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1. INTR~OU~TION 

This paper presents an extension of the Arrow-Lind theorem [ 1 ] on the 
asymptotic value of an uncertain public project when the benefits and costs 
of the project are shared among a large number of agents. The theorem has 
its origin in the following problem: how should such a project be valued in 
the absence of a complete set of contingent markets in the private sector? I 
adopt the Arrow-Lind approach in basing the value of the project on the 
sum of the individual agents’ valuations. 

Arrow and Lind value a project by what I call the aggregate sale value. 
With their assumption that the IZ agents are identical, this is simply n times 
the representative agent’s sale value of his share of the project’s return. This 
concept of value is appropriate when all agents in the economy are identical 
since all agents are affected equally by the introduction of a public project. 
But in a world with different types of agents (income-preference pairs) some 
agents may be favorably affected while others may be adversely affected. In 

such a framework there are two natural concepts of value, the aggregate sale 
value and the aggregate purchase value, the latter being the sum of the 
individual agents’ purchase values-the most that an agent will pay to 
purchase a given share of the project’s return. To extend the Arrow-Lind 
theorem we need to study the behaviour of both these values. 

In Section 2, I show that these two concepts of value are related to the 
Kaldor-Hicks criteria for a potential Pareto improvement. In Section 3, I 
show that when the share of the project held by an agent becomes arbitrarily 
small the individual purchase and sale values coincide and the idiosyncratic 
risk associated with the project goes to zero (Proposition 1). After 
introducing a concept of stochastic dependence for a pair of random 
variables which extends the concept of independence to a concept of positive 
or negative dependence (Definition l), I show that the individual sale value is 
less than (greater than) the expected value of the agent’s share if his income 
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is positively (negatively) dependent on the return from the public project. It 
then follows under a uniformity condition (Assumption 2) that as the number 
of agents is increased (n + co) the two aggregate values converge to a 
common value and this limiting value is less than (greater than) the expected 
value of the project if the incomes of all but a finite number of agents are 
positively (negatively) dependent on the return from the public project-with 
equality in the independent case (Proposition 2). This is our first extension of 
the Arrow-Lind theorem. 

While this proposition leads to a classification of public projects 
according to the nature of their average stochastic dependence with the 
incomes of agents in the private sector, Proposition 3 makes this distinction 
more precise by showing that if we can attribute this stochastic dependence 
to the fact that the returns on the public project and the incomes of the 
agents are both influenced by a common random factor such as the business 
cycle, then the aggregate value of the public project depends not only on 
whether its returns vary procyclically or countercyclically but on the 
volatility of these comovements or countermovements with the business 
cycle. This is our second extension of the Arrow-Lind theorem. 

Presented this way the theory of the valuation of public projects becomes 
closely related to Ross’ arbitrage theory of asset pricing [4]. The nonlinear 
index model introduced in Section 4 to generate the returns on the public 
project and the incomes of the n agents may be viewed as a simple 
generalization of the linear index model used by Ross to generate the returns 
on each of m assets. While in Proposition 3 it is the increase in the number 
of agents (n -+ co) that leads to risk spreading, which in turn drives the 
idiosyncratic risk to zero, in Ross’ framework it is the increase in the number 
of assets (m + co) and the resultant diversification of risk through the law of 
large numbers, which drives the idiosyncratic risk to zero. In each case the 
value of the asset depends only on the resulting nondiversifiable risk and the 
premium for this risk is proportional to the volatility of the asset’s return 
with respect to the underlying index. 

A substantial literature has emerged on various issues raised by the 
Arrow-Lind theorem-I shall not attempt to enter into these here. Suffice it 
to say that the most obvious defect of the present extension is that it is 
confined to the purely static case. In this respect I should mention the recent 
paper of Wilson [5] which not only presents a discussion of many of the 
basic issues involved in the valuation of public projects, but also shows some 
important qualitative results that emerge when the analysis is explicitly 
extended to a temporal context. 
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2. INDIVIDUAL AND AGGREGATE VALUES AND 
THE HICKS~ALDOR CRITERION 

Consider an economy consisting of n agents, where each agent has a 
random income yi, i = l,..., n, and receives a share Ti of the random return z 
from a public project. Let (0,X, 9) denote a probability space, R being the 
set of states of nature, F the a-field of subsets of R, and 9 the probability 
measure on ST. We assume that ith agent’s preference ordering among 
random income prospects can be represented by a von Neumann- 
Morgenstern utility function ui and define 

Ui({i) = j Ui(yi(O) + <iz(0)) d9(w) = E”i(Yi + Cz>* (1) 
n 

ASSUMPTION 1. (i) ui: Di -+ R is a concave, strictly increasing and 
differentiable function on its domain Di c R; (ii) the random variables (y,, Z) 

are restricted so that U,(C) is differentiable for all Iti1 < E for some E > 0. 

A variety of different sufficient conditions can be given for (ii) to hold, 
depending on the behaviour of ~~(a)--1 leave the details of this enumeration 
to the reader. 

We would like a unique expression for the money value to the ith agent of 
the share &z in the public project. In general no such expression can be 
found, for there are two natural money values that the ith agent associates 
with &z depending on whether we use expected utility before or after receipt 
of the random return &z as the reference point for the valuation. Thus we 
define the purchase value Wi(ri ; vi) as the maximum (nonrandom) amount of 
money that the ith agent will pay for &z assuming he does not own it, 

EUi(yi + Ti 2 - Wi) = EUi( yi)* (2) 

Similarly we define the sale value vi(& ; yi) as the minimum (random) 
amount of money for which the ith agent will sell &z assuming he does own 
it, 

E”i(yi + Vi)=EUi(y, + TiZ). (3) 

It is clear that wi and vi correspond to the compensated and equivalent 
variations in income in the standard theory of the consumer, when the ith 
agent instead of facing a change in random income <iZ (as above) faces a 
change in the vector of prices. It will be recalled that the compensated and 
equivalent variations coincide when there are no income effects. A similar 
result holds here: using Pratt’s result [3, Theorem 21 that Ui(C ; yi) is 
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independent of yi when yi is nonrandom and the ith agent has constant 
absolute risk aversion, we can show that w~(&; y,) = Vi(ri;yi) for a general 
random income yi if the ith agent has constant abolute risk aversion. While 

and vi always have the same sign, positive (negative) if 
:I,( yi + riz) > (<) Eu,( yr), they do not in general coincide in magnitude. 

Let <= (< i ,..., r,) with ri > 0, i = l,..., n, C;=, ti = 1, y = (yi ,..., y,) and 
consider the move from y to y + & involved in undertaking the public 
project. In general some agents (the gainers) will be beneficially affected 
(wi > 0) while others (the losers) will be harmfully affected (wi < 0). The 
Kuldor criterion asserts that the move from y to y + & involves a potential 
Pareto improvement if the gainers can compensate the losers and still be 
better off: it is easy to see that this is equivalent to the condition that the 
aggregate purchase value W,, = Cy= i wi be positive. Consider the move from 
y + 5; to y. Let Oi denote the purchase value of -&z starting from yi + <iZ, 
then Gi = -Vi. The Hicks condition requires that the gainers in the move 
from y + rz to y should not be able to compensate the losers and still be 
better off: this is equivalent to the condition that I@,, = Cy=i Gi = 
-~~=lvi=-vn<o or that the aggregate sale value V,, be positive. Thus 
the Hicks-Kaldor condition for a potential Pareto improvement in moving 
from y to y + rz is equivalent to the condition that the aggregate purchase 
value W,, and the aggregate sale value V,, be positive. 

The aggregate sale value V,, = Cy= i vi inherits an important property from 
the individual sale values vi, i = l,..., n. Suppose that instead of considering 
the single public project represented by the return-share vector (z, <) we want 
to compare it with a second project represented by (z*, <*). In this case if 
we define zi = &z, z: = r,*z* and let Eui( yr + vi(zi)) = Eui( yi + zi), then 
vi(zi) represents the ith agent’s preference ordering since vi(zi) > vi(zT) if 
and only if Eui(yi + zi) > Eu,(y, + z:). Thus if (z, 0 is preferred by all 
agents to (z*, <*), then V, = Cy= 1 vi(zi) > CyEI vi(zF) = I’,*. 

3. STOCHASTIC DEPENDENCE AND BEHAVIOUR OF 
INDIVIDUAL AND AGGREGATE VALUES 

When the proportions ci of the public project z held by the ith agent are 
sufficiently small, then the behaviour of the individual values wi and Vi is 
determined by the nature of the stochastic dependence between yi and z. TO 

make this idea precise we need an extension of the concept of independence 
which expresses for an arbitrary pair of random variables ( yi, z) what the 
concept of positive or negative covariance expresses for a pair of normally 
distributed random variables. This is supplied by the following definition due 
to Lehmann [2]. 
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DEFINITION 1. Let (y, z) be a pair of real-valued random variables 
defined on a probability space (0, Y, 9). The pair (y, z) is said to be 
positively (negatively) dependent if for all (r, r) E R2 

with strict inequality for some (Q <) E R*. For brevity we write (y, z) is p.d. 
(n.d.) respectively, 

It is straightforward to show that if (y, z) is p.d. (n.d.) and g(e) is a real- 
valued, strictly decreasing function, then (g(u), z) is n.d. (p.d.). Also if ( y, z) 
is p.d. (n.d.), then cov(y, z) > 0 ((0). When (JJ, z) are joint normally 
distributed, then (y, z) is p.d. (n.d.) if and only if cov(y, z) > 0 ((0). 

Consider the sale value vi(ri) = v,(&;y,). Let G,(v,) = Eu,(y, + vi), then, 
under Assumption 1, G,(e) is a strictly increasing differentiable function so 
its inverse G;‘(e) is differentiable. Thus (1) and (3) imply vi(&) = 
G; ‘(Ui(ri)) and if Vi(.) is differentiable at &, then 

u; ((iI E[u,‘(Yi + tiz> z] 

vf(ri)= G’(~i(ri)) = Eu,‘(yi + Vi(Ti)) ’ 

A similar expression is readily derived for the derivative of the purchase 
value i-vi(&). Since v,(O) = ~~(0) = 0, if U,(e) is differentiable at C = 0, then 

The differentiability of vi(&) and w,(&) at ri = 0 implies that there exist 
functions r,(&), si(&) where rJ&)/&, si(<J& -+ 0 as ti -+ 0 so that 

vi(ti) = tivl(0) + ri(<[), wi(<i) = Ci w,‘(o) + si(ti)* (6) 

Thus (vi(&) - wi(&))/& + 0 as & -+ 0. When the proportion ri is suflciently 
small, the ith agent behaves as if he had constant absolute risk aversion and 
the purchase and sale values coincide. 

For a fixed public project z with mean Z; we define the risk premium of 
the ith agent A,(&) by 

vi(4i) = CiTedi( (7) 

PROPOSITION 1. Under Assumption 1, Ai -+ <,di as ri --) 0 where 
ai = -cov(uf(yi), z)/Eu;( yi). Zf the pair ( yi, z) is independent, ai = 0; if the 
pair ( yi, z) is positively (negatively) dependent, 6i > 0 (<O). 
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Proof The convergence A,(&) + (,a, follows at once from (5) - (7). If 
(yr, z) is independent, cov(u;( yJ, z) = 0. If (y,, z) is p.d. (n.d.), since u:(a) is 
strictly decreasing, (uf(yi), ) z is n.d. (p.d.). Thus cov(u;(y,), z) < 0 (>O). 
Since u;(e) > 0, 6, > 0 (<O). I 

There is a simple way of interpreting Proposition 1. Since vi(&) is differen- 
tiable and u,(O) = 0, by the intermediate value theorem there exists 
0 < & < C$ such that v,(&) = <rug and vi is given by (4). Substituting from 
(7) shows that the behaviour of the risk premium di(ri) is influenced by the 
stochastic dependence between the pair (yi + &z, riZ): both the idiosyncratic 
risk arising from the stochastic dependence between the pair (&z, &z) and 
the stochastic dependence risk arising from the dependence between the pair 
(yi, &z) influence A,(<,). Proposition 1 asserts that when an agent holds a 
suflciently small proportion of the prospect z, its idiosyncratic risk 
disappears and the behaviour of the risk premium Ai is determined by the 
stochastic dependence between ( yi, Cz). 

It is clear that if we want the aggregate values V, and W, to converge as 
n -+ co we need a uniformity condition on the types of new agents 
(income-preference pairs ( yi, ui)) which are introduced as n + 00. 

ASSUMPTION 2. There exist functions rb), s(j) where rk)/X -+ 0, 
dx)lx+ 0 as x + 0 and 6 > 0 such that ri and si defined by (6) satisfy 
I riO1l < 4x), IsitX)l < SOI), i = 1, L., for all sufficiently small values of x 
and )dil <6, i= 1, 2 ,.... 

Note that this condition is automatically satisfied if there are at most a 
finite number of distinct types of agents (pairs (yi, ui)) in the economy. 

PROPOSITION 2. Under Assumptions 1 and 2, the aggregate values 
converge V, = (l/n) CyEI vi(l/n) + V*, W, = (l/n) Cy= i w,(l/n) -+ W* as 
n + a~, furthermore V* = W* = Z- 6*, 6* = lim,,, (l/n) EYE, di. Zf the 
pair (y,., z) is independent for all i fL I, where Z is any Jinite subset of 
N = (1, 2,...}, then 6* = 0. Zf the pair (y,, z) is positively (negatively) 
dependent for all i & I, then 6* > 0 (<O). 

Proof. Since, by Assumption 2, /dil < 6, i = 1,2,..., the sequence of 
partial sums (l/n) Cy= i /fJil is increasing and bounded above. Thus 
(l/n) JJ;= i Ji is absolutely convergent and 6* = lim, ~a, (l/n) Cy=, 6[ exists. 
By (6) and Assumption 2 

Since, by (5), (l/n) Cy=, v;(O) = Z- (l/n) Cy=i di and since 6* = 
lim,+ a, (l/n) Cy=, ai = lim,,, (l/n) C;= l,i61 di, V, + V* = Z - 6*. Since 
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by (6) and Assumption 2 a similar inequality holds for Cy=, 1+,(1/n), using 
(5), W, --t W* = i- 6*. The fact that 6* = 0, >O, ((0) in the independent 
and positively (negatively) dependent cases follows from Proposition 1. 1 

EXAMPLE 1. Suppose each agent has a constant absolute risk aversion 
utility function u&) = -edmix with Di = (-co, a~), 0 < a,< a, i= 1, 2 ,.... 
Let (yi, z) be joint normally distributed with covariance cyiz, IcYiL I< (J, 
i = 1, 2,... . Then Assumptions 1 and 2 hold and V* = Z - lim,,, (l/n) 
Xi”= 1 aiuyiz. 

EXAMPLE 2. The following example shows that the differentiability of 
U,(&) at & = 0 is essential to Propositions 1 and 2. Let uik) = In x with 
Di(O, co), i = 1, 2 ,..., let the public project be the sole source of income so 
that yi = 0 a.s., i = 1, 2 ,..., and let In z be normally distributed with mean and 
variance (u, a’) so that I= e i” +O*‘*. Then Gi(ui) = In vi, Ui(&) = In ri + ,B so 
that vi(&) = G;‘(U,(&)) = e’” Vu = tie”. Assumption 1 does not hold since 
Vi(&) is not differentiable at ri = 0. Thus even though the pair 
FJ,~~= (p, z) is independent, i = 1, 2,..., vi(&) = e-“*‘*&I < &I and 

u ‘*z? < Z. The Arrow-Lind result V* = Z in the independent iden- 
tical agent case is thus no longer valid when U,(C) is not differentiable at 
& = 0. 

Note that Proposition 2 holds for more general proportions &’ satisfying 
C;=,r;= 1, nit;- l/nI+O as n + co uniformly with respect to i. The 
interpretation of Proposition 2 is clear. As the number of agents increases, 
the proportion Cl held by the ith agent decreases; by Proposition 1, for 
sufficiently large values of 12, the idiosyncratic risk of the public project 
disappears as far as the ith agent is concerned. Thus all that remains is the 
stochastic dependence risk so that wi(&‘) = v,(rl) = rl(F- Si). Since this is 
true for all agents, the aggregate values W, and V, converge to .F - 6 * where 
6* is the average stochastic dependence risk premium. 

When the return from a public project is shared among relatively few 
agents the fact that the individual purchase and sale values wi and ui can 
differ in magnitude implies (when there are both gainers and losers) that the 
aggregate values W, and V, can differ in sign. Proposition 2 shows that this 
problem cannot arise when the project is shared among sufftciently many 
agents, for then the aggregate purchase and sale values coincide. Thus if 
W, > 0 so that the Kaldor condition for a potential Pareto improvement 
holds, then V,, > 0 so that the combined Hicks-Kaldor condition is satisfied. 
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4. VOLATILITY AND AGGREGATE VALUE 

The qualitative behaviour of the aggregate value V* = W* can be 
explored further if we introduce an explicit model that serves to explain the 
observed stochastic dependence between each pair (yi, z). The natural idea 
here is that two random variables are positively dependent if they are both 
increasing functions of a common random variable with their own idiosyn- 
cratic noise. More generally I make the following assumption. 

ASSUMPTION 3. The random variables (y,, z), i = 1, 2,..., are generated 
by a nonlinear index model 

40) = P&(w)9 r(o)) + e(w), w E 52, -co<p<m, 

Yi(O) =.M-w)~ E&J)), 0 E n, i = 1, 2,..., 

where g(e) and A(.) are measurable functions and (x, q, 0, si) are independent 
random variables. 

When g(., r,~) is a monotone function for every value of q, then /I is a 
scalar measure of the extent to which z fluctuates as a result of fluctuations 
in the common underlying random variable x. I shall call p the volatility of 
z. Under Assumption 3 the marginal risk premium of the ith agent Ji is a 
linear function of the volatility of z 

S,(p) = - cov(ul(fi(x2 &i)), Pg(x, II> + @ 
E”j(.lXxV &i)) 

= _ P cowwx~ Ei)h &Y VI) = gs,(l) 
E”fdf;(x, &i)) I * (8) 

Proposition 3. Under Assumptions 1-3, V*(p) = W*@ = I -/?S*( l), 
S*(l) = lim,,, (lln)Cl=l si(l)* Ifg(*Y tl> is strictly increasing (decreasing) 
for every value of v and fi(., ei) is strictly increasing for every value of ei for 
all i @ I, where I is anyfinite subset of N = { 1,2,...}, then S*(l) > 0 ((0). If 
J;.( ., ei) is strictly decreasing for every value of ei for all i fZ I, then the sign of 
6 * (1) is reversed. 

Proof. V*(p) = W*@) = Z - @*( 1) follows at once from (8) and 
Proposition 2. By a theorem of Lehmann [2, Theorem 1, p. 11381 if g(., V) is 
strictly increasing (decreasing) for every value of r and A(., Ei) is strictly 
increasing for every value of E,, then the pair ( yi, z) is positively (negatively) 
dependent for p > 0. Thus, by Proposition 1, S,(l) > 0 (<0) and hence, by 
Proposition 2, S*(l) > 0 (to). Iff ( , ., sI is strictly decreasing for every value ) 
of cl or if p < 0, then the sign of the stochastic dependence is reversed. 1 
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Thus when /3 > 0 and g and fi (i 6? I) are increasing functions of the 
common variable x, which we can think of as an index of the business cycle, 
then (vi, z) are positively dependent (i @ 1) and an increase in the volatility 
of the public project reduces its aggregate value V*. Conversely if g is a 
decreasing function of x, then (ri, z) are negatively dependent (i 6? I) and an 
increase in the volatility of z increases its aggregate value. In the first case 
an infinitesimal share of z adds risk to each agent’s portfolio; an increase in 
the volatility of z increases this risk. In the second case introducing the 
public project enables each agent to hedge (at least partially) against the 
uncertainty of his existing income yi ; an increase in the volatility of z serves 
to make the hedge more effective. In the case where either g orfi (i @ I) are 
no longer influenced by x, x ceases to create a common dependence and z 
and yi (i 6G 1) are independent random variables. In this case either p = 0 or 
6*( 1) = 0 and we obtain the Arrow-Lind result V* = Z. 

EXAMPLE 1. Let u,(x) = - ePaix, Di = (--CO, CXZ), 0 < (Xi < CI, i= 1,2,..., 
&?(x, V) =X, h(x, &i) = Yjx + &i, -co < yi < co, where x and si are inde- 
pendent normally distributed random variables and rri is the variance of x. 
Then S,(J) =@,6,a:, i = I,2 ,..., and 

In this case the sign of/l determines whether the public project is procyclical 
(J3 > 0), countercyclical (8 < 0), or independent of the business cycle (/I = 0). 
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