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Abstract This paper studies qualitative properties of an optimal contract in a multi-
agent setting in which agents are subject to a common shock. We derive a necessary
and sufficient condition for the optimal reward of an agent producing an output
level y to be a decreasing (increasing) function of the outputs of the other agents,
under the assumption that the agents’ outputs are informative signals of the value of
the common shock. The condition is that the likelihood ratio p(y, e, η)/p(y, e′, η),
where e is a higher effort level than e′ and η is the value of the common shock, be
a decreasing (increasing) function of η. We give examples of applications of the
result and examine its consequences for CEO compensation.

Keywords Optimal contracts · Reward increasing (decreasing) in other agents’
outcomes · Likelihood ratio and common shock · Effect of common shock on
marginal product of effort

JEL Classification Numbers D82 · G30 · J33 · M52

1 Introduction

It has been shown by Holmström (1982) and Mookherjee (1984) that when a com-
mon shock affects the performance of several agents, the optimal contract of one
agent depends on the performance of the others. Holmström also showed that under
specific assumptions on the production function and under normality assumptions
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on the distribution of the shocks, the information provided by the performance of
the other agents can be summarized in an average, which is a sufficient statistic
for the common shock. The usual interpretation of this result, based on specific
examples of production functions involving effort, idiosyncratic shocks, and an
additive common shock, is that the optimal contract of an agent should use the
performance of other agents to “factor out” the effect of the common shock on the
observed performance of the agent. According to this theory of relative perfor-
mance evaluation, for a given outcome of an agent, the compensation should be
lower if other agents have on average a good outcome, since this indicates that the
shock has been favorable: a good outcome for the agent is then less likely to be
attributable to high effort, while a bad outcome makes low effort on the part of the
agent more likely.

The design of compensation packages of CEOs of corporations is a natural
application of the theory of optimal multi-agent contracts when outcomes are
observable and are affected by a common shock. For there is a high observed
correlation among firms’ outcomes, and this is usually attributed to the fact that
firms are subject to common sectoral and/or economy wide shocks. However, if
the observed compensation packages of CEOs include some degree of relative per-
formance evaluation in the bonus components of their pay, in the 1990s options
became the largest component of CEO compensation, and no attempt was made to
index their exercise prices to “factor out” the general level of the market (Murphy
1999; Himmelberg and Hubbard 2000). As a result, during the bull market of the
1990s, the compensation of CEOs increased with the average performance of the
firms in the economy, rather than with their relative performance. This is viewed by
many authors in corporate finance as an indication that the compensation packages
designed by boards of directors are inefficient.

In the standard literature the intuition that an optimal contract should factor
out the effect of a common shock is based on examples with specific production
functions in which the common shock enters additively (Lazear and Rosen 1981;
Green and Stokey 1983). In fact little has been established in a general setting on
the way an optimal contract should use the information provided by the realized
performance of other agents. Should the reward of an agent always decrease when
the performance of other agents in the comparison group increases, or can there be
circumstances when it is optimal that it increase?

In this paper we derive a necessary and sufficient condition for the optimal
reward of an agent producing an output level y to be a decreasing (increasing)
function of the outputs of the other agents, under the assumption that the agents’
outputs are informative signals of the value of the common shock. The condi-
tion (expressed in the paper in its differential form) is that the likelihood ratio
p(y, e, η)/p(y, e′, η), where e is a higher effort level than e′, and η is the value
of the common shock, be a decreasing (increasing) function of η. If y is a high
outcome, a decreasing likelihood ratio formalizes the idea that the more favorable
the common shock, the less likely it is that the observed output y is attributable
to high rather than low effort, while if y is a low outcome, the more likely it is
that y is to be attributed to low effort. According to the principle that an incentive
contract should reward an agent in circumstances which are likely to occur when
effort is high, and punish the agent in circumstances which are likely when effort is
low, the compensation decreases when the performance of other agents increases.
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When the likelihood ratio is increasing rather than decreasing in η, the reward of
an agent increases with the performance of the other agents.

In Sect. 4 we derive conditions under which the likelihood ratio is decreas-
ing for all output levels, or increasing for some output levels and decreasing for
others. The conditions hinge on the way the common shock affects the marginal
product of effort. If the shock enters additively and does not affect the marginal
product of effort, as in the model of Green and Stokey (1983), then the optimal
contract is ‘tournament-like’ in that the payoff of an agent always decreases when
the performance of other agents increases. When the common shock positively
affects the productivity of effort, as in the model of Nalebuff and Stiglitz (1983),
a higher shock tends to raise the productivity of effort. In this case sufficiently
high outcomes are more likely to come from high effort, while low outcomes are
always more likely to come from low effort: thus for low outcomes the reward
is a decreasing function of the performance of others, while for sufficiently high
outcomes it is increasing. When the shock adversely affects the productivity of
effort, the effects are reversed.

Recently several authors, motivated by observed CEO compensations in the
1990s, have proposed models in which the optimal contract is such that, in some
circumstances, the CEO is paid more if the common shock is favorable. One such
model is presented by Celentani and Loveira-Pazo (2004). Although their model
is based on adverse selection rather than moral hazard, the condition that they find
is close in spirit to the increasing likelihood ratio property: they show that the opti-
mal contract has the desired feature that the payment in case of a good outcome is
higher when the outside shock is favorable if “success is relatively more likely to
derive from the good manager rather than the bad one” in the good state than in the
bad state. The model which is closest to our framework is the model proposed by
Himmelberg and Hubbard (2000). They specify the production and utility function
of a standard principal agent model in order to apply it to CEO compensation: in
their specification the marginal product of effort of the CEO increases with the
value of the aggregate shock, a feature that they suggest is realistic for CEOs.

The model is outlined in Sect. 2 and the main result is established in Sect. 3.
Examples illustrating the result are given in Sect. 4, while the final Section con-
cludes with some remarks on executive compensation suggested by our analysis.

2 Model and assumptions

Consider a collection of K firms which produce a homogenous output (profit)
and a collection of K managers who run these firms. Managers are assumed to be
matched to firms: manager1 k in K can only manage firm k or take an outside option
which determines his reservation utility ν̄k for working for firm k. The output yk of
firm k depends on the entrepreneurial effort ek of its manager, on a random shock
η ∈ � which is common to all firms and on an idiosyncratic shock εk , where both
types of shocks are unobserservable: thus yk = hk(ek, η, εk). We assume that effort
ek ∈ �+ is a continuous variable and that the output levels hk take a finite number

1 We use a caligraphic letter to denote a set and the same roman uppercase letter to denote the
number of its elements: K = {1, . . . , K }
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of values2 indexed in increasing order by sk ∈ Sk : that is sk > s′
k �⇒ yk

sk
> yk

s′
k
.

For given ek and η, the distribution function of εk induces a probability distribu-
tion pk(·, ek, η) on Sk whose cumulative distribution function is denoted by Fk :
that is, Fk(α, ek, η) ≡ ∑

{sk |yk
sk

≤α} pk(sk, ek, η). We assume that pk(sk, ek, η) is a

differentiable function of ek .
Let S = S1 × · · · × SK . An outcome for the economy is a realization s =

(s1, . . . , sK ) ∈ S, namely a vector of realized outputs ys = (y1
s1

, . . . , yK
sK

) for the
K firms. When we consider the optimal contract for manager k it will be convenient
to use the notation s = (sk, s−k), where s−k = (s1, . . . , sk−1, sk+1, . . . , sK ), and
similarly e = (ek, e−k) for the vector of effort levels of the managers. For a given
vector e = (e1, . . . , eK ) and a given value of the common shock η, the probability
of observing outcome s is

p(s, e, η) ≡
∏

k∈K
pk(sk, ek, η),

i.e. the idiosyncratic shocks (ε1, . . . , εK ) are assumed to be independent, condi-
tional on the value of η. Let G(η) denote the distribution function of η; since η is
unobservable the probability of outcome s given e is

P(s, e) ≡
∫

�
p(s, e, η)dG(η).

The random variables {ε1, · · · , εK , η} are not observable by any agent but the
uncertainty structure (p1, . . . , pK , G) of the economy is assumed to be common
knowledge.

Each firm k is owned by a collection of risk-neutral shareholders, who hire
the manager and offer an incentive contract τ k = (τk(s), s ∈ S) ∈ �S , which
guarantees the manager the reservation utility level ν̄k . Each manager is assumed
to be risk averse and, given the pay schedule τ k and effort ek , has utility

Uk(τ k, ek) = E(uk(τ k)) − ck(ek),

where uk, ck : �+ → � are differentiable, increasing, uk is strictly concave and
ck is convex.

Because the realization s−k of firms other than k contains information about the
common shock η, the optimal contract τ k for manager k will use this information
to provide incentives at least cost for the shareholders. The contract τ k will thus
depend on the realized state s = (sk, s−k) and since the probability of the realiza-
tion s−k depends on the effort levels e−k of the other agents, the optimal effort of
manager k will indirectly depend on the effort levels of the other managers.

2 The principal agent model is studied either with discrete effort levels as in Grossman and
Hart (1983) or with a continuum of effort levels as in most of the papers cited in the introduction.
Here we study the case of a continuum of effort levels and use first-order conditions with respect
to effort in the proof of Proposition 1. A modified proof is needed to cover the case of discrete
effort levels. As for the outcomes of the firms, we take the case of discrete outcomes since the
notation and presentation of the model is simpler and more intuitive in this case. It is easy to see
that the proof of Proposition 1 carries over to the case of continuous outcomes, integrals replacing
sums in the obvious way.
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The assumption that the firms’ owners are risk neutral, while standard in the
principal-agent literature, is nevertheless restrictive. The usual justification is that
if investors are well diversified and own a sufficiently small share of each firm, their
risk aversion can be neglected in designing the optimal contract of a firm’s man-
ager. In this paper the assumption of risk neutrality is necessary to obtain clear-cut
results on the way the optimal contract of a firm’s manager depends on the out-
comes of other firms. For if investors were assumed to be risk averse, the contract
of manager k would depend on the outcomes of other firms for two reasons: first
because all agents would have to share the aggregate risks, and second because
the outcomes of other firms give information on the likely effort of manager k.
By assuming risk neutrality of the investors we eliminate the need to consider the
first effect—namely the need to share risk between investors and managers—so
that the second effect—namely the informational content of the outcomes of other
firms—is the only reason for which they enter into the manager’s contract.

We will restrict attention to interior Nash equilibria in which the shareholders of
each firm induce the manager to make a positive effort, and each manager receives
a positive payment in every realized outcome.

Definition (τ̄ , ē) = ((τ̄ 1, . . . , τ̄ K ), (ē1, . . . , ēK )) 	 0 is an interior Nash equi-
librium with optimal incentive contracts if for each k ∈ K, (τ̄ k, ēk) solves the profit
maximization problem

max
(τ k ,ek )∈�S+×�+

∑

s∈S
P

(
s, ek, ē−k

) (
yk

sk
− τk(s)

)

subject to

∑

s∈S
P

(
s, ek, ē−k

)
uk(τk(s)) − ck(ek) ≥ ν̄k (1)

ek ∈ arg max

{
∑

s∈S
P(s, ẽk, ē−k)uk(τk(s)) − ck(ẽk)|ẽk ∈ �+

}

. (2)

The main result presented in the next section is based on the analysis of the
first-order conditions for the profit maximizing problem of each firm at a Nash
equilibrium. Given the form of the incentive constraints (2), these FOCs cannot be
derived directly from the Kuhn-Tucker theorem. We derive them using the follow-
ing assumption.

(A1) (τ̄ , ē) is an interior Nash equilibrium such that, for each k ∈ K, ēk is the
unique optimal effort of manager k given the compensation schedule τ̄ k .

The uniqueness condition is generic: if (τ̄ , ē) is an equilibrium such that the
maximum is not unique for some manager k, i.e. Uk(τ̄ k, ẽk) = Uk(τ̄ k, ēk) for
ẽk �= ēk , then the cost function ck can be perturbed so that ēk becomes the unique
optimal effort without affecting the other agents, and (τ̄ , ē) is a Nash equilibrium
of the perturbed economy. (A1) is a weaker condition than the concavity of the
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function ek → Uk(τ̄ k, ek) which is required for the “first-order approach” to hold,3

i.e. for replacing the incentive constraint (2) by the first-order condition for optimal
effort for manager k.

Lemma 1 If (A1) holds then for each k ∈ K there exists multipliers (λk, µk) ∈
�2++ such that

1 =
(

λk + µk

∂
∂ek

P(s, ē)

P(s, ē)

)

u′
k(τ̄

k(s)), s ∈ S (3)

Proof see Appendix.

Our second assumption specifies the qualitative way in which the common
shock η affects the probability of firms’ outcomes.

(A2) For each k ∈ K and for any fixed ek ∈ �+, pk(·, ek, ·) : Sk × � → [0, 1]
is log-supermodular,4 i.e., for any η, η′ ∈ � with η > η′, the likelihood ratio
pk(sk, ek, η)/pk(sk, ek, η

′) is an increasing function of sk .

(A2) implies that the higher the realization sk of firm k, the more likely it is that
it is associated with the value η of the common shock rather than with the lower
value η′. Thus a high realization sk can be interpreted as a signal that the value
of the common shock has been high (Milgrom 1981). Log-supermodularity is a
symmetric property: if sk > s′

k and η > η′, then

pk(sk, ek, η)

pk(sk, ek, η′)
>

pk(s′
k, ek, η)

pk(s′
k, ek, η′)

⇐⇒ pk(sk, ek, η)

pk(s′
k, ek, η)

>
pk(sk, ek, η

′)
pk(s′

k, ek, η′)

so that for sk > s′
k the likelihood ratio is an increasing function of η: a higher

realization of η makes it more likely that sk rather than s′
k will occur. Since (A2)

implies that a higher value of η makes larger outcomes for each firm more likely, the
distribution function Fk(α, ek, η) first-order stochastically dominates Fk(α, ek, η

′)
(see Rogerson 1985). High values of the common shock create good times for the
economy, while a low value of η is a negative shock for the economy.

3 In the setting of a single-principal, single-agent problem, Sinclair-Desgagné (1994) gives
sufficient conditions on the function P(s, e), where s is a multi-dimensional signal and e is the
(scalar) effort of the agent, which imply that the agent’s utility function U (τ̄ , e) is concave in e
at the optimal contract τ̄ . These conditions, however, are not directly applicable in our setting
since one of them requires that a high value of any component of the multi-dimensional signal
is indicative of a high effort of the agent, i.e. the joint probability P(s, e) is assumed to have the
Monotone Likelihood Property. In this paper we cover not only the case where a higher value
of s−k increases the likelihood of a high effort of manager k, but also the case where a lower
value of s−k increases this likelihood. Sinclair-Desgagné ’s analysis could probably be extended
to cover this case as well but this is outside the scope of our paper. To carry out our analysis we
only need the necessity of the first-order condition for optimal effort which, under Assumption
(A1), implies that the optimal contract satisfies the first-order condition (3).

4 For x, y ∈ �n , let x ∨ y =inf {z ∈ �n |z ≥ x, z ≥ y} and let x ∧ y=sup{z ∈ �n |z ≤
x, z ≤ y}. A function f : �n → � is supermodular if f (x ∨ y) + f (x ∧ y) ≥ f (x) + f ( y)
for all x, y ∈ �n ; f is submodular if the inequality is reversed. A function h : �n → �+ is
log-supermodular if f = log h is supermodular, i.e. h(x ∨ y)h(x ∧ y) ≥ h(x)h( y) for all
x, y ∈ �n . Here we assume that if x �= y the inequality is strict.
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3 Result

Our main result gives conditions under which, for a given realization sk of firm
k, the compensation of manager k at equilibrium is a decreasing (or increasing)
function of the vector of realizations s−k of other firms. To express this property
we say that a function f : �n → � is decreasing [ increasing ] if for any x, y ∈ �n

satisfying x ≥ y, x �= y, we have f (x) < f ( y) [ f (x) > f ( y) ]. We show that
the compensation schedule of manager k is monotone in s−k if the local likelihood
function Lk : Sk × �+ × � → � defined by

Lk(sk, ek, η) =
∂

∂ek
pk(sk, ek, η)

pk(sk, ek, η)

is monotone in η.

Proposition 1 Let (A1)–(A2) be satisfied. For each k ∈ K and any realization
sk ∈ Sk , the optimal reward schedule τ̄k

(
sk, s−k

)
in a Nash equilibrium is a

decreasing (increasing) function of s−k for all distribution functions G(η) if and
only if the local likelihood function Lk(sk, ēk, η) is a decreasing (increasing) func-
tion of η.

Proof (⇐) Suppose Lk(sk, ēk, η) is decreasing in η. We want to show that if
s, s′ ∈ S are such that sk = s′

k and s j ≥ s′
j for all j �= k with at least one

strict inequality, then τ̄k(s) < τ̄k(s′). Since by Lemma 1 the first-order condition
(3) holds with µk > 0, and since u′

k is strictly decreasing, we need to show that
A < 0, where A is defined by

A ≡ ∂/∂ek(P(s, ē))
P(s, ē)

− ∂/∂ek(P(s′, ē))
P(s′, ē)

(4)

Note that
∂

∂ek
P(s, ē)

P(s, ē)
=

∫

�
Lk(sk, ēk, η)a(s, ē, η)dG(η),

where

a(s, ē, η) =

∏

j∈K
p j (s j , ē j , η)

∫

�

∏

j∈K
p j (s j , ē j , η)dG(η)

.

For all s ∈ S, a(s, ē, η) > 0,
∫
� a(s, ē, η)dG(η) = 1, and for all s, s′ ∈ S

a(s, ē, η)

a(s′, ē, η)
=

∏

j∈K

p j (s j , ē j , η)

p j (s′
j , ē j , η)

P(s′, ē)
P(s, ē)

.

By (A2), since log-supermodularity is symmetric in (sk, η), if s j > s′
j , the

ratio p j (s j , ē j , η)/p j (s′
j , ē j , η) is an increasing function of η. Since s j > s′

j
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for at least one firm, it follows that the ratio λ(η) ≡ a(s, ē, η)/a(s′, ē, η) is an
increasing function of η. Since

∫
� a(s, ē, η)dG(η) = ∫

� λ(η)a(s′, ē, η)dG(η) =∫
� a(s′, ē, η)dG(η) = 1, λ(η) cannot always be strictly larger or strictly smaller

than 1. Thus there exists η̄ ∈ � such that λ(η) ≤ 1 if η ≤ η̄ and λ(η) > 1 if η > η̄,
and

∫
η≤η̄

dG(η) > 0,
∫
η>η̄

dG(η) > 0.

A =
∫

η≤η̄

Lk(sk, ēk, η)
(
a(s, ē, η) − a(s′, ē, η)

)
dG(η)

+
∫

η>η̄

Lk(sk, ēk, η)
(
a(s, ē, η) − a(s′, ē, η)

)
dG(η).

If η ≤ η̄ then a(s, ē, η) − a(s′, ē, η) ≤ 0 and since the likelihood function is a
decreasing function of η, Lk(sk, ēk, η) ≥ Lk(sk, ēk, η̄) so that

Lk(sk, ēk, η)
(
a(s, ē, η) − a(s′, ē, η)

) ≤ Lk(sk, ēk, η̄)
(
a(s, ē, η) − a(s′, ē, η)

)

(5)

If η > η̄, then a(s, ē, η)−a(s′, ē, η) > 0 and Lk(sk, ēk, η) < Lk(sk, ēk, η̄) so that
(5) is satisfied with a strict inequality. Thus

A < Lk(sk, ēk, η̄)

∫

�

(
a(s, ē, η) − a(s′, ē, η)

)
dG(η) = 0.

If the function Lk(sk, ēk, ·) is increasing in η then inequality (5) is reversed and
A > 0, so that the optimal wage schedule is increasing in s−k .

(⇒) Suppose Lk(sk, ēk, ·) is not decreasing. Then there exist η > η′ such
that Lk(sk, ēk, η) ≥ Lk(sk, ēk, η

′). Consider a distribution function G which
puts weight only on η and η′. Since a(s, ē, ·)/a(s′, ē, ·) is increasing in η, and∫
� a(s, ē, η)dG(η) = ∫

� a(s′, ē, η)dG(η) = 1, it follows that a(s, ē, η′)−
a(s′, ē, η′) < 0 and a(s, ē, η) − a(s′, ē, η) > 0. Thus A defined in (4) is such
that

A ≥ Lk(sk, ēk, η
′)

(
a(s, ē, η′) − a(s′, ē, η′))G(η′)

+(a(s, ē, η) − a(s′, ē, η))(1 − G(η′))
) = 0

and, for the distribution function G, the payoff is non-decreasing in s−k . Thus
the payoff is decreasing in s−k for all distribution G only if the local likelihood
function Lk is decreasing in η. ��
Remark. Since µk > 0, the first-order condition (3) implies that the higher the
ratio ∂ P(s,ē)/∂ek

P(s,ē)
, the greater the compensation of manager k in outcome s. In

this expression η has been integrated out since it is not observable. If η were
observable then the reward of manager k would only depend on the outcome sk
of his own firm and on η: his reward would vary with the local likelihood ratio
Lk(sk, ēk, η) = (∂pk(sk, ēk, η)/∂ek)/p(sk, ēk, η). Since

pk(sk, ek, η)

pk(sk, e′
k, η)

= exp

ek∫

e′
k

Lk(sk, t, η)dt
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the greater the local likelihood ratio the greater the probability that sk is associated
with the higher effort ek than with the lower effort e′

k . In the standard principal
agent setting, it is usually assumed that Lk(sk, ek, η) is increasing in sk , a prop-
erty called the Monotone Likelihood Ratio Condition (MLRC) which implies that
higher outcomes sk have a greater relative likelihood of being associated with the
higher effort ek rather than the lower effort e′

k . MLRC implies that the optimal
reward schedule is increasing in sk . In this paper we do not need this conditon
since we study how the reward τk(sk, s−k) of the manager varies as a function of
the outcomes s−k of other firms for fixed sk . What we need are two conditions:
(A2), which permits the observation of the realizations s−k of firms other than k
to give an informative signal on the value of the common shock η, and the mono-
tonicity of the local likelihood function Lk in η, which implies that the value of
η gives information on the likelihood that the effort of the manager has been high
rather than low. 5

When Lk is decreasing in η, the manager’s effort ek and the common shock η
are in essence “substitutes” for creating good outcomes, since a high value of η
makes it less likely that an outcome sk is associated with a high rather than a low
value of effort. As a result, for a given outcome sk of firm k, the reward of manager
k decreases when the outcomes of other firms increase. When Lk is increasing in
η, the manager’s effort and η are “complements”: a high value of η makes it more
likely that an outcome sk is associated with a high rather than a low value of effort
and the reward of manager k increases when the outcomes of other firms increase.
The examples in the next section illustrate natural settings where these two cases
can arise.

4 Examples

We give two examples of settings where Proposition 1 can be used to analyze
properties of the optimal reward schedule of a manager at an equilibrium.

Example 1 Consider the simplest symmetric setting where the characteristics of all
firms and managers are the same and each firm has only two outcomes (Sk = 2, k ∈
K ), a good outcome yg and a bad outcome yb, with 0 < yb < yg . The optimal
reward schedule for manager k is of the form τk(sk, s−k) = τk(sk, n(s−k)) where
n(s−k) denotes the number of good outcomes for the K − 1 other firms: in view of
the symmetry assumption, the number n = n(s−k) is all that is needed to charac-
terize the realizations s−k of the other firms. To simplify notation let ρ(e, η) denote
the probability of a good outcome for a firm when its manager’s effort is e and the
common shock is η, i.e. pk(g, ek, η) = ρ(ek, η) and pk(b, ek, η) = 1 − ρ(ek, η),
k ∈ K. Using subscripts for partial derivatives, we assume ρe > 0, i.e. effort
increases the probability of the good outcome, and ρη > 0, i.e. high values of η are
favorable. ρη > 0 implies that (A2) holds. Since the derivatives of the likelihood
function L for the good and the bad outcome are given by

5 As a mathematical remark, note that the monotonicity properties of the optimal reward func-
tions τk(sk , s−k) depend on log-super(sub)modularity of the underlying probability functions
pk(sk , ek , η), k ∈ K. Log-supermodularity in (sk , ek) implies monotonicity in sk , and log-super-
modularity in (sk , η), combined with log-sub or supermodularity in (ek , η) implies monotonicity
in s−k .
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Lη(g, e, η) = ρeηρ − ρeρη

ρ2 , Lη(b, e, η) = −ρeη(1 − ρ) − ρeρη

(1 − ρ)2

the characteristics of the reward schedule τk(sk, n(s−k)) depend on the sign of the
cross partial derivative ρeη.

(a) ρeη = 0

The likelihood function L is decreasing in η for both outcomes and the opti-
mal reward schedule satisfies τ̄k(b, n) < τ̄k(g, n) (since ρe > 0) and τ̄k(sk, n) <
τ̄k(sk, n′) if n > n′. The reward schedule is “tournament-like” in that the more
other agents there are who have a good outcome, the less manager k is paid.

(b) ρeη �= 0

(i) ρeη > 0. The likelihood function is decreasing in η for the low outcome,
Lη(b, e, η) < 0, but for the high outcome the sign is ambiguous. If ρ is given
by ρ(e, η) = a +b eα ηβ with a > 0, b > 0, a +b < 1, 0 < α < 1, β > 0
then Lη(g, e, η) > 0. In this case the reward τ̄k(b, n) decreases when n
increases, while τ̄k(g, n) is an increasing function of n. When few other
firms have good outcomes, η is likely to be low and effort is not likely to have
much effect, so that a good or bad outcome for firm k has to be attributed
to chance. When more firms have good outcomes, signaling a higher η, the
managers’s effort is more likely to have an effect so that it is worthwhile to
reward the manager when the outcome is good and punish him when it is bad.

(ii) ρeη < 0. L is decreasing in η for the good outcome and has an ambiguous
sign for the bad outcome. If ρ is given by ρ(e, η) = a + b (e + η)α with
0 ≤ e ≤ 1/2, 0 ≤ η ≤ 1/2, a > 0, b > 0, a + b < 1, 0 < α < 1 and
(1 − α) > b/(1 − a), then Lη(b, e, η) > 0. In this case τ̄k(g, n) decreases
when n increases, while τ̄k(b, n) is an increasing function of n. Because of
the decreasing returns property in e+η, a high value of η implies that the mar-
ginal effect of effort is low. Thus observing a high number of good outcomes
for the other firms makes it unlikely that either a good or a bad outcome is
the result of effort. As n decreases, the reward for a good outcome, and the
punishment for a bad outcome, increase. Thus, while in case (i) the biggest
differential between a good and a bad outcome for manager k occurs when
many firms have good outcomes, in case (ii) it occurs when few firms have
good outcomes.

For simplicity of exposition we have focused on the case where the outcome is a
discrete random variable but it is clear that Proposition 1 applies to models in which
the outcome is a continuous random variable, with density replacing probability
mass in Assumption (A2) and in the definition of the local likelihood ratio.

Example 2 In examples of continuous outcomes models with a common shock
studied in the literature, η enters either additively as in the model of Lazear and
Rosen (1981) and Green and Stokey (1983) with hk(ek, εk, η) = z(ek, εk) + η, or
multiplicatively as in the model of Nalebuff and Stiglitz (1983) with hk(ek, εk, η) =
ekη + εk . In all cases (ε1, . . . , εK ) are i.i.d. and independent.
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Let us show that the optimal reward schedule is tournament-like in the additive
case while the reward can be either increasing or decreasing in the performance of
others when the common shock affects the marginal product of effort.

(a) η does not affect the marginal product of effort

Let h(e, η, ε) = z(e, ε)+ η be the production function common to all firms where
the distribution of z given e has a density f (z, e). The density function for the output
y given the manager’s effort e and the common shock η is given by f̃ (y, e, η) =
f (y − η, e). In order that (A2) be satisfied the density f must be log-concave, i.e

fz(z, e)

f (z, e)
is decreasing in z.

This is not a demanding assumption since most standard distributions (normal,
gamma, chi square, Poisson, exponential) are log-concave, as well as many of the
examples given by LiCalzi and Spaeter (2003). We assume that in addition the
standard Monotone Likelihood Condition holds, i.e.

fe(z, e)

f (z, e)
is increasing in z.

Then the local likelihood function L(y, e, η) = fe(y − η, e)/ f (y − η, e) is a
decreasing function of η: for a given realization of a firm, if η is higher, z is lower
and, since MLRC holds, this tends to signal less effort on the part of the manager.
Since (A2) is satisfied, for any realization yk , the pay of manager k is a decreasing
function of the outcomes of the other firms.

(b) η affects the marginal product of effort

Consider a more general version of the model of Nalebuff-Stiglitz where all firms
have the production function h(e, η, ε) = φ(e, η) + ε, with φ > 0, φe > 0,
φη > 0 where φ describes the production due to effort and the common shock η, and
the idiosyncratic shock ε is additive. To ensure that (A2) holds we assume that the
density of the idiosyncratic shock f (ε) is log-concave. The density function for the
outcome y given e and η is f̃ (y, e, η) = f (y −φ(e, η)) and the function L is given
by L(y, e, η) = −φe(e, η) f ′(y − φ(e, η))/ f (y − φ(e, η)). It is difficult to sign
Lη without making more specific assumptions on the form of the density function
f . The standard assumption is that the idiosyncratic shock is normally distributed
with mean zero and variance σ 2. Then L(y, e, η) = (1/σ 2)φe(e, η)(y − φ(e, η))
and

Lη(y, e, η) = 1

σ 2

(
φeη y − (φeηφ + φeφη)

)
.

(i) φeη > 0. An increase in η increases the marginal product of effort. If
y < 0 then Lη(y, e, η) < 0: when a low outcome is observed for firm k, the
higher the realizations of other firms, the more likely it is that η was high and
that effort was productive, and the more likely that the bad outcome can be
attributed to shirking. When y is positive, Lη(y, e, η) may not have the same
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sign for all values of η, but the sign is positive for sufficiently high outcomes,
provided φ is bounded. For example if φ(e, η) = eαηβ , with 0 < α < 1,
β > 0, e ∈ [0, emax ], η ∈ [0, ηmax ], then φeηφ + φeφη = 2φφeη and
Lη(y, e, η) = (1/σ 2)φeη(y −2φ) > 0 if y > 2φ(emax , ηmax ). This case is the
analogue for the model with continuous outcomes of case b(i) in Example 1.
(ii) φeη < 0. To sign φeηφ + φeφη, let us assume that φ(e, η) = (e + η)α ,
with 0 < α < 1. If 0 < α < 1/2, φeηφ + φeφη < 0, so that if y < 0,
then Lη(y, e, η) > 0. In this case the decreasing returns are very strong: a
higher value of η decreases the productivity of effort so that a bad outcome
is less likely to be due to lack of effort and the punishment decreases. For
y > 0 the sign of Lη may not be constant but it is negative for high values
of y (y > (1 − 2α)/(1 − α)φ(emax , ηmax )) if φ is bounded. If α = 1/2,
φeηφ +φeφη = 0, so that Lη > 0 for y < 0 and Lη < 0 for y > 0. If α > 1/2,
φeηφ + φeφη > 0 so that when y > 0, Lη < 0. For y < 0 the sign may not
be constant but is positive for low values of y provided φ is bounded. The case
φeη < 0 is thus the analogue of case b(ii) in Example 1.

5 Conclusion

The discussion of relative performance compensation of CEOs in corporate finance
generally uses the simplest additive model (hk(ek, εk, η) = ek + εk + η) as the
reference model (see e.g. Gibbons and Murphy 1990). It is argued that relative
performance evaluation is valuable because it factors out the effect of common
shocks—it avoids exposing CEOs to risks which do not serve to create incentives
and for which they would otherwise need to be compensated. Relative performance
evaluation implies that a CEO’s compensation should be a decreasing function
of the outcomes of other firms. Murphy (1999), however, reports that only 20%
of large US companies explicitly use relative performance criteria to determine
CEO compensation. On the other hand the same survey shows that the major-
ity of large corporations use stock options and that in the last 10 years they have
become the most significant component of CEO compensation. Although stock
options could be indexed to the market—to make them adhere to the relative per-
formance criterion—in practice they are not. As a result, the compensation of a
CEO is higher when the overall level of economic activity and the stock market
are higher.

From the above analysis this type of compensation may be justified if the
general state of the economy has a positive effect on the productivity of the top
executive. Indeed it seems plausible, when entrepreneurship and innovation are
the qualities required, that the actions of a CEO will have their greatest impact
in good times, when the economy is expanding and has the greatest capacity to
absorb new products or new technologies. However, if the main contribution of
the CEO consists in steering the firm through difficult times, then the compen-
sation should be higher when the firm does well while the market as a whole is
depressed, and in this case stock options are not an appropriate type of compensa-
tion. Thus it seems that a model like that in Example 2, which specifies how the
economic environment affects the productivity of managerial input, may be useful
for assessing whether CEO compensation should, or should not, factor out industry
and economic trends.
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Appendix

Proof of Lemma 1 If the pair (τ̄ k, ēk) is optimal for firm k then τ̄ k minimizes the
expected cost of inducing the effort ēk . Let C̄k(τ k) = ∑

s∈S P(s, ē)τ k(s) denote
the expected cost of τ k when the probability is (P(s, ē))s∈S and let

Ūk(τ k, ek) =
∑

s∈S
P

(
s, ek, ē−k

)
uk(τk(s)) − ck(ek)

denote the expected utility of manager k, net of the cost of effort, when the other
managers make effort ē−k . Then τ̄ k is solution of the problem

min C̄k(τ k)

subject to: Ūk(τ k, ēk) ≥ ν̄k (6)

ēk ∈ arg max Ūk(τ k, ek)

The optimality of ēk for manager k implies Dek Ūk(τ̄ k, ēk) = 0. Consider a marginal
change τ̄ k → τ̄ k+dτ k such that Dek Ūk(τ̄ k+dτ k, ēk) = 0 ⇐⇒ Dek ,τ k Ūk(τ̄ k, ēk)·
dτ k = 0. (A1) implies that ēk remains optimal for τ̄ k + dτ k . Suppose not. Then
there exists ẽk �= ēk such that Ūk(τ̄ k + dτ k, ẽk) > Ūk(τ̄ k + dτ k, ēk) and, by
continuity of Ūk , Ūk(τ̄ k, ẽk) ≥ Ūk(τ̄ k, ēk), contradicting the uniqueness of the
maximum. Thus every dτ k ∈ �S satisfying

Dτ k Ūk(τ̄ k, ēk) · dτ k ≥ 0

Dek ,τ k Ūk(τ̄ k, ēk) · dτ k = 0

[the local version of the constraints in (6)] must satisfy Dτ k C̄k(τ̄ k) · dτ k ≥ 0. By
the Minkowski-Farkas Lemma there exist (λk, µk) ∈ �2 such that

Dτ k C̄k(τ̄ k) = λk Dτ k Ūk(τ̄ k, ēk) + µk Dek ,τ k Ūk(τ̄ k, ēk)

which is equivalent to (3). Note that (3) implies, by summing over s

∑

s∈S
P(s, ē)

(
1

u′
k(τ̄k(s))

− λk

)

=
∑

s∈S

∂ P(s, ē)
∂ek

= 0 �⇒ λk = E

(
1

u′
k(τ̄ k)

)

> 0

and (3) and Dek Ūk(τ̄ k, ēk) = 0 imply

µkc′(ēk) = E

(
1

u′
k(τ̄ k)

· uk(τ̄ k)

)

− E

(
1

u′
k(τ̄ k)

)

E (uk(τ̄ k))

= cov

(
1

u′
k(τ̄ k)

, uk(τ̄ k)

)

> 0.

The positive sign for the covariance comes from the fact that, by concavity of
uk , 1/(u′

k(τk(s))) and uk(τ̄ k) are positively dependent random variables,6 with
var(τ̄ k) > 0 since the optimal effort is interior. Thus λk > 0, µk > 0.

6 The covariance of positively dependent random variables is positive, see Magill and Quinzii
(1996, p. 170).



M. Magill and M. Quinzii

References

Celentani, M., Loveira-Pazo, R.: What form of relative performance evaluation?, Universitat
Pompeu Fabra, Economics Working Papers (2004)

Gibbons, R., Murphy, K.J.: Relative performance evaluation for chief executive officers. Ind
Labor Relations Rev 43, 30–51 (1990)

Green, J., Stokey, N.: A comparison of tournaments and contracts. J Pol Econ 91, 349–364 (1983)
Grossman, S., Hart, O.: An analysis of the principal-agent problem. Econometrica 51, 7–45

(1983)
Himmelberg, C.P., Hubbard, R.G.: Incentive pay and the market for CEOs: an analysis of

pay-for-performance sensitivity. Columbia University Discussion Paper (2000)
Holmström, B.: Moral hazard in teams. Bell J Econ. 13, 324–340 (1982)
Lazear, E., Rosen, S.: Rank-order tournaments as optimum labor contracts. J Pol Econ 89,

841–864 (1981)
LiCalzi, M., Spaeter, S.: Distributions for the first-order approach to principal agent problems.

Econ Theory 21, 167–173 (2003)
Magill, M., Quinzii, M.: The theory of incomplete markets. Cambridge, Massachusetts: MIT

Press, 1996
Milgrom, P.: Good news and bad news: representation theorems and applications. Rand J Econ

12, 380–391 (1981)
Mookherjee, D.: Optimal incentive schemes with many agents. Rev Econ Stud 51, 433–446

(1984)
Murphy, K.J.: Executive compensation. In: Ashenfelter, O., Card, O.(eds.) Handbook of labor

economics, Vol. 3B, Chap. 38, pp. 2485–2563. Amsterdam: North-Holland 1999
Nalebuff, B.J., Stiglitz, J.E.: Prizes and incentives: towards a general theory of compensation and

competition, Bell Econ 14, 21–43 (1983)
Rogerson, W.P.: The first-order approach to principal-agent problems. Econometrica 53,

1357–1367 (1985)
Sinclair-Desgagné, B.: The first-order approach to multi-signal principal-agent problems.

Econometrica 62, 459–465 (1994)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


