total market supply forthcoming at cach instant on the product 

markct 

Qs(t) = Mf(k(t), ~(t)), t ~ [0, oo), 

has a complex functional dependence on the price path (20), since it arises as 
a by-product of the solution of the basic maximum problem (R) by each 
firm. On the demand side of the market I make the simplifying assumption 
that the total market demand depends only on the current market price 

where 

Qo(t)=~-l(r(t)),  t ~ [0, oo), 

(2_>-0. 

Definition. A rational expectations equilibrium for the product market of 
the industry is a measurable price path (20) such that 

Qo(t)=Qs(t) for almost all t ~ [ 0 , ~ ) .  (E) 
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Definition. The function T(Mf(k,/~)) where 
Q 

T(Q)=~ ~0') dy, Q>0,  
0 

denotes the integral of the demand function, so that 

T e C  2, 7"(Q)=~p(Q), T"(Q)=~'(Q)<0, Q>0, 

is called the extended integrand. I call the extended integrand problem, the 
problem of finding an absolutely continuous path {k,/~} et~ which maximises 
this integrand, in the sense of the overtaking criterion (J[), 

T 

lim ~ [T(Mf(kCt), f (0 ) ) -  T(Mf(l~(t), ['(t)))] dt >__ 0, (a t) 
T ~ o o  0 

for all {~, ~.} ~ a .  

Our analysis of the cyclical properties of rational expectations equilibrium 
will be based on the following proposition which is a straightforward 
adaptation of the result of Brock-Magill (1978, theorem 5) and Scheinkman 
(1976, section 4) to the undiscounted case. This proposition transforms the 
analysis of rational expectations equilibrium from a direct analysis of the 
representative firms problem (R) combined with the market equilibrium 
condition (E) to an indirect analysis of the extended integrand problem (at). 

Proposition 5. I f  k(t) is the solution of the Etder-Lagrange equation for (at), 

7"(Mf(k, 1))fk(k, t) -- d (T,(Mf(k, t))]~(k, t)) = 0, (21 ) 

which satisfies the initial condition k(O)= ko and the transversality condition, 

lim [ -- T'(Mf(k(t), l(t)))f~(k(t), f(0)] k(t) < ~, 
I~oO 

amt if for any feasible path {~, ~'} E ~  with ~(0)= ko, 

lim [ _  T'(Mf(k(t), f(t)))f~(k(t), f(t))]/~(t)> fl, 
t~oO 

(.22) 

(23) 

for constants ct, fl, then the price path, 

r(t) = 7"(Mf(k(t), t(t))), t e I, (24) 

is a rational expectations equilibrium for the product market of the industry. 
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Proof (21) and (24) imply that the Euler-Lagrange equation (c~,) for the 
problem (R) is satisfied, 

r(t)fk(k, ~ ) - d  (r(t)f~(k, ~))= O. 

(22)-(24) imply that the conditions of Lemma 1(ii) are satisfied for the 
problem (R). Since 7J'=~b, (24) implies that (E) holds. Thus each firm 
maximises (R), in the overtaking sense, and the market equilibrium condition 
(E) is satisfied. • 

Does a solution of the extended integrand problem (J)  exist which is a 
solution of the Euler-Lagrange equation (21)? Proposition l(i) asserts the 
existence of a solution to the extended integrand problem, under suitable 
additional assumptions, but it does not assure us that this solution will 
satisfy the Euler-Lagrange equation (21). Some additional analysis is needed 
at this point which is examined in greater detail in the paper of Magill 
(1978a). For the present purposes we will suppose that suitable additional 
conditions can be imposed so that the path whose existence is asserted in 
Proposition l(i) does indeed satisfy (21). Then the condition, (k(t),f~(t))~K 
x Q for all t e I, in Proposition I, implies that (22) and (23) are satisfied. It 

follows from Proposition 5 that an industry rational expectations equilibrium 
exists.By Proposition l(ii), k(t)~k* as t ~ ,  so that the equilibrium path 
converges to a stationary equilibrium. 

To analyse the behaviour of the equilibrium path in a neighbourhood of 
the steady state k*, we evaluate the matrices in (9) for the extended integrand 

so that 

A=-Tt '*f*~, B = - ( 7  j J 'xr+m7 t J'~f~ ), 

C = 7t'*(fk ~, - f~'~), 

N = - q , ' * f ~ ' ~ ,  

where C is the basic skew-symmetric matrix to which the origin of cyclical 
motion in a neighbourhood of k* may be traced. The cyclical forces thus 
have their origin in asymmetries in the effect of adjustments in one capital 
good On the marginal productivity of another capital good. When these 
asymmetries are absent as in the original model of Lucas (1967), where the 
adjustment costs are separable, f(k,l~)=u(k)+v(l~) then the motion in a 
neighbourhood of k* is locally monotone. The simplest precise condition for 
cycling is given by (17'). If we let n=2  and assume in addition that the 
production function f(k,l~) satisfies c* - ¢ *  - 0  and f~ '=0  (or alter- 

J k l k 2 - - J # ~ l # ~  1 - -  

natively that 7'"* =0), then (17)' gives 

> 
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P r o p o s i t i o n  4 provides  the ra ther  special  cond i t i on  where any a s y m m e t r y  in 
the effect of  ad jus tmen t s  in one capi ta l  g o o d  on  the p roduc t iv i ty  of  ano the r  
capi ta l  g o o d  immedia te ly  leads  to cyclical mo t ion .  

Lucas  (1975) has emphas i sed  the difficulty o f  genera t ing  an equ i l ib r ium 
process  in which there is cyclical  mo t ion  and  in which 'Persistent,  recurrent ,  
unexplo i ted  profi t  oppor tun i t i e s '  are  absent .  In  the present  context ,  if the 
indus t ry  good  is s torable  there is an incentive for specula tors  to ca r ry  the 
c o m m o d i t y  over  from per iods  of  relat ive abundance ,  when the pr ice is low, 
to pe r iods  of  relat ive scarci ty,  when the price is high, the extent  of  s u c h  
a rb i t r age  act ivi ty  depend ing  on the cost of  s torage.  This  a rb i t r age  act ivi ty  
reduces the extent  of  cycl ing in both  the pr ice  and  the quan t i t y  t raded.  
However  if the c o m m o d i t y  is per i shable  o r  if the  cost  of  s torage is sufficiently 
high the cycles will tend to  p e r s i s t )  These  issues lead us to the theory  of 
inventories ,  which const i tu te  the classic m e t h o d  of  inducing smoo th ing  in the 
process  o f  p roduc t ion  over  t ime and  which mus t  c lear ly  p lay  a centra l  role  in 
any more  genera l  theory  of  the  business cycle. 

3For an analysis of the way transactions costs influence inventory behaviour when the 
inventory consists of a portfolio of assets held by an investor, see MagilI-Constantinides (1976). 
For a further discussion of the relation between inventories and investment the reader is referred 
to the original discussion of Eisner and Strotz (1963). 
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