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a b s t r a c t

This paper studies the existence and uniqueness of equilibrium in a monetary model in which the
fiscal policy is Ricardian. The innovation of the paper is to model agents’ expectations as endogenous
probabilitieswhich are determined in equilibrium. Since economieswith a Ricardian fiscal policy typically
exhibit indeterminacy of equilibrium when the monetary policy instrument is the short-term interest
rate, we augment the instruments of monetary policy to the interest rates on a family of bonds of
maturities 1, . . . , T and derive conditions under which this ensures uniqueness of equilibrium.
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1. Introduction

This paper provides an abstract framework for studying how
a monetary policy can anchor agents’ expectations of inflation in
a regime where the monetary–fiscal policy is Ricardian so that
agents’ expectations of inflation are a priori indeterminate. The
new element in our analysis lies in thewaywemodel expectations
as an equilibrium sequence of probability distributions, and in our
focus on the consistency conditions thatmust be satisfied between
bond prices and agents’ expectations of inflation.

The indeterminacy in the model arises from the forward-
looking nature of expectations of inflation: agents’ borrow-
ing–saving decisions today, which determine the demand for
goods and current equilibrium prices, depend on their expecta-
tions of prices in the future. The choice of a short-term nominal in-
terest rate by the monetary authority serves to tie down the mean
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value of inflation next period but not its probability distribution.
Furthermore the natural transversality condition which could po-
tentially tie down the forward-looking inflation process at infinity
is removed as a separate equilibrium conditionwhen the fiscal pol-
icy is Ricardian, since this means that taxes automatically adapt
to asymptotically pay off the government debt (in present-value
terms).

Since expectations of inflation play an essential role in a
monetary equilibrium, we introduce them explicitly into the
model. We consider a cash-in-advance model with a simple
saving–consumption–labor choice of the type studied by Schmitt-
Grohe and Uribe (2000) with certainty and by Nakajima and Pole-
marchakis (2005) with uncertainty, in which agents believe that
inflation next period can take one of a finite number of values—a
discretization of agents’ beliefs. In a rational expectations model
the probability distribution on this support of inflation rates must
be compatible with the prices of the nominal securities traded on
the financialmarkets, in particular the prices of government bonds.
Themonetary authority, aware of this fact, determines the prices of
(the interest rates on) bonds of different maturities 1, . . . , T with
a view to ‘‘anchoring’’ the stochastic process of beliefs to a process
of its choice. Since the short-term nominal interest rate influences

http://dx.doi.org/10.1016/j.jmateco.2013.06.003
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the labor (production) decision which in turn influences the real
interest rate, restrictionsmust be placed on the candidate inflation
processes to be sure that they are compatible with non-negative
nominal interest rates. This is how the so-called problem of the
zero lower bound enters in the analysis, as a problem of existence
of equilibrium. Thus the first step of our analysis is to define the
set of inflation processes towhich themonetary authority can con-
sider anchoring agents’ expectations because they are compatible
with the existence of an equilibrium.

Having established conditions for the existence of an equilib-
rium we then turn to the problem of uniqueness of equilibrium.
The standard approach to analyzing uniqueness (determinacy) in
a monetary model is to examine whether, given short-term inter-
est rates chosen by the monetary authority, there is a unique infla-
tion processwhich is compatiblewith equilibrium.When the fiscal
policy is Ricardian uniqueness does not hold since the short-term
interest rate only ties down the expected value of inflation.1 This
is why we assume that the monetary authority uses more instru-
ments than the short-term interest rate and fixes the interest rates
(prices) on a family of bonds of differentmaturities, i.e. a part of the
term structure of interest rates.2 We find conditions under which a
term-structure policy is associatedwith a unique inflation process,
that is when there is a unique inflation process for which the bond
prices satisfy the equilibrium pricing equations. When uniqueness
holds we say that the monetary policy anchors agents’ expecta-
tions, since from the knowledge of the interest rates that will hold
in the future, agents can only adopt one compatible belief. This of
course requires transparency of the monetary policy and rational-
ity of investors.

Uniqueness is first studied for an economy in which all agents
are identical and there is no fundamental uncertainty, so that all
uncertainty comes from the agents’ beliefs about inflation. The re-
sults are then extended to an economy subject to real (produc-
tivity) shocks satisfying a Markov process in which agents are
heterogeneous. The conditions for uniqueness are expressed as
rank conditions on the prices of the bonds, which essentially re-
quire that the term structure of interest rates vary with current
inflation. This in turn implies that the inflation process to be an-
chored must be such that the probability distribution of next-
period inflation rates varies systematically with current inflation.
While there is considerable flexibility in the belief process a mon-
etary authority can induce, it cannot induce a deterministic belief
of immediate return to some chosen target inflation rate, or even
beliefs which are independent of current inflation.

The sharp characterization of conditions for both existence and
uniqueness of equilibriumhinges on a crucial transformation of the
equilibrium from an extensive to a reduced form. The extensive
form expresses the conditions which must be satisfied period by
period and involves a large number of variables – the real and
financial decisions of the agents and the government and the
associated prices – making it essentially intractable. The reduced-
form equilibrium involves the minimum number of variables
needed to characterize an equilibrium and the constraints which
are retained are expressed in the more condensed present-value
form.

1 When taxes are exogenously given in real terms, so that they do not adjust
to accommodate the government debt as in the Ricardian case, the transversality
condition for the government’s debt becomes an equilibrium condition which
serves to tie down prices and leads to the uniqueness of equilibrium. This explains
the determinacy in monetary models without a fiscal policy (i.e. with zero taxes),
e.g. Dubey and Geanakoplos (1992, 2003, 2006) or Lucas and Stokey (1987).
2 A related approach to establishing the uniqueness of equilibrium in the state-of-

naturemodel of Nakajima and Polemarchakis (2005) is given in Adao et al. (2010). In
Magill and Quinzii (2013) it is shown that there is another type of monetary policy
consisting of fixing the expected value of the future short-term rate for several
periods ahead which also ensures the uniqueness of equilibrium.
Section 2 introduces themodel of amonetary economy inwhich
the fiscal policy is Ricardian and agents’ expectations of inflation
are described by a sequence of probability distributions which
are endogenously determined in equilibrium, and establishes the
basic theorem on the equivalence between an extensive-form and
a reduced-form equilibrium. Section 3 establishes conditions for
the existence and uniqueness of equilibrium for an economy with
no fundamental uncertainty and a representative agent. Section 4
shows how these results can be extended to an economy subject
to real productivity shocks in which agents are heterogeneous.
Section 5 gives a brief review of the related literature on the
determinacy of equilibrium.

2. Monetary economy

Consider a monetary economy in discrete time over an infinite
horizon with a finite number of agents, in which money serves not
only as a unit of account but also as the medium of exchange. The
objects of trade are goods and securities and the purchase (pay-
ment) for either must be made using money. There are two sets of
agents: H , the finite set of households in the private sector, and
a government, the monetary–fiscal authority. The government is-
sues money and nominal (government) bonds of different matu-
rities and imposes taxes on the agents. There are two sources of
uncertainty in the economy: the first is real, the second nominal.
Real uncertainty is modeled as usual by exogenous shocks which
affect the productivity of the economy. Nominal uncertainty on the
other hand is endogenous: prices today depend on agents’ con-
sumption–savings decisions since these determine the quantity of
money they use for current consumption, and these decisions in
turn depend on the agents’ expectations about future prices. Thus
we model the nominal uncertainty as a process for agents’ beliefs
about inflation requiring that in a rational expectations equilib-
rium the beliefs coincide with the actual process.
Uncertainty and event-tree. To simplify the modeling of the
agents’ belief process about inflation, we discretize the support
of the possible inflation rates, identifying each subinterval with a
particular inflation rate in the subinterval (typically the midpoint
except for the two extremes which represent the upper and lower
tails).3 We then approximate a probability distribution on the
inflation rates at date t by the discrete probability distribution on
the finite support consisting of these representative inflation rates.
Since we are interested in stationary equilibria we take the same
support Π = {π1, . . . , πS} at all dates, letting S = {1, . . . , S}
denote the index set of the inflation rates. Since the belief process
can be influenced by actions taken by the monetary authority, the
sequence of probability distributions on the support Π forms part
of the endogenous variables in an equilibrium.

The real uncertainty arises from the fluctuations in the pro-
ductivities of the agents in their production activities: let G =

{1, . . . ,G} denote the index set for the possible real shocks. The
process of real shocks is exogenously given by a family of proba-
bilities A = (At)t≥0 on the histories (g0, . . . , gt) of the shocks up
to date t , with the property that
(g0,...,gt )∈Gt

At(g0, . . . , gt) = 1,

At(g0, . . . , gt) =


g∈G

At+1(g0, . . . , gt , g)

where Gt denotes the set of partial histories of the real shocks to
date t . Let Dt = St

× Gt denote the set of partial histories of the

3 In order that the tails, in particular the upper tail, can be represented by a finite
value, the probability of very high inflation rates must be negligible.



88 M. Magill, M. Quinzii / Journal of Mathematical Economics 50 (2014) 86–105
combined inflation–productivity shocks with typical element ξt =

((s0, g0), . . . , (st , gt)). Dt denotes the set of nodes or date-events
at date t: the union of all such date-events defines the event-tree

D =

∞
t=0

Dt

consisting of all possible date-events ξ into the indefinite future.
Any date-event ξ has a date t(ξ), a unique predecessor ξ− at date
t(ξ) − 1 and a set ξ+ of immediate successors at date t(ξ) + 1. If
ξ = ((s0, g0), . . . , (st , gt)) then

ξ−
= ((s0, g0), . . . , (st−1, gt−1)),

ξ+
= {((s0, g0), . . . , (st , gt), (s, g)) | (s, g) ∈ S × G}.

For any node ξ ∈ D, let D(ξ) denote the subtree originating at ξ
and let DT (ξ) denote the nodes of the subtree D(ξ) at date T .

A belief process B on the event-treeD is a family of probabilities
B = (Bt)t≥0 on the partial histories Dt such that
ξ∈Dt

Bξ = 1, Bξ =


ξ ′∈ ξ+

Bξ ′ , ∀ ξ ∈ Dt

where we use the shorthand notation Bξ to denote Bt(ξ)(ξ). The
agents’ beliefs must be consistent with the exogenously given
probabilities A = (At)t≥0 for the productivity shocks, which are
assumed to be independent of the realized inflation rates. Thus we
say that a belief process B = (Bt)t≥0 on D is compatible with A if for
all t ≥ 0
(s0,...,st )∈St

Bt((s0, g0), . . . , (st , gt)) = At(g0, . . . , gt),

∀ (g0, . . . , gt) ∈ Gt .

Agents’ characteristics and actions. To incorporate production into
the model in the simplest way which at the same time captures
the idea that production is influenced by the nominal interest rate
set by themonetary authority, we follow Schmitt-Grohe and Uribe
(2000) and Nakajima and Polemarchakis (2005) using a cash-in-
advance model in which consumption is a ‘cash good’ and leisure
is a ‘credit good’ in the terminology of Lucas and Stokey (1987).We
assume that there areH agents (indexed by h ∈ H) and that at each
date-event ξ ∈ D an agent has an endowment eh of ‘time’ which
can be used either for leisure (ℓh

ξ ) or to produce labor services (Lhξ ),
with eh = ℓh

ξ + Lhξ , ξ ∈ D. The agent sells the labor services Lhξ
to a firm which uses them to produce yξ = ahξ L

h
ξ units of output,

the productivity of the agent’s labor services depending only on the
real and not on the inflation shock.4 If chξ is the agent’s consumption
of the good at node ξ , then the pair xhξ = (chξ , ℓ

h
ξ ) generates the

flow utility uh(chξ , ℓ
h
ξ ) where the functions uh, h ∈ H , satisfy the

following conditions.

Assumption U (Preferences). For each h ∈ H the function uh
:

R+ × [0, eh] → R has the following properties:

1. increasing and differentiably strictly concave:
uc > 0, uℓ > 0
ucc < 0, uℓℓ < 0, uhccu

h
ℓℓ − (uhcℓ)

2 > 0

2. supermodular: uh
cℓ ≥ 0

3. Inada conditions:
uhc (c, ℓ) → ∞ as c → 0, ∀ ℓ ∈ (0, eh)

uhℓ(c, ℓ) → ∞ as ℓ → 0, ∀ c > 0

4. asymptotic satiation:
uhc (c, ℓ) → 0 as c → ∞, ∀ ℓ ∈ (0, eh)

uhℓ(c, ℓ) → 0 as ℓ → eh, ∀ c > 0.

4 The formal assumptions are made explicit in Section 4 where we also assume
a Markov structure for the shocks: if at date t(ξ) the current shock is (s, g) then
ahξ = ahg .
Given a belief process B, a consumption–leisure process5 xh =

(chξ , ℓ
h
ξ )ξ∈D on the event-tree D generates the lifetime expected

utility

Uh(xh) =


ξ∈D

δt(ξ)Bξuh(xhξ ), 0 < δ < 1. (1)

In addition to the consumption–leisure decision xhξ the agent
makes a portfolio decision at each date-event which finances the
consumption stream. To describe the transactions we use the
standard timing of the cash-in-advance model, each period being
divided into three subperiods. In the first subperiod, securities are
traded and taxes are paid to the government; in the second the
available money balances are used to purchase the consumption
good at the currentmoney price pξ and in the final subperiod firms
pay agents for their labor services.

Thus in the first subperiod the agent decides on the money
m̃h

ξ to lay aside to finance the purchase of consumption pξ chξ , and
on the holding of the securities, which consist of zero-coupon
nominal (government) bonds of maturities τ = 1, . . . , T and a
collection of private-sector short-lived securities in zero net supply
indexed by j = T + 1, . . . , J with payoffs V j

ξ ′ (in units of money)
at the immediate successors ξ ′

∈ ξ+. Let Jg denote the set
of T government bonds, let Jp denote the set of private-sector
securities and letJ = Jg∪Jp be the set of all securities.We assume
that the combined set of securities is sufficiently rich to ensure
complete markets (full spanning at each node ξ of the event-tree
D). Let qξ = (qjξ )j∈J denote the vector of (money) prices of the
securities and let zhξ = (zhjξ )j∈J denote the agent’s portfolio at node
ξ , the first T components consisting of the agent’s holdings of the
government bonds. Since a τ -period bond purchased at node ξ
becomes a τ −1 period bond at each of the successors ξ ′

∈ ξ+ and
since the 1-period bond at node ξ pays 1 (dollar) at each successor,
the payoffs at ξ ′

∈ ξ+ of the T bonds purchased at node ξ are given
by the vector (1, q1

ξ ′ , . . . , qT−1
ξ ′ ). Given that we focus on the bond

market, we let q̂ξ = (1, q1ξ , . . . , q
T−1
ξ , V j

ξ , j = T + 1, . . . , J) denote
the payoff at node ξ of all the securities traded at node ξ−. The
SG × J matrix of payoffs of the securities traded at node ξ at the
successors ξ+ is denoted by
q̂ξ+


≡


q̂j
ξ ′


j∈J

ξ ′∈ξ+

.

The condition that markets are complete is equivalent to the
property that rank[ q̂ξ+ ] = SG, or that [ q̂ξ+ ] is invertible for all
ξ ∈ D. We consider only price processes q which do not offer
arbitrage opportunities, so that each agent has a solution to the
problem of choosing an optimal portfolio. For any no-arbitrage q
there exists a process P = (Pξ )ξ∈D, where Pξ/Pξ0 is the present
value at date 0 of a promise to deliver one unit of money at node ξ ,
such that Pξq

j
ξ =


ξ ′∈ξ+ Pξ ′ q̂j

ξ ′ . Given the assumption of complete
markets, P is unique up to normalization.

Let mh
ξ− denote the money balances brought into node ξ ; since

the agent receives the payoff q̂ξ zhξ− on the portfolio zh
ξ− purchased

at the preceding node, he has the wealth wh
ξ = mh

ξ− + q̂ξ zhξ−

available in the first subperiod of node ξ to buy a newportfolio zhξ of
the securities and to pay the taxes θh

ξ which are due. The agent lays
aside enough money balances mh

ξ ≥ pξ chξ to purchase the planned
consumption chξ on the goodsmarket of the second subperiod. Thus

5 Throughout the paper we use boldface to denote a vector defined over the
whole event-tree D (e.g. xh = (xhξ )ξ∈D), or a vector defined over the set of agents
(e.g. xξ = (xhξ )h∈H ), or a vector of bond prices for bonds of different maturities
(e.g. qξ = (q1ξ , . . . , q

T
ξ )).
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the agent chooses (mh
ξ , z

h
ξ ) so that

mh
ξ + θh

ξ + qξ zhξ = mh
ξ− + q̂ξ zhξ− , ξ ∈ D (2)

mh
ξ ≥ pξ chξ , ξ ∈ D. (3)

Let ωξ denote the wage at node ξ . In the last subperiod of node ξ ,
the firm pays the agent ωξahξ L

h
ξ for the labor services rendered at

node ξ : this money and the unspent balances

mh
ξ = ωξahξ L

h
ξ +

mh
ξ − pξ chξ


, ξ ∈ D (4)

are transferred to each of the successors ξ ′
∈ ξ+ of node ξ .

Since the agent is not willing to lend to any other agent or the
government ‘‘at infinity’’, and since no agent is willing to lend to
him ‘‘at infinity’’, he is obliged to confine his portfolio strategies to
those for which the transversality condition

lim
T→∞


ξ∈DT (ξ̃ )

Pξqξ zhξ = 0, ∀ ξ̃ ∈ D (5)

is satisfied, where P = (Pξ )ξ∈D is the valuation of income compat-
ible with the price process q (see Magill and Quinzii (1994)).

Monetary and fiscal policy. Whether or not there is a problem with
the determinacy of agents’ expectations of inflation depends on
the way monetary and fiscal policy interact. We are interested in a
regimewhere themonetary policy is dominant and the fiscal policy
adapts to ensure that the government debt does not grow too fast,
since this is the natural setting in which the monetary policy has a
role in tying down agents’ expectations of inflation.

To introduce the fiscal policy in the simplest way we assume
that the government inherits a debt at date 0 which it needs
to finance. There is no government expenditure on goods, so
that what we call ‘‘taxes’’ is actually the excess of revenues over
government expenditure, i.e. the primary surplus. At each date-
event the government can issue money and bonds of several
maturities, and can tax (or make transfers to) the agents. Let Mξ

denote themoneyoutstanding at node ξ and let (Z j
ξ , j ∈ Jg)denote

the portfolio of bonds of different maturities issued at node ξ : to
keep the government’s portfolio commensurate6 with that of the
agents in the private sector it is convenient to set Z j

ξ = 0 for j ∈ Jp

and let Zξ = (Z j
ξ , j ∈ J). Let θξ denote the taxes at node ξ and let

Wξ = Mξ− + q̂ξZξ− , ξ ∈ D

denote the government liabilities at the beginning of node ξ , inher-
ited from the preceding node. These liabilities need to be covered
by taxes θξ , and open market operations (Mξ , Zξ ) satisfying

Mξ + θξ + qξZξ = Mξ− + q̂ξZξ− , ξ ∈ D. (6)

We do not address the choice of an optimal fiscal/monetary policy
but rather focus on characterizing policies which are compatible
with the existence of a unique equilibrium.We can think of the fis-
cal authority as deciding the taxes θξ while themonetary authority
decides the bond prices (qjξ , j ∈ Jg) and accommodates the private
sector demand for money and government bonds. However we as-

6 Since there are no transaction costs we follow the same convention for the
government’s portfolio as for the agents’ portfolios, assuming that the government
closes the portfolio Zξ− at node ξ and issues the new portfolio Zξ . The restriction
Z j
ξ = 0 if j ∈ Jp is not essential and the results that follow do not depend on it.

Traditionally the monetary authority (central bank) has not traded private-sector
securities, but this has changed with the ‘‘unconventional’’ QE policies.
sume that the fiscal policy is secondary to the monetary policy in
the sense that for any path (M, Z, q) = (Mξ , Zξ , qξ )ξ∈D of mone-
tary policy, taxes are set to ensure that the government’s liabilities
do not grow ‘‘too fast’’, which is formalized by the property that
the transversality condition holds for the government’s liabilities:
this is the analogue of condition (5) for any private sector agent,
namely that


ξ∈DT (ξ̃ ) PξWξ → 0 as T → ∞ for every ξ̃ ∈ D.

Sargent (1982) gave an intuitive example of a fiscal policy which
has this property – any additional government expense must be
financed by an increase in current or future taxes to pay for it –
and thus called it a ‘‘Ricardian’’ fiscal policy. Here we do not have
government expenses, just a debt to finance, so we adopt themore
abstract rule considered by Benhabib et al. (2001): there is some
αξ with 0 ≤ αξ ≤ 1 such that

r1ξ
1 + r1ξ

Mξ + θξ = αξWξ , ξ ∈ D. (7)

At each node of the event-tree the tax θξ plus the seignorage rev-

enue
r1ξ

1+r1ξ
Mξ reimburses a fraction αξ of the current liabilitiesWξ .

For example if αξ =
r1ξ

1+r1ξ
then the rule becomes

θξ +
r1ξ

1 + r1ξ
(Mξ − Mξ−) =

r1ξ
1 + r1ξ

q̂ξZξ− , ξ ∈ D

so that the tax plus the seignorage revenue on the issue of new
money covers the interest on the debt q̂ξZξ− inherited at node ξ :
this is a slightly modified version of the ‘‘balanced budget require-
ment’’ of Schmitt-Grohe and Uribe (2000). As we shall see in the
proof of Theorem 3, the following assumption implies that a rule
of the type (7) ensures that the present value of the government
liabilities tends asymptotically to zero.

Assumption RC (Ricardian Condition). The fiscal policy is such that
the process (αξ )ξ∈D in (7) satisfies α ≤ αξ ≤ 1 for all ξ ∈ D for
some α > 0.

In a multi-agent economy the total tax θξ needs to be shared by
the agents: we consider a simple proportional rule of the form

θh
ξ = γ hθξ , ξ ∈ D, h ∈ H (8)

for some γ = (γh)h∈H ∈ ∆H , the simplex in RH . Agents should
not be required to pay more taxes than they can possibly pay with
their income, since this would lead to nonexistence of equilibrium:
in Theorem 15 below, which establishes the existence of an equi-
librium in a multi-agent economy, we give an assumption which
ensures that each agent’s after-tax income is positive.

An economy is described by the agents’ characteristics, their
initial holdings of money and bonds, and by the fiscal policy of the
government. Thus we let

E(u, δ, e, a,A,m−1, z−1, α, γ)

(often shortened to E ) denote an economy in which agents’
preferences and endowments are given by (u, δ, e, a) =


uh, δ, eh,

(ahξ )ξ∈D

h∈H

,A is the process of real shocks, initial money and bond
holdings are (m−1, z−1) = (mh

−1, z
h
−1)h∈H , the initial liabilities of

the government being (M−1, Z−1) =


h∈H (mh
−1, z

h
−1), and (α, γ)

describes the government fiscal policy.
With a Ricardian fiscal policy, if the sole instrument ofmonetary

policy consists in fixing the short-term interest rate then the
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equilibrium is indeterminate7: in the simplest representative-
agent case this is an immediate consequence of Proposition 4
below (see also Nakajima and Polemarchakis (2005)).

Our objective is to show that, under an assumption of station-
arity, the monetary authority can tie down agents’ expectations of
inflation to a process of its choice if it uses more instruments than
just the short-term interest rate. We are thus led to study a mon-
etary policy which consists in fixing the prices of bonds of ma-
turities 1, . . . , T as function of current inflation, which we call a
generalized interest-rate rule or a term-structure rule. We show that
under appropriate conditions such a policy leads to a unique equi-
librium. In Magill and Quinzii (2013) we show (in the setting of an
exchange economy) that such a uniqueness result can also be ob-
tained by amonetary policywhich consists in fixing the current in-
terest rate and the expected values of the short-term interest rate
for the next T periods, which we call a forward-guidance rule. For
brevity the formal analysis of this paper – the relation between ex-
tensive and reduced-form equilibrium, existence and uniqueness
of equilibrium – is restricted to the case of a term-structure rule.
We leave it to the reader to adapt the arguments to the case of a
forward-guidance rule. The conditions for the existence of equi-
librium are the same for both types of policy and the restrictions
on an inflation process required to obtain a unique equilibrium are
essentially the same, the differences being explained in Magill and
Quinzii (2013).

Thus in this paper a monetary policy consists in fixing the
prices (qjξ , j ∈ Jg)ξ∈D of the government bonds for every node
in the event-tree. Such a policy must be compatible with the
expectations process B for inflation since nominal interest rates
depend on real interest rates and expected inflation. Thus the
beliefs enter as an integral part of the description of an equilibrium,
to express the property that they are compatible with the bond
prices chosen by the monetary authority. In the spirit of inflation
targetingwe interpretB, ormore precisely the inflation component
of B, as being chosen by the monetary authority, the monetary
policy q ensuring that agents adopt B as their beliefs. Uniqueness
of equilibrium – the property that there is only one process B
compatible with the monetary policy – is then essential to ensure
that the monetary authority can ‘‘anchor’’ agents’ expectations of
inflation to B.

An equilibrium consists of a monetary–fiscal policy for the gov-
ernment, which includes an inflation process to direct agents’
expectations and the associated bond prices, consumption–labor
choices by agents as well as their associated money and portfolio
holdings, production plans for firms, and money prices for labor,
consumption good and securities across the event-tree, which are
mutually compatible. Let ℓ1(D) denote the space of summable se-
quences on the event-tree D, ℓ1(D) = {P ∈ RD

|


ξ∈D |Pξ | < ∞}.

Definition 1. An (extensive-form) equilibrium of E is a triple con-
sisting of choices by the government and the agents, and prices

B̄, (q̄j)j∈Jg , M̄, Z̄, θ̄

,

x̄,m, z̄, ȳ, L̄


,

P̄, p̄, ω̄, (q̄j)j∈Jp


such that

(i) B̄ is compatible with the exogenous process A;

7 This well known in macroeconomics since it was first pointed out by Sargent
and Wallace (1975) and subsequently gave rise to a substantial literature which
sought to obtain determinacy by assuming an interest-rate rule satisfying the Taylor
principle with a more than one-for-one response of the short-term interest rate
to inflation. Uniqueness results can be obtained if the criterion for uniqueness is
weakened to local uniqueness around a steady state (see e.g. Woodford (2003)
and Benhabib et al. (2001)). Benhabib et al. (2001) show that the result on local
uniqueness is sensitive to the way preferences for money are modeled, and also
show that local uniqueness does not in general imply global uniqueness.
(ii) for every node ξ = ((s0, g0), . . . , (st , gt)) ∈ D, p̄ξ = (1 +

πs1) . . . (1 + πst );

(iii) P̄ξ q̄
j
ξ =


ξ ′∈ξ+ P̄ξ ′ ˆ̄q

j
ξ ′ , ∀ξ ∈ D, j ∈ J, (P̄ξ p̄ξ )ξ∈D ∈ ℓ1

+
(D);

(iv) q̄τ
≤ 1, τ = 1, . . . , T ;

(v) (x̄h,mh
, z̄h)maximizes


ξ∈D δt(ξ)B̄ξuh(xhξ ) subject to (2)–(5)

with prices (P̄, p̄, ω̄, q̄);
(vi) (ȳξ , L̄ξ )maximizes p̄ξy− ω̄ξ L, subject to y = L, for all ξ ∈ D;

(vii) (M̄, Z̄, θ̄) satisfies (6)–(8) and RC;
(viii) ȳξ =


h∈H c̄hξ , L̄ξ =


h∈H ahξ L̄

h
ξ , ȳξ = L̄ξ , ξ ∈ D;

(ix)


h∈H
̄mh

ξ = M̄ξ ,


h∈H z̄hξ = Z̄ξ , ξ ∈ D.

As can be seen from (ii) we take as given the root node ξ0 =

(s0 , g0) so that the initial inflation and real shock are well defined,
setting the price pξ0 = p−1(1+ πs0) equal to 1. This normalization
is used since with an interest rate policy the price level at date 0
is not determined. The analysis focuses on whether the inflation
process is determinate. (iv) ensures that the nominal interest rates
on the bonds of different maturities are non-negative. If qτ

ξ is the
price of the τ -period bond, the associated interest rate or yield to
maturity rτ

ξ is defined by qτ
ξ =

1
(1+rτξ )τ

and qτ
ξ ≤ 1 is equivalent to

rτ
ξ ≥ 0.
Reduced-form equilibrium. The sequential structure of an extensive-
form equilibriummakes it a complex object to analyze directly. For
analytical purposes a simpler form of equilibrium can be obtained
by expressing all budget equations (both those of agents and the
government) in present-value form, eliminating the financial vari-
ables – money and portfolios – while retaining the present value
of taxes and the bond prices to capture the government fiscal and
monetary policy. To simplify the analysis of equilibriumweassume
that the portfolios zh

−1 inherited from date −1 are composed only
of short-lived bonds, so that the wealth wh

0 of each agent h ∈ H at
the beginning of date 0,wh

0 = mh
−1 + zh

−1, is exogenously given and
does not depend on the security prices at date 0. We also simplify
the description of a reduced-form equilibrium by taking (i) and (ii)
of Definition 1 as given, namely that the process B̄ is compatible
with the exogenous process A for the real shocks and that the spot
(money) price of the good is given by p̄ξ = (1 + πs1) . . . (1 + πst )
for any ξ = ((s0, g0), . . . , (st , gt)) ∈ D.

Definition 2. A reduced-form equilibrium of the economy E con-
sists of a pair

B̄, (q̄j)j∈Jg , Θ̄


, x̄, P̄


such that

(1) (P̄ξ p̄ξ )ξ∈D ∈ ℓ1
+
(D);

(2) x̄h ∈ argmax


ξ∈D δt(ξ)B̄ξuh(xhξ )

ξ∈D P̄ξ p̄ξ


chξ −

ahξ (eh−ℓhξ )

1+r̄1ξ


+ γ hP̄ξ0Θ̄ = P̄ξ0w

h
0


;

(3)


h∈H c̄hξ =


h∈H āhξ (e
h
− ℓ̄h

ξ ), ξ ∈ D;

(4) P̄ξ q̄τ
ξ =


ξ ′∈ξ+ P̄ξ ′ q̄τ−1

ξ ′ , q0ξ = 1, τ = 1, . . . , T , ξ ∈ D;

(5) q̄τ
ξ ≤ 1, τ = 1, . . . , T , ξ ∈ D.

The number of variables in a reduced-form equilibrium ismuch
smaller than in an extensive form equilibrium since portfolios,
money holdings and period-by-period taxes no longer appear.
The sequence of node-by-node budget constraints for each agent
is replaced by a single inter-temporal budget constraint so that
the optimal lifetime consumption/labor decision of an agent
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only depends on the present-value prices (P̄ξ p̄ξ )ξ∈D, the agent’s
share γ h of the present value of taxes Θ̄ , and the sequence of
short-term interest rates (r̄1ξ )ξ∈D because of the cash-in-advance
constraint. Furthermore there is no inter-temporal constraint for
the government since the Ricardian condition (RC) ensures that the
present value of taxes plus seignorage reimburse the government’s
date 0 liabilities, for all values of prices and interest rates over the
event-tree. Although the prices of the private-sector securities are
not present (they can be reconstructed from the security payoffs
and the present-value prices) the prices (qj)j∈Jg of the government
bonds appear in a reduced-form equilibrium since they are chosen
by themonetary authority. The compatibility conditions (4) can be
viewed either as a restriction on the bond prices (qj)j∈Jg given P ,
or as a restriction on the present-value price P given (qj)j∈Jg : in
the analysis that follows we use the latter interpretation. In the
next theorem we show that all the variables of an extensive form
equilibrium can be recovered from the knowledge of the reduced-
form equilibrium.

Theorem 3 (Equivalence of Extensive and Reduced-form Equilib-
rium). If financial markets are complete,8


rank


ˆ̄qξ+


= SG for all

ξ ∈ D

then


(B̄, (q̄j)j∈Jg , Θ̄)x̄, P̄


is a reduced-form equilibrium

of E if and only if there exist money holdings, portfolios, taxes and
prices such that


B̄, (q̄j)j∈Jg , (M̄, Z̄, θ̄)


,

x̄,m, z̄, ȳ, L̄


,

P̄, p̄,

ω̄, (q̄j)j∈Jp


is an extensive-form equilibrium of E .

Proof. (See the Appendix). It is straightforward to show that
an extensive-form equilibrium must satisfy the conditions of a
reduced-form equilibrium. To show the converse, the first step for
recovering the variables which no longer appear in a reduced-form
equilibrium is to reconstruct the prices of the private-sector se-
curities using the no-arbitrage equations P̄ξ q̄τ

ξ =


ξ ′∈ξ+ P̄ξ ′ q̄τ−1
ξ ′

and to show that if a sequence of taxes (θξ ) has the present value
ξ∈D P̄ξθξ = Θ̄ then the opportunity sets of an agent in the

extensive-form and the reduced-form equilibrium are the same.
The second step is to show how the government portfolio-tax pol-
icy can be reconstructed when the agents’ demand for money is
known. The last step is to show that the market clearing condi-
tions are satisfied on the government bond and private securities’
markets.

Theorem 3 plays a crucial role in the analysis that follows: for
an equilibrium expressed in reduced form has a sufficiently simple
structure to permit the existence and uniqueness of equilibrium
to be established. The basic ideas and the analytical approach are
most easily explained in the simplest setting of an economy with
identical agents (representative agent) and no shock to productiv-
ity. This is the case studied in the next section. In Section 4we show
how the analysis can be extended to an economy with heteroge-
neous agents and real shocks.

3. Identical agents and no real shocks

Consider the special case of the economy in Section 2 in which
there are no real shocks (G = 1), all agents have identical prefer-
ences and endowments, uh

= u, ah = 1, eh = 1 for all h ∈ H ,
and the only securities are the government bonds: Jp = ∅. If we
write the equilibrium in per-capita terms, then the equilibrium is
formally equivalent to the equilibrium of Definition 1 with H = 1,

8 If there is only one agent, or equivalently all agents are identical, the condition
of complete markets is not necessary for the theorem to hold.
γ h
= 1, Jp = ∅. In the next proposition we show that the vari-

ables which characterize an equilibrium can be further reduced to
just the belief process, the bond price and consumption processes,
because the present-value prices P and the present value of taxes
Θ̄ can be deduced from these variables. To ensure the summabil-
ity of present-value prices (P̄ξ p̄ξ )ξ∈D the consumption sequence is
assumed to be uniformly bounded away from zero.

Proposition 4 (Equilibrium Equations). If E is an economy with
identical agents, then a reduced-form equilibrium for which c̄ξ ≥

ε, ∀ξ ∈ D for some ε > 0 is characterized by the pair ((B̄, q̄), c̄)
satisfying the system of equations

(a) uc (c̄ξ ,1−c̄ξ )

uℓ(c̄ξ ,1−c̄ξ )
= 1 + r̄1ξ , ξ ∈ D

(b1) B̄ξuc(c̄ξ , 1 − c̄ξ )q̄τ
ξ = δ


ξ ′∈ξ+ B̄ξ ′

uc (c̄ξ ′ ,1−c̄ξ ′ )

1+πξ ′
q̄τ−1
ξ ′ , τ =

1, . . . , T , q̄0
ξ ′ = 1, ξ ∈ D

(b2) q̄τ
ξ ≤ 1, τ = 1, . . . , T , ξ ∈ D.

Proof. (H⇒) Let

(B̄, q̄, Θ̄), x̄, P̄


be a reduced-form equilibrium.

The FOCs for themaximumproblem (2) ofDefinition 2 for the agent
imply that there exists λ > 0 such that for all ξ ∈ D

B̄ξ δt(ξ) uc(c̄ξ , ℓ̄ξ ) = λ P̄ξ p̄ξ (9)

B̄ξ δt(ξ) uℓ(c̄ξ , ℓ̄ξ ) = λ
P̄ξ p̄ξ

1 + r̄1ξ
(10)

where, by Assumption U the consumption/leisure decision is
always interior.Market clearing implies ℓ̄ξ = 1−c̄ξ and (a) follows
by taking the ratio of (9) and (10). Replacing P̄ξ by its value given
in (9), (4) of Definition 2 implies that (b1) is satisfied, and since
(b2) is the same as (5) of Definition 2, a reduced-form equilibrium
satisfies (a), (b1), (b2).
(⇐H) Let ((B̄, q̄), c̄) satisfy (a), (b1), (b2). For all ξ ∈ D define
ℓ̄ξ = 1 − c̄ξ , P̄ξ = B̄ξ δt(ξ) uc (c̄ξ ,ℓ̄ξ )

pξ
, so that P̄ξ0 = uc(c̄0, ℓ̄0). Since

c̄ is uniformly bounded away from 0, (P̄ξ p̄ξ )ξ∈D ∈ ℓ1(D). (9) is
satisfiedwith λ = 1 and since (a) holds, (10) also holdswith λ = 1.

Define Θ̄ by


ξ∈D P̄ξ p̄ξ c̄ξ
r̄1ξ

1+r̄1ξ
+ P̄ξ0Θ̄ = P̄ξ0w

h
0 . Then x̄ satisfies

the budget constraint in (2) of Definition 2, and since the FOCs are
satisfied it solves the maximum problem (2) of Definition 2. Thus
(B̄, q̄, Θ̄), x̄, P̄


is a reduced-form equilibrium. �

In the representative-agent case the system of equations char-
acterizing an equilibrium has a strikingly simple form: it reduces
to the representative agent’s FOCs for optimal consumption/leisure
and portfolio choice. In particular the representative-agent inter-
temporal budget equation is not included since we want the
equations to be independent: the agent’s inter-temporal budget
constraint is the mirror image of that of the government and, by
the Ricardian property, the present value of taxes always adjust so
that the inter-temporal equation of the government is satisfied. In
the proof of Proposition 4 the agent’s budget constraint is used to
define the present value of the taxes which are part of a reduced-
form equilibrium, once it is recognized that the nominal present-
value prices P̄ξ are the probability of the node times the marginal
utility of one unit of money at this node.

It is clear from the FOC (a) that the ‘‘real’’ allocation only
depends on the current short-term nominal interest rate r1ξ and
that the process of inflation per se has no direct real effect. It
is however useful to study the conditions which ensure that the
process of inflation can be anchored by a monetary policy in this
model with flexible prices since it is simpler to analyze than a
model with staggered prices and imperfect competition in which
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inflation has a direct real effect. It is standard practice in monetary
theory to study the determinacy of equilibrium in the model with
flexible prices (Schmitt-Grohe and Uribe, 2000; Nakajima and
Polemarchakis, 2005) since the conclusions typically extend to the
more complexmodelwith rigidities (Nakajima and Polemarchakis,
2005; Adao et al., 2010).

It follows from (a, b1) in Proposition 4 that a monetary policy
which only determines the price of the short-term bond cannot
fully anchor agents’ expectations of inflation. The choice of a
sequence of short-term interest rates (r1ξ )ξ∈D determines the real
allocation (cξ )ξ∈D through the equations (a). But any process B
which satisfies

1
1 + r̄1ξ

= δ


ξ ′∈ξ+

Bξξ ′

uc(c̄ξ ′ , 1 − c̄ξ ′)

uc(c̄ξ , 1 − c̄ξ )
1

1 + πξ ′

, ξ ∈ D

where Bξξ ′ is the conditional probability at node ξ of the successor
node ξ ′

∈ ξ+, satisfies the equilibrium equations. Since a single
equation at node ξ cannot determine S values (Bξξ ′)ξ ′∈ξ+ there are
infinitely many inflation processes compatible with the sequence
(r1ξ )ξ∈D of short-term interest rates. However if the monetary au-
thority fixes the prices of more bonds the restrictions on the pro-
cesses B imposed by equations (b1) increase and, as we shall see,
by fixing the prices of S bonds9 at each node it is possible to anchor
expectations of inflation to an appropriately chosen process B.

The concept of equilibrium assumes that the government is
committed to the bond prices (q̄j, j ∈ J) and that agents know
them over the whole event-tree. The latter assumption only seems
reasonable if there is a systematic rule bywhich bond prices are set
at each node. In the analysis that follows we focus on simple rules
for which bond prices depend only on current inflation: this is in
the spirit of Taylor rules for the short-term interest rate studied
in New-Keynesian models (see Woodford (2003)). It is clear from
Proposition 4(a) that if the security prices only depend on current
inflation, then the agents’ consumption, which is determined by
the nominal short-term interest rate, also only depends on current
inflation. Since (b1) is a system of first-order difference equations,
if the bond prices and the consumption only depend on current
inflation and if B̄ is the only belief compatible with the system of
equations (b1), then it has to beMarkov.We thus restrict attention
toMarkov processes for inflation characterized by aMarkovmatrix
[Bss′ ]s,s′∈S: if ξ = (s0, s1, . . . , s) and ξ ′

= (s0, s1, . . . , s, s′) then
Bξξ ′ = Bss′ .

As a special case of Proposition 4 we characterize a Markov
reduced-form equilibrium ((B̄, q̄), c̄) as a Markov matrix B̄ =

[B̄ss′ ]s,s′∈S , bond prices q̄ = (q̄τ
s , τ = 1, . . . , T , s ∈ S) and a vector

of consumption c̄ = (c̄s, s ∈ S) which only depend on current
inflation.10

Corollary 5 (Stationary Equilibrium Equations). If E is an economy
with identical agents, then a Markov reduced-form equilibrium is
characterized by a pair ((B̄, q̄), c̄) ∈ RSS

+
× RTS

+
× RS

+
satisfying the

reduced-form equilibrium equations

(a) uc (c̄s,1−c̄s)
uℓ(c̄s,1−c̄s)

= 1 + r̄1s , s ∈ S;

9 Equation (b1) when applied to long-term bonds (τ ≥ 2) is usually viewed as a
statement that agents’ expectations of inflation determine the prices of long-term
bonds: see e.g. Söderlind and Svensson (1997) and Goodfriend (1991, 1998) for a
study of the way agents’ expectations can be deduced from the prices of bonds, and
more generally futures and options on interest rates.We reverse this logic and point
out that fixing the prices of a sufficient number of bonds restricts the expectations
of inflation which are compatible with these prices on the bond market.
10 Although the growth of money demand

Mξ ′

Mξ
=

(1+πs′ )c̄s′
c̄s

is Markov, the finan-
cial variables of the extensive-form equilibrium or their rates of growth are not
necessarily Markov, especially if the government’s debt reimbursement policy αξ

is not Markov.
(b1) q̄τ
s = δ


s′∈S

B̄ss′
1+πs′

uc (c̄s′ ,1−c̄s′ )
uc (c̄s,1−c̄s)

q̄τ−1
s′ , τ = 1, . . . , T , q̄0s′ =

1, s ∈ S;
(b2) q̄τ

s ≤ 1, τ = 1, . . . , T , s ∈ S.

Weassume that the objective of themonetary authority is to di-
rect agents’ expectations to an inflation process B of its choice, as-
suming that this belief once adopted by the agents is self-fulfilling.
To characterize the inflation processes amongwhich themonetary
authority can choose, two questions need to be answered:

(i) existence: for whichmatrices B does there exist (q, c) such that
((B, q), c) is an equilibrium?

(ii) uniqueness: what additional properties must a matrix B satisfy
if the equilibrium is to be unique?

Existence of equilibrium. If themonetary authority is to induce ama-
trix of beliefs B it must set the term-structure rule in such a way
that equations (b) of Corollary 5 are satisfied. Since these equations
involve both the expectations matrix B and the stochastic discount
factor which, by equations (a), is determined by the short-term in-
terest rates r1 = (r1s , s ∈ S), there is a fixed-point problem which
needs to be solved. To study this problem it is convenient to use
the S gross returns

Rs = 1 + r1s , s ∈ S

on the short-term nominal bond as the basic variables. We first
show that for a given scalar return R there is a unique solution to
the agent’s consumption/leisure choice problem in any given state.

Lemma 6 (Equilibrium Consumption). If u satisfies AssumptionU
(1)–(3) then

(i) for all R > 0, the equation

uc(c, 1 − c)
uℓ(c, 1 − c)

= R (11)

has a unique solution c(R), where c(R) is a strictly decreasing
function of R.

(ii) Φ(R) ≡ uc(c(R), 1 − c(R)) is strictly increasing on (0, ∞).
(iii) Φ(R) ≡

Φ(R)
R is strictly decreasing on (0, ∞).

Proof. (i) Let h(c) ≡
uc (c,1−c)
uℓ(c,1−c) . Then h′(c) =

1
u2
ℓ

(uccuℓ − ucℓuℓ −

uℓcuc + uℓℓuc). Since ucc < 0, uℓℓ < 0, uc > 0, uℓ > 0, ucℓ ≥ 0, it
follows that h′(c) < 0 and h is decreasing. By the Inada condition
h(c) → ∞ as c → 0 and h(c) → 0 as c → 1. Thus (11)
has a unique solution c(R). Differentiating h(c(R)) = R gives
h′(c(R))c ′(R) = 1: h′ < 0 implies c ′(R) < 0.

(ii) Φ ′(R) = (ucc − ucℓ)c ′(R) > 0 by (i).
(iii) Φ ′(R) =

1
R2


(ucc −ucℓ)c ′(R) R−uc


. Using c ′(R) = 1/h′(c(R))

where h′(c) has been calculated in (i), and R = uc/uℓ, we
obtain Φ ′(R) =

u2c
D (ucℓ − uℓℓ) < 0, where the derivatives are

calculated at c(R) and D = R2(uccuℓ − uℓcuc − ucℓuℓ + uℓℓuc).
Since D < 0 and ucℓ ≥ 0, Φ ′(R) < 0. �

In view of Lemma 6 the FOCs (a) and the FOCs (b1) for the short-
termnominal bond of Corollary 5, can be combined into the system
of equilibrium equations

1
Rs

= δ

s′∈S

Bss′

1 + πs′

Φ(Rs′)

Φ(Rs)
, s ∈ S. (12)

For each s ∈ S this is the ‘true’ stochastic Fisher equation relating
the price q1s =

1
Rs

of the short-term nominal bond to the price of
the real bond

1
1 + r reals

= δ

s′∈S

Bss′
Φ(Rs′)

Φ(Rs)
, s ∈ S
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and inflation (πs′)s′∈S next period, when the current inflation is
πs. Since the nominal interest rate determines the real wage and
hence output and consumption, it affects the real interest rate and
the system of equations (12) only implicitly defines the nominal
interest rates associated with an expectations matrix B. If the
condition Rs ≥ 1, s ∈ S (non-negative nominal interest rates),
were omitted then Eqs. (12) would always have a solution (this can
be deduced from the fixed point argument given below). However
when the condition Rs ≥ 1, s ∈ S, is imposed, conditions of
compatibility have to be imposed on the matrix B.

Definition 7. AMarkov matrix B is said to be compatible with non-
negative interest rates if the system of equations (12) has a solution
R ≥ 1 = (1, . . . , 1).

Note that if R̄ ≥ 1 is a solution of (12) then q̄1s =
1
R̄s

≤ 1, s ∈ S,
and (b2) of Corollary 5 is satisfied for τ = 1. (b1) of same corollary,
which can be written as

q̄τ
s = δ


s′∈S

Bss′

1 + πs′

Φ(Rs′)

Φ(Rs)
q̄τ−1
s′ , s ∈ S, τ = 2, . . . , T

then gives by successive substitution the prices of the bonds of
higher maturities and the inequality q̄τ

s ≤ 1 is transferred to these
prices. Thus all the conditions of Corollary 5 are satisfied and there
exists a reduced-form equilibrium.

Using the function Φ defined in Lemma 6(iii), (12) can be
written as

Φ(Rs) = δ

s′∈S

Bss′

1 + πs′
Φ(Rs′), s ∈ S. (13)

Since Φ is decreasing, if for each s the right side of (13) lies in the
image of Φ (a condition for this is given below) then Φ can be
inverted and (13) is equivalent to the system of equations

Rs = Φ−1

δ

s′∈S

Bss′

1 + πs′
Φ(Rs′)


≡ Ψs(R1, . . . , RS), s ∈ S (14)

whereΨs is decreasing for each s ∈ S. LetΨ = (Ψ1, . . . , ΨS)denote
the vector-valued map which associates with R the new vector of
returns Ψ(R). An equilibrium R̄ is a fixed point of Ψ : R̄ = Ψ(R̄).

Since a vector of nominal returns must satisfy R ≥ 1 = (1,
. . . , 1) and sinceΨ is decreasing, theminimal return vector 1maps
into the maximal return vector Rmax

= (Rmax
1 , . . . , Rmax

S ) = Ψ(1).
Consider the rectangular subset of the non-negative orthant of RS

K =

R ∈ RS

+
| 1 ≤ R ≤ Rmax .

If Rmax
≥ 1 then K ≠ φ, and if Ψ(Rmax) = Ψ(Ψ(1)) ≥ 1 then

Ψ(K) ⊂ K so that Brouwer’s Theorem can be applied.
It remains to give conditions which ensure that the two prop-

erties K ≠ φ and Ψ(K) ⊂ K are satisfied. The maximum achiev-
able consumption c∗ occurs when the nominal interest rate is zero,
c∗

= c(1): this is alsowhat an agent’s consumptionwould bewith-
out a cash-in-advance constraint. Rmax

= Ψ(1) is equivalent to

1
Rmax
s

= δ

s′∈S

Bss′

1 + πs′

uc(c∗, 1 − c∗)

uc

c(Rmax

s ), 1 − c(Rmax
s )

 , s ∈ S, (15)

(15) must have a solution for each s, and this solution must satisfy
Rmax
s ≥ 1. Condition (1) in Theorem 8 below ensures that these

two properties hold: the first inequality implies that Rmax
s exists

and the second inequality ensures that it is greater than or equal to
1. The right side of (15) involves an upper bound on the real interest
rate since it assumes that the consumption in each state s′ next pe-
riod is maximal (at c∗) while it is minimal today (at c(Rmax

s )). Thus
Rmax
s ≥ 1 requires that the nominal interest rate, which is essen-

tially the real interest rate plus the expected rate of inflation, be
positive when the real interest rate is at its highest possible value.
This is clearly a necessary condition. The condition EB

s


δ

1+π


≤ 1,

which ensures that Rmax
s ≥ 1 requires that high deflation rates are

not given too much weight.
To express a condition which ensures that Ψ(Ψ(1)) = Ψ(Rmax)

≥ 1, consider the vector Rmin
= (Rmin

1 , . . . , Rmin
S ) where Rmin

s is
defined by

1
Rmin
s

= δ

s′∈S

Bss′

1 + πs′

uc

c(Rmax

s′ ), 1 − c(Rmax
s′ )


uc(c∗, 1 − c∗)

, s ∈ S. (16)

The return Rmin
s would occur if consumption today were maximal

(at c∗) and consumption tomorrow were expected to be at its
minimal value c(Rmax

s′ ) in each state s′: this gives a lower bound
on the real interest rate in each state. Condition (2) in Theorem 8
requires that the nominal interest rate is positive even when
the real interest rate is at this lower bound, a more demanding
requirement than condition (1).

Theorem 8 (Existence of Stationary Equilibrium). If B is an S × S
Markov matrix such that

(1) limRs→∞
uc (c(Rs),1−c(Rs))
Rsuc (c∗,1−c∗)

< EB
s


δ

1+π


≤ 1, s ∈ S,

(2) Rmin
s ≥ 1, s ∈ S where Rmin

s is defined by (16) and Rmax
s is defined

by (15),

then there exists a stationary equilibrium of E , i.e. B is compatible
with non-negative interest rates.

Proof. Eq. (15) is equivalent toΦ(Rmax
s )Φ(1)

= as, as = EB
s


δ

1 + π


.

Since Φ is decreasing, if as ≤ 1 (which is the second inequality in
(1)) then the solution, if it exists,will satisfy Rmax

s ≥ 1. The equation
will have a solution if asΦ(1) > infR≥1 Φ(R) = limR→∞

Φ(R),
which is the first inequality in (1). This proves that, when (1) is
satisfied, K ≠ φ.

It remains to show that Ψ(Rmax) ≥ 1 to ensure Ψ(K) ⊂ K . For
each state s ∈ S

Ψs(Rmax) = Φ−1

δ

s′∈S

Bss′

1 + πs′
Φ(Rmax

s′ )


≥ 1

⇐⇒ δ

s′∈S

Bss′

1 + πs′
Φ(Rmax

s′ ) ≤ Φ(1) =
Φ(1)
1

⇐⇒
1

Rmin
s

≤ 1.

By Brouwer’s Theorem Ψ has a fixed point R̄ in K which defines a
positive short-term interest rate compatible with the expectations
matrix B. �

Inflation targeting formalizes the idea that a monetary author-
ity induces an inflation process which is mean reverting towards
a target and thus spends most of its time around the target. More
formally it is natural to define the target associated with an infla-
tion process B as the mean inflation rate Eρ(π) under its invariant
measureρ, defined byρB = ρ. Let us show that there is no inflation
process compatible with non-negative interest rates for which the
target is the deflation rateπ∗

= δ−1 associatedwith the Friedman
rule.

Corollary 9 (Impossibility of Targeting Friedman Rule). Any expec-
tations matrix compatible with non-negative interest rates satisfies
Eρ(π) > π∗, where ρ (defined by ρB = ρ) is the invariant measure
associated with B.
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Proof. As mentioned earlier and as is clear from the proof of
Theorem 8, while condition (2) is only a sufficient condition for
the existence of equilibrium, the inequalities EB

s


δ

1+π


≤ 1, s ∈ S

are necessary. Since the function x →
1

1+x is convex, EB
s


δ

1+π


≥

δ

1+EBs (π)
, with a strict inequality if var(π) > 0, which we assume.

Thus

1 >
δ

1 + EB
s (π)

⇐⇒ EB
s (π) > δ − 1,

⇐⇒ Bsπ > δ − 1, s ∈ S

where Bs is row s of the matrix B. Thus Bπ ≫ (δ − 1)1. Since B∞,
the limit of Bn when n tends to infinity, has positive terms in each
row B∞Bπ = B∞π ≫ (δ − 1)B∞1 = (δ − 1)1. Since each row of
B∞ is equal to ρ, Eρ(π) > δ − 1 = π∗. �

The impossibility of targeting the negative inflation rate π∗
=

δ − 1 comes from the zero lower bound on the nominal interest
rate which places an important constraint on monetary policy—
both in theory and in practice.11 If there was no uncertainty about
inflation (var(π) = 0) the deflation rate π∗ would be associated
with a zero nominal interest rate. However as soon as there is
uncertainty about inflation next period (var(π) > 0) each row of
the belief matrixmust putmoreweight on inflation rates aboveπ∗

(for which δ
1+πs

< 1) than on inflation rates below π∗ (for which
δ

1+πs
> 1) to be sure that the necessary condition EB

s


δ

1+π


≤ 1

is satisfied. In short when there is variability of inflation the target
rate cannot be set too low if the nominal interest rate is to stay
non-negative.
Uniqueness of equilibrium. Theorem 8 gives restriction on an
inflation process B̄which ensures that there is an associated short-
term interest rate (or bond price) satisfying the FOCs (a) and
(b1) of Corollary 5 which is non-negative (i.e. satisfies (b2)). If
the monetary policy is restricted to determining the short-term
interest rate r̄1 = (r1s )s∈S then for the same short-term interest
rate process, there are many inflation processes also satisfying
(b1). However if the monetary authority fixes more bond prices,
then this reduces the number of inflation processes satisfying these
equations. If the matrix B̄ satisfying (b1) is unique, then we say
that the monetary authority has anchored agents’ expectations
to B̄ by the generalized interest-rate rule, or bond-pricing rule
((q̄τ

s )s∈S, τ = 1, . . . , T ).
It is useful to note that for a representative-agent economy the

variables characterizing an equilibrium can be further reduced to
just the pair (B̄, q̄) since, in view of Lemma 6(i), the consumption
stream c̄ can be deduced from the short-term interest rate.

Definition 10. An interest-rate (bond-pricing) rule q̄ = (q̄1, . . . ,

q̄T ) anchors agents’ expectations to the inflation process B̄ if B̄ is
the unique matrix such that (B̄, q̄) is a reduced-form equilibrium.

Given a reduced-form equilibrium (B̄, q̄) we can define the
vector of marginal utilities of the representative agent at the
equilibrium

Φ̄ = (Φ̄s)s∈S =


Φ(R̄s)


s∈S

=


uc(c(R̄s), 1 − c(R̄s))


s∈S

(17)

and, for any belief matrix B the present-value matrix

Γ = [Γs,s′ ]s,s′∈S, with Γs,s′ =
Bs,s′Φ̄s′

(1 + πs′)Φ̄s
, s, s′ ∈ S

11 There is a large literature, especially linked to New-Keynesian models, dis-
cussing the problems of the zero lower bound. See for example Benhabib et al.
(2002), Eggertsson and Woodford (2003), Walsh (2009), Williams (2009) and
Coibion et al. (2010).
where Γs,s′ is the present value in inflation state s of a promise
to pay one dollar in inflation state s′ next period. A matrix B
is compatible with the bond prices q̄ if the equations (b1) are
satisfied, i.e.
q̄τ
s =


s′∈S

Γs,s′ q̄τ−1
s′ , s ∈ S, τ = 1, . . . , T ⇐⇒ q̄τ

= Γ q̄τ−1,

τ = 1, . . . , T (18)
the price q̄τ

s of a τ -bond in inflation state s being the present value
of a τ − 1-bond at each of the successors (with q̄ 0

= 1). (18) can
be written as the matrix system of equations
[q̄1, . . . , q̄T

] = Γ [1, q̄1, . . . , q̄T−1
]

⇐⇒ Q = Γ Q (19)
with Q = [q̄1, . . . , q̄T

] denoting the matrix of bond prices across
the inflation states and the matrixQ = [1, q̄1, . . . , q̄T−1

] denoting
their next period payoffs. The matrix Γ can be written as

Γ = D̄1BD̄2 (20)
with

D̄1 =


1
Φ̄ 1

· · · 0

...
. . .

...

0 · · ·
1
Φ̄S



D̄2 =


δΦ̄1

1 + π1
· · · 0

...
. . .

...

0 · · ·
δΦ̄S

1 + πS

 .

(21)

Since D̄1 and D̄2 are diagonal matrices—with strictly positive
diagonal terms, there is a one to one relation between Γ and B.
Viewing Γ as the S × S matrix of unknowns in the linear system of
Eq. (19), uniqueness ofΓ implies uniqueness ofB satisfying the FOC
(b1) in equilibrium, and this requires that Q is invertible.12 This
leads to the following result.

Theorem 11 (Uniqueness of Equilibrium). Let (B̄, q̄) be a reduced-
form equilibrium. The bond-pricing rule q̄ = (q̄1, . . . , q̄T ) anchors
the inflation expectations matrix B̄
(i) if T ≥ S and rank [Q ] = rank [ 1, q̄1, . . . , q̄S−1

] = S or
(ii) if T ≥ S −1 and rank [Q ] = rank [

1+π
Φ

, 1, q̄1, . . . , q̄S−2
] = S.

Proof. (i) follows from the fact that Bmust satisfy the equilibrium
pricing equations (19). (ii) comes from using the Markov property
B1 = 1: for each s the vector of probabilities Bs = (Bss′)s′∈S has
only S − 1 parameters so that typically the prices of S − 1 bonds
should suffice to determine B.

B1 = 1 ⇐⇒ D̄1BD̄2D̄−1
2 1 = D̄11

⇐⇒ Γ

1 + π

δΦ


=

 1
Φ


(22)

with the convention that [ x ] denotes the column vector (x1, . . . ,
xS)⊤. If the prices of T bonds are determined in a reduced-form
equilibrium, a Markov matrix B is compatible with these bond
prices if it satisfies the equations

Γ

1 + π

δΦ


=

 1
Φ


, Q = ΓQ ⇐⇒

 δ

Φ
,Q


= ΓQ
withQ =


1+π
Φ

,Q from which (ii) follows. �

12 If the equations for more than S bonds were written, the additional equations
would be redundant and could be omitted.
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Condition (ii) indicates that it may suffice to fix the price of
S − 1 bonds to make the equilibrium determinate. However the
condition that the vector


1+π
Φ


is independent of the payoffs

[1, q̄1, . . . , q̄S−2
] of the bonds is not easy to interpret or verify a

priori. In the Appendixwe examine the casewhere S = 2, showing
that conditions (i) and (ii) are distinct. Although (i) is stronger in
the sense that it calls for fixing prices of S rather than S − 1 bonds,
the rank condition (i) does not imply the rank condition (ii). When
S = 2, (i) is useful only when (ii) is not satisfied. In this case fixing
the price of one more bond serves to ensure uniqueness.

As indicated in Section 2 we have in mind a case where
(π1, . . . , πS) is a discretization of the support of inflation rates
deemed possible by the agents. If the resulting equilibrium is to
be a reasonable approximation of an equilibrium with continuous
support for inflation then the discretization will require more than
two points. As S increases the difference between fixing the prices
of S or S − 1 bonds becomes less important and condition (i)
becomes attractive because it focuses on the conditions that must
be satisfied by the term structure generated by B̄ if the bond pricing
rule is to anchor B̄. The main message of condition (i) is that the
term structure generated by B̄ must vary systematically across
the current inflation states (s ∈ S) and this in turn implies that
the probabilities (Bss′)s′∈S must vary systematically with current
inflation s. The simplest case for understanding the restrictions on
B̄ implied by the rank condition (i) is the case where the pricing is
risk neutral.

Suppose therefore that the agent’s utility function is quasi-
linear in consumption

u(c, ℓ) = c + v(ℓ)

where v is increasing, differentiable, strictly concave and satisfies
v′(ℓ) → ∞ when ℓ → 0 and v′(ℓ) → 0 when ℓ → 1. The FOC (a)
in Corollary 5

v′(1 − c) =
1

1 + rs
=

1
Rs

defines the optimal consumption c̄(Rs) as a function of the current
nominal gross return Rs of the short-term bond. Since Φ(Rs) =

uc(c̄(Rs), 1 − c̄(Rs)) = 1 the bond pricing equations (19) become

Q = Γ Q , with Γ = δ B diag


1
1 + π



=


δB11

1 + π1
· · ·

δB1S

1 + πS
...

...
...

δBS1

1 + π1
· · ·

δBSS

1 + πS

 . (23)

Corollary 12 (B Full Rank). If the bond prices are given by (23) and
rank [1, q̄1, . . . , q̄T−1

] = S, then the inflation expectations matrix B
must be of full rank (rank B = S).

Proof. Since q̄τ
= Γ q̄τ−1, τ = 1, . . . , S − 1 the vectors

q̄1, . . . , q̄T−1 are in the image of Γ . Since Φs = 1 for all s ∈ S, the
matrix D̄1 is the identity matrix and (22) reduces to Γ [1+π] = δ1
so that 1 is in the image of Γ . Since the image of Γ contains S
independent vectors rank Γ = S, and since rank B = rankΓ , the
result follows. �

The condition that B is of full rank means that the rows of B
must be systematically different: this means that the probability
distribution (Bss′)s′∈S of next period inflation s′ given the current
inflation changes systematically when current inflation s changes.
No i.i.d. process can satisfy condition (i) of Theorem11 since for any
i.i.d. process of inflation the nominal interest rate is constant—the
real interest rate is constant equal to δ − 1 and the expectation
of inflation is independent of current inflation: thus the term
structure is flat and identical in all inflation states. No information
concerning the inflation process can be obtained from the bond
prices beyond the fact that inflation is some i.i.d. process with a
mean determined by the short-term interest rate. In particular it
is not possible to anchor expectations of an immediate return next
period to a target inflation rate πs∗ when current inflation deviates
from the target (s ≠ s∗). For the matrix of such an inflation process
would be of the form

B =


0 0 · · · 1 · · · 0
0 0 · · · 1 · · · 0
...

...
...

...
...

...
0 0 · · · 1 · · · 0


with all rows identical. In this case all inflation processes with the
same expected next period inflation
s′∈S

Bss′

1 + πs′
=

1
1 + πs∗

, s ∈ S

give the same bond prices so that the equilibrium is indeterminate.
This example suggests that a monetary authority targeting an
inflation rate πs∗ should choose an inflation process moving more
sluggishly to the target with some permanence – themainweights
in inflation state s being on Bs,s and Bs,s+1 if s < s∗ or on Bs,s and
Bs,s−1 if s > s∗ – the fluctuations in inflation rates representing the
price to pay for being able to anchor agents’ random beliefs.

If B and Q = [ 1, q̄1, . . . , q̄T−1
] are both of full rank then the

matrix of bond prices Q = [q̄1, . . . , q̄T
] is also of full rank. Since

any row of Q

[q̄1s , . . . , q̄
T
s ] =


1

1 + r1s
, . . . ,

1
(1 + rTs )T


is the equivalent in terms of bond prices of the term structure of
interest rates in inflation state s, in order that B can be anchored,
different inflation rates must result in different term structures.

With risk aversion the proof of Corollary 12 does not go through
since by (22) B1 = 1 implies

Γ


1 + π

Φ̄


= δ


1
Φ̄


.

We did not find an argument proving that 1 is in the image of Γ

or that the vector
 1

Φ̄


is linearly independent of (q̄1, . . . , q̄T−1),

so that we can only conclude that a necessary condition for
condition (i) is that rank (B) ≥ S − 1. This however is similar
in spirit to the earlier full rank condition since it requires that
for all but perhaps one row of B the probability distribution of
next period inflation vary systematically with current inflation, so
that the term structure r1s , . . . , r

S−1
s varies systematically with s.

If condition (ii) is used rather than condition (i) then the linear
independence of [1, q̄1, . . . , q̄S−2

] implies that rank B̄ ≥ S − 2 so
that the term structure r1s , . . . , r

S−2
s varies systematically with s.

4. Heterogeneous agents and real shocks

In the previous section we characterized the beliefs that
a monetary authority can induce as equilibrium beliefs in an
economy with homogeneous agents where the only source of
uncertainty comes from the stochastic beliefs of agents about
future inflation. We saw that even in an economy with no real
uncertainty, the presence of stochastic beliefs regarding inflation
can lead to stochastic self-fulfilling equilibria, and that a monetary
authority can induce a unique equilibrium of its choice in the class
of inflation processes satisfying the conditions of Theorems 8 and
11 by appropriate use of a term-structure policy. In this section
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we show how the analysis can be extended to an economy with
heterogeneous agents in which there is an additional source of
uncertainty coming from the exogenous process of shocks to the
agents’ productivities. To this end we revert to the general model
introduced in Section 2, restricted as in Section 3 to the stationary
Markov setting. Thus we let η = (s, g) ∈ S × G identify the
current inflation πs and the real shock g which determines the
productivities ahg = ahη of the agents h ∈ H . The exogenous shocks
are assumed to have aMarkov structure described by aG×Gmatrix
A = (Agg ′)g,g ′∈G and we consider only Markovian beliefs B =
Bηη′


η,η′∈S×G

on the support S × G which are compatible with A.
An equilibrium of an economy with heterogeneous agents and

a cash-in-advance constraint is not Pareto optimal: there is thus
no social welfare function which is maximized at an equilibrium,
and in this sense, no representative agent. However what is really
needed to derive the properties of an equilibrium with security
markets is a common stochastic discount factor for pricing the
securities which only depends on the aggregate state of the
economy. In Proposition 13 we show that we can exploit the
property that the marginal rates of substitution of the agents are
equalized – they all face the same prices and the nominal interest
rate distorts the realwage in the sameway for all agents – to derive
a social marginal utility of consumption at equilibrium, denoted by
Φη


η∈S×G

, which when discounted to date 0, leads to the real

stochastic discount factor for pricing the securities. Lemma 14 will
show that this social marginal utility of consumption is a function
of the income distribution, the real shock and the nominal short-
term interest rate. Once the function Φ is introduced, many of the
constructions of the previous section can be extended to themulti-
agent case, for Φη plays a role akin to the marginal utility uc of
the representative agent in the previous section. The fixed-point
argument however needs to be extended to include not only the
vector of returns R on the short-term bond, but also the vector of
weights for the agents characterizing the distribution of income in
the economy.

The first step of the analysis is given by Proposition 13 which
provides the heterogeneous-agent generalization of Corollary 5 of
the previous section: it characterizes a reduced-form equilibrium
of the economy inwhich the bond prices qη = (q1η, . . . , q

T
η) and the

consumption–leisure decisions (chη, ℓ
h
η) only depend on the current

state η, assuming that the agents adopt B as their beliefs. The max-
imization of each agent in (2) of Definition 2 is replaced by the cor-
responding first-order conditions (a1, a2) and the budget equation
(a4). The first-order conditions are expressed as the statement that
the marginal utility of consumption of each agent is proportional
to the social marginal utility of consumption Φη , the vector of co-
efficients of proportionality ν = (νh)h∈H in the simplex ∆H

⊂

RH capturing the relative wealth of the agents. These weights
are determined by the lifetime budget equations of the agents
which can be expressed (in (a4)) as functions of the variables
(Φη, cη, ℓη, r1η )η∈S×G which are state, and not path, dependent. Let
Rη = 1+r1η denote the gross return on the short-termbond in state
η. Then the following equations characterize a stationary reduced-
form equilibrium of the heterogeneous-agent economy.

Proposition 13 (Stationary Equilibrium Equations). Under
AssumptionU, a stationary reduced-form equilibrium is characterized
by a pair


(B̄, q̄, Θ̄), (ν̄, x̄, Φ̄)


satisfying the following system of

equations:

(a1) ν̄huh
c (c̄

h
η, ℓ̄

h
η) = Φ̄η, η ∈ S × G, h ∈ H ;

(a2) ν̄huh
ℓ(c̄

h
η, ℓ̄

h
η) =

ahηΦ̄η

R̄η
, η ∈ S × G, h ∈ H ;

(a3)


h∈H c̄hη =


h∈H ahη(e
h
− ℓ̄h

η), η ∈ S × G;
(a4)


η∈S×G[I − δB̄]−1
η0η

Φ̄η


c̄hη −

ahη(eh−ℓ̄hη)

R̄η


+ Φ̄η0γ

hΘ̄ =

Φ̄η0w
h
0, h ∈ H ;

(b1) Φ̄ηq̄τ
η = δ


η′∈S×G

B̄ηη′

1+πη′
Φ̄η′ q̄τ−1

η′ , q̄0η = 1, η ∈ S × G, τ =

1, . . . , T ;
(b2) q̄τ

η ≤ 1, τ = 1, . . . , T , η ∈ S × G.

Proof. Consider a reduced-form equilibrium

B̄, (q̄j)j∈Jg , Θ̄


, x̄,

P̄

as in Definition 2. First note that under the Markov assumption

B̄ξ is given by

B̄ξ = B̄η0η1 , . . . , B̄ηt−1ηt
if ξ = (η0 , . . . , ηt ).

Assuming that the present value of after-tax income P̄ξ0(w
h
0 −

γ hΘ̄) +


ξ P̄ξ p̄ξahξ e
h/R̄ξ is positive, in view of Assumption U, the

solution to the maximum problem of agent h is interior, i.e. chξ >

0 and 0 < ℓh
ξ < eh for all ξ ∈ D, and is characterized by

the FOCs for optimal consumption/leisure and the present-value
budget equation. The FOCs for themaximumproblemof agenth are

δt(ξ) B̄ξ uh
c (c̄

h
ξ , ℓ̄

h
ξ ) = λ̄h P̄ξ p̄ξ

δt(ξ) B̄ξ uh
ℓ(c̄

h
ξ , ℓ̄

h
ξ ) = λ̄h ahξ

P̄ξ p̄ξ

R̄ξ

(24)

for some λ̄h > 0 and all ξ such that B̄ξ > 0. If the equilibrium
is Markov, then c̄hξ = c̄hη , ℓ̄

h
ξ = ℓ̄h

η , R̄ξ = R̄η for all ξ such that
ξ = (η0, . . . , η). Thus for each η there exists Φ̄η such that

P̄ξ p̄ξ

δt(ξ)B̄ξ

= Φ̄η, for all ξ = (η0, . . . , ηt(ξ))

with ηt(ξ) = η. (25)

Define the weight ν̄h of agent h as the reciprocal of the marginal
utility of income: since P̄ in Definition 2 can be normalized,wemay
assume that the weights are chosen in the simplex (


h∈H νh

=

1), which amounts to having P̄ξ0


h

1
uhc (c̄

h
ξ0

,ℓ̄hξ0
)

= 1. Expressing

the FOCs (24) using (25) leads to the first-order conditions (a1)
and (a2).

Using (25) the FOCs (4) for the bond portfolios in Definition 2
can be written as

δt(ξ)B̄ξ

p̄ξ

Φ̄η q̄τ
η =


η′∈S×G

δt(ξ)+1B̄ξ ′

p̄ξ ′

Φ̄η′ q̄τ
η′ ,

for ξ = (η0 , . . . , η), ξ ′
= (η0 , . . . , η, η′).

Since B̄ξ ′/B̄ξ = B̄ηη′ and p̄ξ ′/p̄ξ = 1 + πη′ , in the Markov case the
FOCs for optimal bond portfolios reduce to (b1) in Proposition 13.

Finally, using (25) and grouping the terms in the budget equa-
tion of agent h which correspond to the same current infla-
tion–productivity state η at the same date, the budget equation of
agent h can be written as

∞
t=0

δt


η∈S×G

 
ξ∈Dt ξ=(η0,...,η)

B̄η0η1 , . . . , B̄ηt−1η



× Φ̄η


chη −

ahη(e
h
− ℓh

η)

Rη


− γ hΦ̄η0Θ = Φ̄η0w

h
0.

The probability in parentheses is the probability of being in state η
in t periods starting from η0 and by the Markov property is equal
to [B̄t

]η0η , where [B̄t
] is the tth power of the matrix B̄. Since δ < 1,

∞

t=0 δt
[B̄t

] = [I−δB̄]−1, leading to the budget equation (a4). �
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Comparing the characterization of a stationary equilibrium
for the multi-agent economy in Proposition 13 with that of the
representative-agent economy in Corollary 5, (a1)–(a3) replace
condition (a) in Corollary 5. (a4) is the lifetime budget constraint of
each agent written in present-value form. Summing these budget
constraints gives an equation for determining the value of Θ̄ .
When there is only one agent the budget equation can be omitted
if Θ̄ is omitted from the equilibrium variables. When there are
heterogeneous agents both the lifetime budget constraints and Θ̄

have to be retained in the definition of an equilibrium. (b1, b2)
of Proposition 13 are equivalent to (b1, b2) of Corollary 5, the
marginal utility of the representative agent being replaced by the
social marginal utility Φ.
Existence of stationary equilibrium. The next step is to characterize
the expectations matrices B for which there exist a stationary
reduced-form equilibrium: as in the previous section (Definition 7)
we call any such matrix a compatible expectations matrix, where
‘compatible’ means compatible with a non-negative interest rate.
To generalize Theorem 8 and obtain conditions for a matrix B
to be a compatible expectations matrix we need the equivalent
of Lemma 6 for the multi-agent case. We show that under
Assumption U, for a fixed vector of positive weights ν and a fixed
vector of productivities a = (ah)h∈H , the first-order conditions
(a1)–(a2) and the market-clearing equations (a3) uniquely define
the consumption and leisure of each agent and the social marginal
utility of consumption.

Lemma 14 (ν-equilibrium Consumption). Let uh satisfy
AssumptionU for all h ∈ H .

(i) For any (ν, a, R) ∈ ∆H
× RH

++
× R++ the equations

(a1) νhuh
c (c

h, ℓh) = Φ if νh > 0, ch = 0, if νh
= 0, h ∈ H ;

(a2) νhuh
ℓ(c

h, ℓh) =
ahΦ
R if νh > 0, ℓh

= 0, if νh
= 0, h ∈ H ;

(a3)


h∈H ch =


h∈H ah(eh − ℓh)

have a unique solution

ch(ν, a, R), ℓh(ν, a, R), Φ(ν, a, R)


continuous on ∆H

× RH
++

× R++.
(ii) Φ(ν, a, R) is strictly increasing in R.
(iii) Φ(ν, a, R) ≡

Φ(ν,a,R)
R is strictly decreasing in R.

Proof. See the Appendix.

Lemma 14 is the multi-agent analogue of Lemma 6 in the pre-
vious section: it permits equations (a1)–(a3), and (b1) of Proposi-
tion 13 for τ = 1 to be combined into the system of equations

1
Rη

= δ


η′∈S×G

Bηη′

1 + πη′

Φ(ν̄, aη′ , Rη′)

Φ(ν̄, aη, Rη)
, η ∈ S × G (26)

which has the same form as the equilibrium equations (12) for
the single-agent economy. Finding a reduced-form equilibrium for
the single-agent economy reduced to finding a solution R̄ ≥ 1
to Eqs. (12). For an economy with heterogeneous agents, in ad-
dition to solving the system of equations (26) we must find the
present value of taxeswhichwhen combinedwith seignorage pays
off the government’s initial liabilities, and the vector ν̄ of relative
weights which are compatible with the distribution of wealth im-
plied by the budget equations (a4) in Proposition 13. Thus for a
heterogeneous-agent economy finding an equilibrium reduces to
finding (Θ̄, ν̄, R̄) such that the budget equations (a4) and the bond
pricing equations (26) are satisfied.

The conditions which imply the existence of a reduced-form
equilibrium thus naturally reduce to two sets of conditions: the
first set is analogous to conditions (1) and (2) in Theorem 8
which ensure that there is a solution R̄ to the short-term bond-
pricing equations (26) satisfying R̄ ≥ 1; the second ensures that
the tax burden is shared among the agents in a way which is
commensurate with their wealth, so that each agent can afford
positive consumption and leisure in all statesη ∈ S×G after paying
his/her share of the present value of the taxes Θ̄ .

To give conditions which ensure (26) has a solution in the right
domain, we need to bound the possible values of R. For each ν ∈

∆H , define Rmax
η (ν) as the solution of the equation

Φ(ν, aη, Rmax
η ) =

Φ(ν, aη, Rmax
η )

Rmax
η

= δ


η′∈S×G

Bηη′

Φ(ν, aη′ , 1)
1 + πη′

, η ∈ S × G (27)

(condition (1) in Theorem 14 below ensures that the equation has
a solution) and then for each η ∈ S × G define

Rmax
η = max

ν∈∆H
Rmax

η (ν).

As before, conditions which ensure Rmax
≥ 1 place restrictions on

the matrix B given the inflation/technology/preference character-
istics of the economy. We then define, for each ν ∈ ∆H , Rmin

η (ν)
by

1
Rmin

η (ν)
= δ


η′∈S×G

Bηη′

1 + πη′

Φ(ν, aη′ , Rmax
η′ )

Φ(ν, aη, 1)
, η ∈ S × G, (28)

Rmin
η (ν) gives a lower bound on the nominal interest rate since it

corresponds to the lowest possible real interest rate, and hence the
assumption that Rmin

η (ν) ≥ 1 (condition 2 below) imposes stronger
restrictions on B.

To understand the tax-sharing assumption consider each
agent’s present-value budget equation in the original form given
in (2) of Definition 2. Summing the budget equations of the house-
holds implies that when the market clearing equations (3) in Def-
inition 2 hold, then
ξ∈D

P̄ξ

r̄1ξ Mξ

1 + r̄1ξ
+ P̄ξ0Θ̄ = P̄ξ0


h∈H

wh
0 = P̄ξ0W0 (29)

whereMξ = p̄ξ


h∈H c̄hξ . (29) expresses the property that the gov-

ernment asymptotically withdraws its initial liabilities P̄ξ0W0 (which
correspond to the initial wealth of the private sector) by a combi-
nation of seignorage (the first term on the left side) and direct taxes
(P̄ξ0Θ̄). Since r̄1ξ ≥ 0, it follows from (29) that

Θ̄ ≤ W0. (30)

We want to be sure that each agent h has a positive after-tax
present value of income

γ hP̄ξ0Θ̄ < P̄ξ0w
h
0 +


ξ∈D

P̄ξ p̄ξahξ e
h

R̄ξ

, h ∈ H

and, to ensure that it holds in equilibrium, we require that it holds
for the ‘lowest’ possible values of P̄ξ p̄ξ

R̄ξ
and the highest possible P̄ξ0 .

In the stationary case this can be expressed using the highest re-
turns Rmax

η and leads to condition (3) in the following theorem.

Theorem 15 (Existence of Stationary Equilibrium). Let E be an
economy in which the agents’ utility functions satisfy AssumptionU.
If B is a Markov matrix such that

(1) limR→∞

Φ(ν,aη,R)
R < δ


η′∈S×G Bηη′

Φ(ν,aη′ ,1)
1+πη′

≤ Φ(ν, aη, 1),

∀ η ∈ S × G, ∀ ν ∈ ∆H

(2) Rmin
η (ν) ≥ 1, ∀ η ∈ S × G, ∀ ν ∈ ∆H
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and if the tax burden is distributed among agents so that γ =

(γ h)h∈H ∈ ∆H satisfies

(3) γ hW0 < wh
0 +


η∈S×G[I − δB]−1

η0η

Φ(ν,aη,Rmax
η ) ahηe

h

Rmax
η Φ(ν,aη0 ,Rmax

η0 )
, ∀ ν ∈

∆H , ∀ h ∈ H

where Rmin
η and Rmax

η are defined by (28) and (27) , then there exists
a stationary equilibrium of E , and B is compatible with non-negative
interest rates.

Proof. See the Appendix.

Conditions (1) and (2) of Theorem 15 ensure that the short-run
nominal interest rate is always non-negative. These conditions are
of the same nature as those in Theorem 8. However fluctuations
between high and low productivity of labor tend to augment the
fluctuations between high and low consumption (already present
in Section 3) leading to more negative real interest rates. Other
things equal in a setting of inflation targeting this would imply a
need for a higher target inflation rate to obtain the existence of an
equilibrium.
Uniqueness of equilibrium. If B is an expectations matrix satisfying
the conditions of Theorem15, then themonetary authority can find
a short-term interest rate policy r1 which is compatible with B and
the real side of the economy. To examine the additional conditions
required to ensure that B is the onlymatrix which is solution of the
bond-pricing equations (b1) of Proposition 13, let

ν̄ = (νh(B))h∈H , R̄ = (R̄η)η∈S×G = (Rη(B))η∈S×G

denote the vector of relative weights of the agents and the vector
of equilibrium returns on the short-term bond across the states
η ∈ S × G. By Proposition 13(a1, a2) there is at the equilibrium
a vector

Φ̄ = (Φ̄η)η∈S×G = (Φη(ν̄, aη, R̄η))η∈S×G

to which all agents’ gradients are collinear and which thus
represents the vector of social marginal utilities of income across
the states. Φ̄ is the generalization of the vector of marginal utilities
of income of the representative agent (17) in Section 3. Clearly if
the monetary authority only determines the equilibrium prices of
the short-term bond then there are many expectations matricesB =

Bηη′


ηη′∈S×G

which satisfy the short-term bond pricing

equations

1
1 + r̄1

= δ


η′∈S×G

Bηη′

1 + πη′

Φ̄η′

Φ̄η

, η ∈ S × G (31)

and are compatible with the exogenous transitions A = (Agg ′)gg ′∈G

for the real shocks. If themonetary authority determines the prices
of additional longer-term bonds of maturities τ = 2, . . . , T , then
a matrix of expectationsBwill need to satisfy the additional bond-
pricing equations

Φ̄ηq̄τ
η = δ


η′∈S×G

Bηη′

1 + πη′

Φ̄η′ q̄τ−1
η′ ,

η ∈ S × G, τ = 2, . . . , T . (32)

A naive attempt to apply the reasoning underlying Theorem 11
would suggest the following criterion for uniqueness: if the
monetary authority determines the prices of S × G bonds and the
payoff matrix is invertible, thenB = B is the unique solution of
Eqs. (31) and (32). This however is not a satisfactory criterion: for
a standard model such as the Smets and Wouters (2007) model,
which is a workhorse for policy evaluation, uses between 10 and
20 exogenous shocks. If we use a grid of 10 inflation intervals, this
would imply determining the prices of 100–200 bonds. It is hard to
imagine a central bank even entertaining the idea of implementing
such a policy. Amore careful analysis reveals however that a policy
restricted to determining the prices of only S or S − 1 bonds
suffices to anchor agents’ expectations under a mild condition on
the Markov transition matrix, which formalizes the idea that the
technology shock process is exogenous to the model.

AssumptionMT (Markov Transitions). There exists a family (Ng)g∈G

of S × S Markov matrices such that the transition matrix B is given
by

Bηη′ = Ng
ss′Agg ′ , ∀ η = (s, g), η′

= (s′, g ′) ∈ S × G. (33)

MT asserts that the transition probabilities for the real shocks
are not influenced by either the current or the future inflation rates
(s, s′). However agents’ expectations of future inflation s′ can be
influenced not only by the current inflation s but also by the real
shock g . Under this assumption the bond-pricing equations can be
written as

q̄τ
sg = δ


s′∈S

Ng
ss′

1 + πs′


g ′∈G

Agg ′

Φ̄s′g ′

Φ̄sg
q̄

τ−1

s′g ′ ,

q̄0sg = 1, ∀ (s, g) ∈ S × G, τ = 1, . . . , T . (34)

Define the risk-neutral probability ρ
g
s′ of the real shocks tomorrow

conditional on the current real shock being g and the inflation
tomorrow being s′

ρ
g
s′(g

′) =
Agg ′Φ̄s′g ′

g ′′∈G

Agg ′′Φ̄s′g ′′

, ∀ g ′
∈ G, ∀ s′ ∈ S, ∀ g ∈ G

and the associated expected values of the bond prices in inflation
state s′Eg(q̄τ

s′) =


g ′∈G

ρ
g
s′(g

′)q̄τ
s′g ′ , ∀ s′ ∈ S, ∀ g ∈ G, τ = 1, . . . , T .

If we also consider the average marginal utility of income
tomorrow if the inflation rate is s′Φg

s′ =


g ′∈G

Agg ′Φ̄s′g ′ , ∀ s′ ∈ S, ∀ g ∈ G

when the real shock is g today, then the bond-pricing equations
(34) decompose into a system of S × T equations for each current
real shock g ∈ G

q̄τ
sg = δ


s′∈S

Ng
ss′

1 + πs′

Φg
s′

Φ̄sg

Eg(q̄τ−1
s′ ), Eg(q̄0s′) = 1,

∀ s ∈ S, τ = 1, . . . , S. (35)

For each g ∈ G this system of equations is similar to the
recursive equations (18) in the previous section, the marginal
utility of income and the payoff of the bond next period in state s′

being replaced by averages over the possible shocks g ′. If for each
g ∈ G we define the analogue of the diagonal matrices in (21), and
the present-value matrix in (20)

D̄g
1 = diag


1

Φ̄sg


s∈S

Dg
2 = diag


δΦg

s′

1 + πs′


s′∈S

,

Γ g
= D̄g

1N
gDg

2
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and define the S × S matrices of bond prices and their average
payoffs

Q g
=

q̄11g . . . q̄T1g
...

. . .
...

q̄1Sg . . . q̄TSg


Q g

=

1 Eg(q̄11) . . . Eg(q̄T−1
1 )

...
...

...

1 Eg(q̄1S) . . . Eg(q̄T−1
S )


then (35) is equivalent to the Gmatrix equations

Γ gQ g
= Q g , g ∈ G. (36)

Since D̄g
1 andDg

2 are positive diagonal matrices there is a one-to-
one relation between Γ g and Ng . Thus ifQ g is invertible then (36)
has a unique solution Γ g and hence a unique solution Ng for each
g ∈ G. If the relation Ng1 = 1 for g ∈ G is taken into account then
Γ g satisfies the additional condition

Γ g
[Dg

2]
−11 = D̄g

11 ⇐⇒ Γ g
1 + π

δΦg


=

 1

Φ̄
g


, g ∈ G

so that Γ g can also be determined by the matrix equation

Γ gQ g
=

 δ

Φ̄
g ,Q g


, withQ g

=

1 + πΦg ,Q g

.

This leads to the following generalization of Theorem 11.

Theorem 16 (Uniqueness of Equilibrium). Let (B̄, q̄, Θ̄), (ν̄, x̄, Φ̄)

be a stationary reduced form equilibrium. B̄ is the only matrix
satisfying MT which is compatible with the term-structure policy q̄
involving bonds of maturities 1, . . . , T

(i) if T ≥ S and rank [Q g
] = rank


1,Eg(q1), . . . ,Eg(qS−1)


= S,

for all g ∈ G or

(ii) if T ≥ S − 1 and rank[Q g
] = rank


1+πΦg , 1,Eg(q1), . . . ,Eg(qS−2)


= S, for all g ∈ G.

The conditions for uniqueness are similar in spirit to that in the
simplifiedmodel in Section 3. Condition (i) requires that for a given
value g of the real shock the rows of the matrixQ g
1Eg


q̄1s′


· · · Eg

q̄T−1
s′


, s′ ∈ S

i.e. the term-structure next period (averaged over the real shocks)
must vary systematically with the realized inflation s′. This in
turn implies by (35) that the probability distribution [Ng

s′s′′ ]s′′∈S of
the subsequent period inflation must vary systematically with s′.
Since the criterion applies separately for each real shock the term
structure can be adapted in a flexible way to vary with the real
shock g ∈ G which influences the evolution of the real interest
rate. In particular if the monetary authority chooses to implement
a mean-reverting process which returns towards a target inflation
rate, then the speed of reversion to the target rate in the matrix
[Ng

ss′ ] can vary systematically with the different values of g , but as
we have seen earlier, the return must be stochastic and gradual
since an immediate return to target in not compatible with the
uniqueness of equilibrium,
5. Related literature

The study of the determinacy of equilibrium has a long tradi-
tion in general equilibrium. Initially the focus was on conditions
needed to obtain the uniqueness of equilibrium—but the conditions
obtained turned out to be far too restrictive. All this was changed
by the fundamental paper of Debreu (1970)which proposed an ap-
proach of great generality and power. The idea was to study equi-
libria as solutions of systems of equations for which the generic
dimension of the manifold of solutions are given by the Transver-
sality Theorem: uniqueness is replaced by local uniqueness i.e. the
condition that the dimension be zero so that equilibria consist of
at most a finite number of points. At the time determinacy was un-
derstood as the existence of a finite number of equilibrium alloca-
tions and relative prices, since price levels are not determined in
an abstract GE model.

Under the influence of Savage (1954), Arrow (1953) used the
state-of-nature approach for defining a random variable to extend
general equilibrium to uncertainty, and made the transition to the
concept of a sequential equilibrium by introducing a collection
of nominal contracts—an ‘‘Arrow’’ security being a promise to
pay one unit of account if state s occurs. The price level in
each state was indeterminate, but since there were complete
markets the indeterminacy was purely nominal and did not affect
the real allocation, so it passed unnoticed. Until Cass (1989)
revisited the model and had the important insight that if the
payoffs of the securities are nominal and the financial markets
are incomplete then real equilibrium outcomes are indeterminate:
Cass interpreted this striking finding as a critique of the viability of
rational expectations equilibrium. The result causedquite a stir and
led to the study of the degree of indeterminacy of equilibrium in
models with nominal contracts and incomplete markets (Balasko
and Cass, 1989; Geanakoplos and Mas-Colell, 1989). Magill
and Quinzii (1992) argued that since the indeterminacy in the
allocations came from the indeterminacy of the price levels which
left the purchasing power of the security payoffs indeterminate,
the introduction of an additional monetary component into the
standard model to determine the price levels would restore the
determinacy of equilibrium: using Clower’s (1967) constraint they
transformed the indeterminacy result into the result thatmonetary
policy has real effects when markets are incomplete.

This changed the focus towards finding more sophisticated
ways of embedding the monetary component into the GEI model.
In a series of papers Dubey and Geanakoplos (1992, 2003,
2006) studied a form of cash-in-advance model in which agents
borrow money from a bank to finance their transactions, which
yields determinate prices and equilibrium allocations when either
money supplies or interest rates are fixed. A similar model was
explored by Drèze and Polemarchakis (1999, 2001) (DP) with the
important difference that the bank is seen as a private bank which
redistributes the seignorage revenue as profit to its shareholders,
and this reintroduces indeterminacy. In an informal discussion
DP (2001) introduced the notion of a ‘‘comprehensive’’ monetary
policy, defined as a policy which would determine the price level
(at every node of the event-tree) and in their model this required
more than fixing the short-term interest rate. They suggested
either fixing the short-term interest rate and the quantity ofmoney
at each node or the short-term interest rate and the prices of
Arrow securities, noting that both solutions would be difficult to
implement. Controlling monetary aggregates has been found to
be difficult and using a policy based on prices of Arrow securities
would require the creation of liquid markets contingent on all
the exogenous states which are taken to drive uncertainty in the
economy. As DP indicate, suchmarkets do not exist and are almost
certain never to exist. Our approach seeks to address these issues:
the instruments we propose are the prices of securities which
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the monetary and fiscal authorities trade on a regular basis and
the policy is contingent on observed inflation rates rather than
unspecified states of the economy.

Bloise et al. (2005) show how DP (1999) can be extended to
an equilibrium model over an infinite horizon with monetary
and fiscal policy, drawing the analysis closer to the macro
literature. They show that Woodford’s (1994) well-known result
on determinacy with a non-Ricardian policy (also known as the
fiscal theory of the price level) is fragile even if one accepts
the tenuous thought experiment of fixing taxes in real terms
for the indefinite future: for example, to obtain indeterminacy
it suffices to allow the fiscal policy to raise more revenue than
needed to finance the debt and to redistribute the surplus; or, if
the government trades other securities than the short-term bond,
it suffices to leave the composition of the government portfolio
undetermined (see also McMahon et al., 2012). The indeterminacy
characteristic of a Ricardian policy was also explored in Nakajima
and Polemarchakis (2005) in a representative-agent model drawn
frommacro, using the tools of the general equilibrium approach to
count the dimension of indeterminacy. This paper forms the point
of departure of our analysis.

In this class of monetary models with a Ricardian fiscal policy,
the indeterminacy does not come from the incompleteness of the
security markets, as in the earlier models mentioned above, but
comes rather from the lack of instruments for determining price
levels. Since models with complete markets are easier to study
than those with incomplete markets, the paper of NP and ours are
in a setting with complete markets. Where we differ from NP is in
the representation of uncertainty. In a related paper (Magill and
Quinzii, 2009) we have emphasized the importance for the real-
ism of GE models under the uncertainty of replacing the state-
of-nature representation of random variables used in current GE
models (since its introduction by Arrow (1953)) by an approach
based on probability distributions over realized outcomes which
are observable. The idea of adding long-term interest rates as in-
struments to determine price levels was proposed independently
byAdao et al. (2010) in amodel similar toNP: however since the in-
terest rates are nodedependent they donot constitute an ‘‘interest-
rate rule’’ that could be learned by agents in the private sector.

The approach that we adopt in which the term-structure rule
is based on realized inflation makes it a natural generalization
of the standard short-term interest-rate rule used in macroeco-
nomics to solve the indeterminacy problem—a problem which
macroeconomists discovered a long time ago in a macro setting
(Sargent and Wallace, 1975). The subsequent macro literature has
converged on the idea of using a short-term interest-rate rule
which satisfies the Taylor Principle: for this implies that there is
only one equilibrium trajectory which is locally stable, and this
trajectory is selected as the candidate equilibrium. Whether this
way of selecting one out of many candidate equilibria is a legiti-
mate way of obtaining ‘‘determinacy’’ is the subject of debate (see
Woodford (2003) and Cochrane (2011)).

Acknowledgments

We are grateful to Bennett McCallum, Alex Citanna, Marvin
Goodfriend, Paolo Siconolfi, Carl Walsh, Michael Woodford and
to participants at the Conference in honor of Andreu Mas-Colell
at Barcelona University (2009), the SAET Conference on General
Equilibrium at Ischia, the 6th Cowles Conference in General
Equilibrium at Yale University and to participants in seminars
at Cambridge University, Carnegie-Mellon University, Columbia
University, EPGE at the Getulio Vargas Foundation, the Institute for
Advanced Studies, Vienna, the Swiss Central Bank, Zurich, the Swiss
Finance Institute, University of Zurich, University of California,
Santa Cruz, University ofMannheim, University of Lund, University
of Rome, and the University of Southern California for helpful
comments. All remaining errors are ours. Research support from
the Swiss Finance Institute is gratefully acknowledged.
Appendix

A.1. Proof of Theorem 3

Step 1. Show that the extensive and reduced-form budget sets
are the same. The budget set Bh(p, q, θ) of agent h in an extensive-
form equilibrium is given by

Bh(p, q, θ)

=

xh ∈ (ℓ∞

+
(D))2


∃ zh ∈ RDJ such that ∀ ξ ∈ D
pξ chξ + γ hθξ + qξ zhξ = pξ−Lh

ξ− + q̂ξ zhξ−

lim
T→∞


ξ ′∈DT (ξ)

Pξ ′qξ ′zhξ ′ = 0


where ℓ+

∞
(D) is the space of non-negative bounded sequences on

D, and where pξ−

0
Lh
ξ−

0
+ q̂ξ0z

h
ξ−

0
= wh

0 denotes the agent’s initial

wealth at date 0. While the extensive-form budget set is defined
by an infinite sequence of budget constraints (one at each node of
the event-tree) the reduced-form budget set of agent h, denoted by
Bh(P, p, r1, Θ) is defined by a single present-value budget equa-
tion

Bh(P, p, r1, Θ) =


xh ∈ (ℓ∞

+
(D))2

ξ∈D

Pξpξ


chξ −

Lhξ
1 + r1ξ


+ γ hPξ0Θ = Pξ0w

h
0


where r1 = (r1ξ )ξ∈D is the sequence of short-term interest rates
over the event-tree D. Let ℓ1(D) = {P ∈ RD

|


ξ∈D |Pξ | < ∞}

denote the space of summable sequences on D. We want to show
that if

(i) rank [q̂ξ+ ] = SG, ∀ ξ ∈ D (complete markets),
(ii) Pξq

j
ξ =


ξ ′∈ξ+ Pξ ′ q̂j

ξ ′ , j ∈ J, ∀ ξ ∈ D (no-arbitrage security
prices),

(iii) (Pξpξ )ξ∈D ∈ ℓ1
+
(D) (summable prices),

(iv)


ξ ′∈DT (ξ) Pξ ′θξ ′ → 0 as T → ∞, Θ =


ξ∈D Pξθξ , (summable
taxes),

then Bh(p, q, θ) = Bh(P, p, r1, Θ) for all h ∈ H .
(H⇒) We show Bh(p, q, θ) ⊂ Bh(P, p, r1, Θ). Pick xh ∈ Bh. Multi-
plying the budget equation at node ξ by Pξ for all ξ ∈ D, summing
over the event-tree up to date T and using the no-arbitrage con-
dition (ii) gives (remember that DT denotes the set of nodes up to
date T and DT the set of nodes at date T )
ξ∈DT

Pξpξ chξ + γ h

ξ∈DT

Pξθξ +


ξ∈DT

Pξqξ zhξ

=


ξ∈DT−1


ξ ′∈ξ+

Pξ ′


pξ Lhξ + Pξ0w

h
0.

Since no-arbitrage applied to the short-term bond implies that, for
all ξ ∈ D, Pξ

1+r1ξ
=


ξ ′∈ξ+ Pξ ′ , this equation can be written as


ξ∈DT−1

Pξpξ


chξ −

Lhξ
1 + r1ξ


+ γ h


ξ∈DT

Pξθξ +


ξ∈DT

Pξpξ chξ

+


ξ∈DT

Pξqξ zhξ = Pξ0w
h
0.

Since (Pξpξ )ξ∈D ∈ ℓ1(D) and ch ∈ ℓ∞
+

(D), limT→∞


ξ∈DT

Pξpξ chξ
= 0, and by the Transversality Condition for Bh, limT→∞


ξ∈DT

Pξqξ zhξ = 0, so that x ∈ Bh(P, p, r1, Θ).



M. Magill, M. Quinzii / Journal of Mathematical Economics 50 (2014) 86–105 101
(⇐H) We show Bh(p, q, θ) ⊃ Bh(P, p, r1, Θ). Pick xh ∈ Bh(P,
p, r1, Θ). We need to find portfolios zh such that the sequential
budget constraints are satisfied at each node and the Transversal-
ity Condition is satisfied. We define the portfolio zhξ by the require-
ment that it brings enough wealth to the successors of ξ to finance
the excess present value of expenditure over after-tax income on
the subtrees originating at each of these nodes. In view of the as-
sumption of complete markets such a portfolio exists and is de-
fined by 

ξ ′′∈D(ξ ′)

Pξ ′′pξ ′′


chξ ′′ −

Lh
ξ ′′

1 + r1
ξ ′′



+ γ h


ξ ′′∈D(ξ ′)

Pξ ′′θξ ′′ − Pξ ′pξ Lhξ


ξ ′∈ξ+

=

P ◦ξ+ q̂


zhξ ,

∀ ξ ∈ D (37)

where

P ◦ξ+ q̂


=


Pξ ′ q̂j

ξ ′


j∈J

ξ ′∈ξ+

is the SG × J matrix of present

values of the payoffs of the J securities at the immediate successors
ξ+ of ξ . Let us show thatwith this choice of portfolio the sequential
budget constraint is satisfied at each node. We begin with the
initial node ξ0. Premultiplying the SG equations (37) by 1T

∈ RSG

gives
ξ∈D\ξ0


Pξpξ


chξ −

Lhξ
1 + r1ξ


+ γ hPξθξ


−


ξ ′∈ξ+

0

Pξ ′



× pξ0L
h
ξ0

= Pξ0qξ0z
h
ξ0

(38)

and since xh ∈ Bh(P, p, r1, Θ) and


ξ ′∈ξ+

0
Pξ ′ =

Pξ0
1+r1ξ0

it follows

that

−Pξ0pξ0


chξ0 −

Lhξ0
1 + r1ξ0


− γ hPξ0θξ0 + Pξ0w

h
0 −

Pξ0

1 + r1ξ0
pξ0L

h
ξ0

= Pξ0qξ0z
h
ξ0

namely
pξ0c

h
ξ0

+ γ hθξ0 + qξ0z
h
ξ0

= wh
0.

In the sameway, for any node ξ̃ with t(ξ̃ ) ≥ 1 premultiplying (37)
by 1T and using (ii) gives the analogue of (38) with D replaced by
D(ξ̃ ) and ξ0 replaced by ξ̃ . Using (37) again to express Pξ̃ q̂ξ̃ z

h
ξ̃−

and
substituting leads to

Pξ̃ q̂ξ̃ z
h
ξ̃−

− Pξ̃pξ̃


ch
ξ̃

−

Lh
ξ̃

1 + r1
ξ̃


− γ hPξ̃θξ̃ + Pξ̃pξ̃ L

h
ξ̃−

−
Pξ̃

1 + r1
ξ̃

pξ̃ L
h
ξ̃

= Pξ̃qξ̃ z
h
ξ̃

so that the budget constraint at node ξ̃

pξ̃ c
h
ξ̃

+ γ hθξ̃ + qξ̃ z
h
ξ̃

= pξ̃−Lh
ξ̃−

+ q̂ξ̃ z
h
ξ̃−

is satisfied. It remains to show that the Transversality Condition
is satisfied. To this end consider any node ξ ∈ D and for any date
T ≥ t(ξ), consider the nodes ofDT (ξ) at date T in the subtreeD(ξ).
Using (37) and summing over the nodes of DT (ξ) gives
ξ ′∈DT (ξ)

Pξ ′qξ ′zhξ ′

=


ξ ′′∈D(ξ)

t(ξ ′′)≥T+1


Pξ ′′pξ ′′


chξ ′′ −

Lh
ξ ′′

1 + r1
ξ ′′


+ γ hPξ ′′θξ ′′



−


ξ ′∈DT (ξ)

Pξ ′pξ ′−Lh
ξ ′− . (39)
By condition (iii) and (iv) all the tails of the series on the right side
of (39) converge to zero, and thus


ξ ′∈DT (ξ) Pξ ′pξ ′zh

ξ ′ → 0 when
T → ∞, so that xh ∈ Bh(p, q, θ).
Step 2.We show that, given price processes (P, p, q) satisfying con-
ditions (i)–(iii) of Step 1 and an aggregate consumption process
C =


h∈H ch ∈ ℓ∞(D), the government policy (M, θ, Z) is deter-

mined by the feasibility conditions and the fiscal rule, and it satis-
fies


ξ ′∈DT (ξ) Pξ ′Wξ ′ → 0 and


ξ ′∈DT (ξ) Pξ ′θξ ′ → 0 as T → ∞.

Actually without a further assumption there is an indeter-
minacy in the government’s portfolio since by the fiscal rule
(7) the taxes θξ at node ξ adjust to accommodate the portfo-
lio Zξ− inherited from the previous node. We thus introduce an
additional process of parameters β = (βξ )ξ∈D where βξ =

(βξξ ′)ξ ′∈ξ+determines the composition of the liabilities (Wξ ′)ξ ′∈ξ+

at the successors of node ξ . That is, we assume that the portfolio
Zξ is chosen so that (Wξ ′)ξ ′∈ξ+ = dξβξ for some dξ ∈ R++.

Let us show that given (P, p, q) satisfying conditions (i)–(iii)
of Step 1 and an aggregate consumption process C ∈ ℓ∞

+
(D), the

feasibility and fiscal rule constraints at each node ξ ∈ D

Mξ = pξCξ (40)

Mξ + θξ + qξZξ = Wξ (41)

r1ξ Mξ

1 + r1ξ
+ θξ = αξWξ (42)

Wξ ′


ξ ′∈ξ+ = dξβξ (43)

where Wξ = Mξ− + q̂ξZξ− , the liability of the government at the
beginning of node ξ , determines the portfolio and tax policy (θ, Z).
Start at the initial node ξ0. (40) determines Mξ0 and since r1ξ0 is

given by q1ξ0 =
1

1+r1ξ0
, the seignorage

r1ξ0
Mξ0

1+r1ξ0
is known. (41) and (42)

then determine θξ0 and k0 = qξ0Zξ0 . Premultiplying (43) by the
vector Pξ+

0
= (Pξ ′)ξ ′∈ξ+

0
gives the equation

ξ ′∈ξ+

0

Pξ ′

Mξ0 + Pξ0qξ0Zξ0

= dξ0


ξ ′∈ξ+

0

Pξ ′βξ0ξ ′ ⇐⇒
Pξ0Mξ0

1 + r1ξ0
+ Pξ0k0 = dξ0Pξ+

0
β0

which determines dξ0 . Then
Wξ ′


ξ ′∈ξ+

0
= Mξ01 +


q̂ξ+

0


Zξ0

determines Zξ0 since

q̂ξ+

0


is invertible. Note that

ξ ′∈ξ+

0

Pξ ′Wξ ′ =
Pξ0Mξ0

1 + r1ξ0
+ Pξ0qξ0Zξ0

= Pξ0


Mξ0 −

r1ξ0Mξ0

1 + r1ξ0
+ qξ0Zξ0


= Pξ0(1 − αξ0)W0 (44)

where the last equality is obtained by substituting the value of
θξ0 given by (42) into the budget Eq. (41): thus the present value
of the government’s liabilities has decreased by the factor αξ0 by
virtue of the Ricardian policy (42). Note also that since all the terms
(Wξ ′)ξ ′∈ξ+

0
have the same sign (βξ0 ≫ 0), they are of the same sign

as W0.
By induction we can use (40)–(43) to calculate (θξ , Zξ ) for all

nodes ξ , showing that the relation (44) betweenWξ and (Wξ ′)ξ ′∈ξ+

is satisfied at each node and that the liabilities Wξ always have
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the same sign, which is the sign ofW0. To establish the asymptotic
properties, we assume that W0 > 0, so that for all ξ , Wξ > 0: if
W0 < 0 it suffices to reverse the inequalities in the analysis that
follows and the same asymptotic results hold. It follows from (44)
that
ξ ′∈ξ+

Pξ ′Wξ ′ ≤ (1 − α)PξWξ .

Applying this inequality recursively gives
ξ ′′∈D(ξ)

t(ξ ′′)=t(ξ)+2

Pξ ′′Wξ ′′ ≤


ξ ′∈ξ+

(1 − α) Pξ ′Wξ ′ ≤ (1 − α)2PξWξ

and moving forward T − t(ξ) periods into the subtree D(ξ) gives

0 <


ξ ′′∈DT (ξ)

Pξ ′′Wξ ′′ ≤ (1 − α)T−t(ξ)PξWξ . (45)

Thus the Ricardian assumption (RC) implies that the present value
of the government’s date T liabilities tend to zero when T → ∞

on every subtree of D.
Multiplying (42) by Pξ ′ for each node ξ ′

∈ DT (ξ) and forming
the sum of these values gives
ξ ′∈DT (ξ)

Pξ ′θξ ′ =


ξ ′∈DT (ξ)

αξ ′Pξ ′Wξ ′ −


ξ ′∈DT (ξ)

r1
ξ ′

1 + r1
ξ ′

Pξ ′Mξ ′ ,

ξ ∈ D.

By (45) the first term on the right side tends to 0 as T → ∞ and
since Pξ ′Mξ ′ = Pξ ′pξ ′Cξ ′ by (iii) of Step 1 and C ∈ ℓ∞(D), the
second term tends to 0. Thus


ξ ′∈DT (ξ) Pξ ′θξ ′ → 0 as T → ∞.

Step 3. We show that an extensive-form equilibrium is a reduced-
form equilibrium. Let

(B̄, (q̄j)j∈Jg ), (M̄, Z̄, θ̄)

,

(x̄,m, z̄), (ȳ, L̄)


,

P̄, p̄, ω̄, (q̄j)j∈Jp


be an extensive-form equilibrium. The profit maximization in (vi)
of Definition 1 implies ω̄ξ = p̄ξ , ξ ∈ D. Since the government
policy is Ricardian the asymptotic properties established in Step 2
hold. Thus if we define Θ̄ ≡


ξ∈D P̄ξ θ̄ξ , all the conditions (i)–(iv)

of Step 1 are satisfied, andBh(p̄, q̄, θ̄) = Bh(P̄, p̄, r̄1, Θ̄). Since x̄h is
optimal in Bh, it is also optimal over Bh so that (2) in Definition 2 is
satisfied. It follows that the triple


B̄, (q̄j)j∈Jg , Θ̄


, x̄, P̄


satisfies

all the conditions for a reduced-form equilibrium in Definition 2.
Step 4. We show that from a reduced-form equilibrium we
can reconstruct the associated extensive-form equilibrium. Let
B̄, (q̄j)j∈Jg , Θ̄


, x̄, P̄


be a reduced-form equilibrium and let q̄j

be defined by P̄ξ q̄
j
ξ =


ξ ′∈ξ+ P̄ξ ′ ˆ̄q

j
ξ ′ , j ∈ Jp, ξ ∈ D with ˆ̄q

j
ξ ′ ≡

V j
ξ ′ . By assumption


ˆ̄qξ+


is invertible for all ξ ∈ D. Given the

properties of a reduced-form equilibrium, (i)–(iii) of Step 1 are
satisfied and we can apply Step 2 to construct the government
policy (M̄, Z̄, θ̄). To show that Θ̄ =


ξ∈D P̄ξ θ̄ξ , we sum the agents’

budget equations in the reduced-form equilibrium and use the
market clearing equations to obtain
ξ∈D

r̄1ξ
1 + r̄1ξ

P̄ξ M̄ξ + Θ̄ =


h∈H

wh
0 = W0. (46)

On the other hand multiplying the government’s budget equation
(41) at node ξ by P̄ξ for all ξ ∈ D and summing over the whole
event-tree leads to
ξ∈D

r̄1ξ
1 + r̄1ξ

P̄ξ M̄ξ +


ξ∈D

P̄ξ θ̄ξ = W0
which combined with (46) implies that Θ̄ =


ξ∈D P̄ξ θ̄ξ . Thus
all the conditions (i)–(iv) of Step 1 are satisfied and Bh(p̄, q̄, θ̄) =

Bh(P̄, p̄, r̄1, Θ̄). Thus for each h ∈ H , x̄h is optimal over Bh and
the portfolio strategy z̄h which finances x̄h is given by (37). It re-
mains to show that the financial markets clear, i.e.


h∈H z̄h = Z̄ .

Summing Eq. (37) at node ξ over the agents gives 
ξ ′′∈D(ξ ′)

P̄ξ ′′

r̄1
ξ ′′M̄ξ ′′

1 + r̄1
ξ ′′

+


ξ ′′∈D(ξ ′)

P̄ξ ′′ θ̄ξ ′′ − P̄ξ ′M̄ξ


ξ ′∈ξ+

=


P̄ ◦ξ+ ˆ̄q


h∈H

z̄hξ , ∀ ξ ∈ D. (47)

On the other handmultiplying the government budget constraints
(41) over the subtree D(ξ) by the corresponding node prices and,
for each ξ ′

∈ ξ+, summing over the subtree D(ξ ′) leads to

P̄ξ ′ ˆ̄qξ ′ Z̄ξ + P̄ξ ′M̄ξ =


ξ ′′∈D(ξ ′)

P̄ξ ′′

r̄1
ξ ′′M̄ξ ′′

1 + r̄1
ξ ′′

+


ξ ′′∈D(ξ ′)

P̄ξ ′′ θ̄ξ ′′ ,

ξ ′
∈ ξ+

which, combined with (47) implies that


h∈H z̄hξ = Z̄ξ for all
ξ ∈ D. Thus all the properties of Definition 1 are satisfied, and the
proof is complete. �

A.2. Uniqueness of equilibrium when S = 2

The case where there are two possible inflation rates (π1, π2)
provides the simplest setting for understanding the difference
between conditions (i) and (ii) of Theorem 11. If the inflation rates
are positive 0 ≤ π1 < π2 then for any 2 × 2 Markov matrix B̄
there exists an equilibrium with non-negative short-term interest
rates, corresponding to gross rates of return on the short-term
bond R̄1 ≥ 1, R̄2 ≥ 1. If T = 1 and

uc(c(R̄1), 1 − c(R̄1))

1 + π1
≠

uc(c(R̄2), 1 − c(R̄2))

1 + π2
(48)

then condition (ii) of Theorem 11 is satisfied and the short-term
interest rate suffices to anchor the inflation expectations to B̄.
Condition (i) is then superfluous.

If pricing is risk neutral (uc ≡ 1) then (48) is always satisfied
since π1 ≠ π2 and the two Fisher equations

1
R̄1

= δ
 B11

1 + π1
+

1 − B11

1 + π2


,

1
R̄2

= δ
 B21

1 + π1
+

1 − B21

1 + π2


uniquely determine (B11, B21).

In the case where the representative agent is risk averse, (48)
may not hold. In this case it is easy to see from the short-term
pricing equation that the short-term bond prices are such that

q̄1 =
1
R̄1

=
δ

1 + π1
≠

δ

1 + π2
=

1
R̄2

= q̄2. (49)

Thus (48) is not satisfied when the characteristics (u, δ, π1, π2) of
the economy are such that

uc(c(
1+π1

δ
), 1 − c( 1+π1

δ
))

1 + π1
=

uc(c(
1+π2

δ
), 1 − c( 1+π2

δ
))

1 + π2
. (50)

In view of Lemma 6(iii), since uc (c(R̄),1−c(R̄))
R is decreasing, the

smallest perturbation in π1 leads (50) to be violated: thus (48)
is generically satisfied. When (50) holds so that condition (ii) of
Theorem 11 is not satisfied, by (49) the rank condition in (i) is
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satisfied, so that expectations can be anchored by using bonds of
maturities 1 and 2, (B11, B21) being determined by the two Fisher
equations for the two-period bond (recall that (49) and (50) hold)

q̄21 =
δ2

1 + π1

 B11

1 + π1
+

1 − B11

1 + π2


,

q̄22 =
δ2

1 + π2

 B21

1 + π1
+

1 − B21

1 + π2


.

Thus when S = 2, generically (ii) of Theorem 11 is satisfied. In the
exceptional case where (ii) is not satisfied, then (i) is satisfied and
the prices of the bonds of maturities 1 and 2 anchor expectations
of inflation.

A.3. Proof of Lemma 14

We first assume that (ν, a) ∈ ∆H
++

× RH
++

are fixed and, to
simplify notation, we omit these parameters as arguments of the
functions. For R > 0, Φ > 0, h ∈ H , and k a large positive number,
define the function x̃h : R2

++
→ R2

++
by

x̃h(Φ, R) = argmax

νhuh(ch, ℓh) − Φch

− Φ
ℓh

R

 0 ≤ ch ≤ k, 0 ≤ ℓh
≤ eh


.

By Assumption U and νh > 0, the function which is maximized
is strictly concave and has a unique maximum. By Assumption U,
for k large enough the maximum cannot occur on the boundary
of the constraint set so that the maximum is the solution of the
FOCs (a1)–(a2). Let


c̃h(Φ, R), ℓ̃h(Φ, R)


denote the solution of the

maximum problem viewed as function of (Φ, R). Since uh
ccu

h
ℓℓ −

(uh
cℓ)

2 > 0, the functions c̃h and ℓ̃h are differentiable. To obtain a
solution to (a1)–(a3) Φ must satisfy the market clearing equation
h∈H

c̃h(Φ, R) +


h∈H

ahℓ̃h(Φ, R) =


h∈H

aheh. (51)

By Assumption U, when Φ → 0, c̃h(Φ, R) → ∞ and the left side
of (51) is greater than the right side. When Φ → ∞ both c̃h(Φ, R)
and ℓ̃h(Φ, R) tend to zero so that the left side of (51) is smaller than
the right side. Thus it suffices to show that the functions c̃h and ℓ̃h

are strictly decreasing functions of Φ to show that Eq. (51) has a
unique solution Φ(R). Differentiating the FOCs (a1)–(a2) gives

νh uh
cc

∂ c̃h

∂Φ
+ νh uh

cℓ
∂ℓ̃h

∂Φ
= 1

νh uh
ℓc

∂ c̃h

∂Φ
+ νh uh

ℓℓ

∂ℓ̃h

∂Φ
=

ah

R

which implies

∂ c̃h

∂Φ
=

uh
ℓℓ −

ahuhcℓ
R

νhDh
,

∂ℓ̃h

∂Φ
=

ahuhcc
R − uh

cℓ

νhDhR

where Dh
= uh

ccu
h
ℓℓ − (uh

cℓ)
2. By Assumption U, Dh > 0 and the

numerators of the fractions are negative, so that both c̃h and ℓ̃h are
decreasing functions of Φ: thus (51) has a unique solution Φ(R).

To sign ∂Φ

∂R , differentiating (51) gives


h∈H


∂ c̃h

∂Φ
+ ah

∂ℓ̃h

∂Φ


∂Φ

∂R
= −


h∈H


∂ c̃h

∂R
+ ah

∂ℓ̃h

∂R


. (52)
The derivatives ∂ c̃h/∂R and ∂ℓ̃h/∂R can be found by differentiating
the FOCs (a1)–(a2)

νh uh
cc

∂ c̃h

∂R
+ νh uh

cℓ
∂ℓ̃h

∂R
= 0

νh uh
ℓc

∂ c̃h

∂R
+ νh uh

ℓℓ

∂ℓ̃h

∂R
=

−ahΦ
R2

which gives

∂ c̃h

∂R
=

ahΦuh
cℓ

νhR2Dh
≥ 0,

∂ℓ̃h

∂R
= −

ahΦuh
cc

νhR2Dh
> 0

which by (52) implies ∂Φ

∂R > 0. Solving for ∂Φ

∂R using (52) and sub-
stituting gives

∂

∂R


Φ

R


=

R ∂Φ

∂R − Φ

R2

=

−R

h∈H


∂ c̃h
∂R + ah ∂ℓ̃h

∂R


− Φ


h∈H


∂ c̃h
∂Φ

+ ah ∂ℓ̃h

∂Φ


R2

h∈H


∂ c̃h
∂Φ

+ ah ∂ℓ̃h

∂Φ


≡

N
D

. (53)

The denominator D is negative. To sign the numerator we replace
the partial derivatives of c̃h and ℓ̃h by their values, which gives

N = Φ

h∈H

ahuh
cℓ − uh

ℓℓ

νhDh
> 0

so that ∂
∂R


Φ

R


< 0.

Reverting to the full notation, (51) implicitly the function
Φ(ν, a, R), and if the functions ch and ℓh are defined by
ch(ν, a, R) = c̃h(Φ(ν, a, R), R), ℓh(ν, a, R) = ℓ̃h(Φ(ν, a, R), R), all
the properties of Lemma 14 are satisfied for (ν, a, R) ∈ ∆H

++
×

RH
++

× R++. To show continuity with respect to ν over the
whole simplex, suppose that a sequence (νn)n≥0 ∈ ∆H

++
in the

interior of the simplex converges to ν̄ ∈ ∆H with ν̄h
= 0. Since

for some h′, ν̄h′

≥ 1/H and (51) must hold, Φ(νn, a, R) stays
bounded away from zero and, since νh

n → 0, uh
c (c

h(νn, a, R), ℓh

(νn, a, R)) and uh
ℓ(c

h(νn, a, R), ℓh(νn, a, R))must tend to∞, so that
(ch(νn, a, R), ℓh(νn, a, R)) tends to 0. �

A.4. Proof of Theorem 15

Since for all η ∈ S × G, aη = (a1η, . . . , a
H
η ) is fixed, we omit

it from the argument of the functions and let chη(ν, R), ℓ
h
η(ν, R), Φη

(ν, R) denote the functions ch(ν, aη, R), ℓh(ν, aη, R), Φ(ν, aη, R)
defined in Lemma 14. Since by (1) of Theorem 15

Φη(ν, 1) ≥ δ


η′∈S×G

Bηη′

Φη′(ν, 1)
1 + πη′

> lim
R→∞

Φη(ν, R)

there exists a solution Rmax
η (ν) ≥ 1 to Eq. (27), so that Rmax

η ≥ 1.
Thus

K =

R ∈ RS×G

+
| 1 ≤ R ≤ Rmax

is a non-empty compact convex subset of RS×G. For ν ∈ ∆H and
R = (R1, . . . , RS×G) ≫ 0, let Θ(ν,R) be defined by the equation
(obtained by summing the agents’ budget equations)
η∈S×G

[I − δB]−1
η0η

Φη(ν, Rη)

h∈H

chη(ν, Rη)
Rη − 1

Rη

+ Φη0(ν, Rη0)(Θ − W0) = 0. (54)
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Θ(ν,R) is the present value of the taxes needed to withdraw the
government liabilities W0 =


h wh

0 from the private sector when
the seignorage revenue is given by the first term in (54). For each
h ∈ H consider the function

ζ h(ν,R)

=


η∈S×G

[I − δB]−1
η0η

Φη(ν, Rη)


ahη(e

h
− ℓh

η(ν, Rη))

Rη

− chη(ν, Rη)


+ Φη0(ν, Rη0)(w

h
0 − γ hΘ(ν,R))

which gives the excess of the present value of income over con-
sumption for agent hwhen the vector ofweights is ν and the vector
of returns is R. Given the definition of Θ(ν,R), for all ν ∈ ∆H and
R ≫ 0,


h∈H ζ h(ν,R) = 0.

Consider the map Ψ : ∆H
× K → RH

× RS×G defined by

Ψh(ν,R) =
νh

+ max{ζ h(ν,R), 0}
1 +


h′∈H

max{ζ h′
(ν,R), 0}

, h ∈ H

Ψη(ν,R) = Φ−1
η


ν, δ


η′∈S×G

Bηη′

1 + πη′

Φη′(ν, Rη′)


,

η ∈ S × G

(55)

where Φ−1
η (ν, ·) denotes the inverse of the decreasing function

R → Φη(ν, R).Ψh increases theweight of agent hwhen the present
value of his income exceeds the present value of his consumption,
and decreases it otherwise. Ψη gives the return on the short-
term bond in state η which is such that the marginal cost of one
unit of the bond is equal to its marginal benefit, when the vector
of marginal utilities next period is (Φη′(ν, Rη′))η′∈S×G. Since the
function R → Φη(ν, R) is increasing and limR→0 Φη(ν, R) = ∞,
by (1) of Theorem 15

lim
R→∞

Φη(ν, R) < δ


η′∈S×G

Bηη′

1 + πη′

Φη′(ν, 1)

≤ δ


η′∈S×G

Bηη′

1 + πη′

Φη′(ν, Rη′)

< lim
R→0

Φη(ν, R)

so that δ


η′∈S×G

Bηη′

1+πη′
Φη′(ν, Rη′) is in the image of the function

R → Φη(ν, R) and Ψη(ν,R) is well defined. By construction
(Ψh(ν,R))h∈H is in ∆H . To show that (Ψη(ν,R))η∈S×G is in K , note
that

δ


η′∈S×G

Bηη′

1 + πη′

Φη′(ν, Rη′) ≤ δ


η′∈S×G

Bηη′

1 + πη′

Φη′(ν, Rmax
η′ )

=
Φη(ν, 1)
Rmin

η (ν)
≤ Φη(ν, 1) (56)

where the equality comes from the definition of Rmin
η (ν), and the

last inequality comes from (2) of Theorem 15 and the fact that
Φη(ν, 1) = Φη(ν, 1) for all ν ∈ ∆H . Since Φ−1

η (ν, ·) is decreasing,
(56) implies

Ψη(ν,R) = Φ−1
η


ν, δ


η′∈S×G

Bηη′

1 + πη′

Φη′(ν, Rη′)


≥ Φ−1

η (ν,Φη(ν, 1)) = 1

so thatΨη(ν,R) ≥ 1, for all η ∈ S ×G. ThusΨ is a continuousmap
from ∆H

× K into itself and, by Brouwer’s Theorem, has a fixed
point (ν̄, R̄). Let

q̄1η =
1
R̄η

,

x̄hη = (chη(ν̄, R̄η), ℓ
h
η(ν̄, R̄η)), h ∈ H,

Φ̄η = Φη(ν̄, R̄η), η ∈ S × G,

Θ̄ = Θ(ν̄, R̄)

and let the prices of bonds ofmaturities τ = 2, . . . , T be calculated
recursively using equations (b1) in Proposition 13. Let us show
that ((B, q̄, Θ̄), (ν̄, x̄, Φ̄)) is a reduced-form equilibrium. From the
construction of the functions (ch, ℓh) in Lemma 14 and by the
fixed-point property of R̄ inK , the equations (a1)–(a3), (b1)–(b2) of
Proposition 13 are satisfied and it suffices to show that the budget
equations (a4) hold.

Since


h∈H ζ h(ν̄, R̄) = 0, if ζ h(ν̄, R̄) ≠ 0 for some agent, then
there is one agent for which the value of excess income is strictly
positive and


h∈H max{ζ h(ν̄, R̄), 0} > 0, and there is another

agent h′ such that ζ h′

(ν̄, R̄) < 0. For this agent the fixed point
property

ν̄h′


1 +


h∈H

max{ζ h(ν̄, R̄), 0}


= ν̄h′

implies ν̄h′

= 0. This in turn implies (ch
′

η (ν̄, R̄η), ℓ
h′

η (ν̄, R̄η)) = 0 for
all η ∈ S × G, so that

ζ h′

(ν̄, R̄) =


η∈S×G

[I − δB]−1
η0η

Φ̄η

ahηe
h

R̄η

− Φ̄η0(γ
h′

Θ̄ − wh′

0 ).

If γ h′

Θ̄ − wh′

0 ≤ 0 then it is not possible that ζ h′

< 0. If γ h′

Θ̄ − wh′

0 > 0, then since Φ is decreasing and Φ is increasing

ζ h′

(ν̄, R̄) ≥


η∈S×G

[I − δB]−1
η0η

Φη(ν̄, Rmax
η )

ahηe
h

Rmax
η

− Φη0(ν̄, Rmax
η0

)(γ h′

Θ̄ − wh′

0 ) > 0

by (3) of Theorem 15, contradicting the assumption ζ h′

(ν̄, R̄) < 0.
Thus ζ h(ν̄, R̄) = 0 for all h ∈ H and (a4) holds. �
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