
Qualifying Exam: Real Analysis

Unofficial solutions by Alex Fu*

Spring 2024

Answer all four questions. Partial credit will be awarded, but in the event that you cannot fully solve a problem,
you should state clearly what it is you have done and what you have left out. Unacknowledged omissions, incorrect
reasoning, and guesswork will lower your score. Start each problem on a fresh sheet of paper, and write on only one
side of the paper.

1. Let ( fn)n≥1 be a sequence of continuously differentiable functions from R≥0 to R such that fn(0) = 0 for every
n and

lim
n→∞

∫ ∞

0
| f ′

n(x)|2 dx = 0.

Find a proof or counterexample to the following statement:

lim
n→∞sup

x≥0
| fn(x)| = 0.

Solution. We will provide the following counterexample. For simplicity, we start by considering continuously
differentiable functions with nonnegative derivatives, so that

sup
x≥0

| fn(x)| = sup
x≥0

fn(x) = sup
x≥0

∫ x

0
f ′

n(t )dt =
∫ ∞

0
f ′

n(t )dt .

Now, it suffices to look for a sequence of nonnegative continuous functions (gn)n≥1 = ( f ′
n)n≥1 that converges

to 0 in L2 but not in L1. A classic example of a function that belongs to L2([1,∞)) but not L1([1,∞)) is 1/x, and
a simple modification leads us straight to the example gn(x) = 1/(x +n), which satisfies∫ ∞

0
gn(x)2 dx = 1

n
→ 0,∫ ∞

0
gn(x)dx =∞ for all n.

Therefore, our counterexample is given by

fn(x) = ln(x +n)− lnn.

*Reach out to me at alexfu.math@usc.edu for any questions, comments, or corrections :)
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2. Let (X ,A ,µ) be a complete measure space, let f be a nonnegative integrable function on X , and put b(t ) =
µ({x ∈ X : f (x) ≥ t }). Show that ∫

X
f dµ=

∫ ∞

0
b(t )dt .

Solution. Let E = {x ∈ X : f (x) > 0}. Observe that
∫

X f dµ= ∫
E f dµ, and observe that b(t ) =µ({x ∈ E : f (x) ≥ t })

for every t > 0. Thus, we can restrict to E and assume that X = E without loss of generality. It follows that X is
σ-finite: for each n ≥ 1, let Xn = {x ∈ X : f (x) > 1/n}, so that X =⋃∞

n=1 Xn and

µ(Xn) =
∫

X
1Xn dµ≤

∫
X

n · f (x)dµ<∞.

Now, we can finally apply Tonelli’s theorem:∫
X

f (x)dµ=
∫

X

∫ f (x)

0
1dt dµ

=
∫

X

∫ ∞

0
1{ f (x) ≥ t }dt dµ

=
∫ ∞

0

∫
X
1{ f (x) ≥ t }dµdt

=
∫ ∞

0
µ({x ∈ X : f (x) ≥ t })dt

=
∫ ∞

0
b(t )dt .
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3. Let X be a compact metric space, and let µ be a finite Borel measure on X such that µ({x}) = 0 for every x ∈ X .
Prove that for every ε> 0, there exists δ> 0 such that µ(E ) < ε whenever E is a Borel subset of X with diameter
less than δ.

Solution. Observe that every subset of X with diameter less than δ is contained in an open ball of radius δ/2;
hence, it suffices to consider open balls instead of Borel subsets.

Because µ is a finite measure, we have continuity from above: for each x ∈ X ,

lim
r→0+

µ(Ball(x,r )) =µ
( ∞⋂

k=1
Ball

(
x,

1

k

))
=µ({x}) = 0,

so we can choose rx > 0 such that µ(Ball(x,2rx )) < ε. Then, because {Ball(x,rx ) : x ∈ X } is an open cover of the
compact metric space X , there exist finitely many points x1, . . . , xn such that X =⋃n

i=1 Ball(xi ,rxi ). Let

δ= min
{
rx1 , . . . ,rxn

}
.

Note that δ> 0. With this value of δ, for every x ∈ X , there exists i ∈ {1, . . . ,n} such that x ∈ Ball(xi ,rxi ), and it
follows that µ(Ball(x,δ)) ≤µ(Ball(xi ,2rxi )) < ε. Thus, by monotonicity, µ(E) < ε whenever E is a Borel subset
of X with diameter less than 2δ.
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4. a. Let f ∈ L1([0,∞)). Prove that

g (x) =
∫ ∞

0

f (y)

x + y
dy

is differentiable at every x > 0.

Solution. First, observe that g (x) is finite for every x > 0:

|g (x)| ≤
∫ ∞

0

| f (y)|
x + y

dy ≤ 1

x

∫ ∞

0
| f (y)|dy <∞.

Then, let us verify the definition of differentiability directly. For every x > 0 and 0 < |h| < x/2,

g (x +h)− g (x)

h
= 1

h

∫ ∞

0

f (y)

(x +h)+ y
− f (y)

x + y
dy

=−
∫ ∞

0

f (y)

(x + y +h)(x + y)
dy,

which we again observe to be finite; it follows that∣∣∣∣ g (x +h)− g (x)

h
−

(
−

∫ ∞

0

f (y)

(x + y)2 dy

)∣∣∣∣= ∣∣∣∣∫ ∞

0

f (y)

x + y

(
1

x + y
− 1

x + y +h

)
dy

∣∣∣∣
= |h| ·

∣∣∣∣∫ ∞

0

f (y)

(x + y)2(x + y +h)
dy

∣∣∣∣
≤ |h| · 2

x3

∫ ∞

0
| f (y)|dy,

which tends to 0 as h → 0. Hence, at every x > 0, the derivative of g exists and is equal to

−
∫ ∞

0

f (y)

(x + y)2 dy.

b. Find an example of f ∈ L1([0,∞)) such that g is not differentiable at x = 0.

Solution. Let f (y) = 1/(y +1)2, and note that
∫ ∞

0 f (y)dy = 1 <∞. Then, for each n ≥ 1, define

an = g (1/n)− g (0)

1/n
=−

∫ ∞

0

f (y)

y(y +1/n)
dy.

Because ( f (y)/[y(y +1/n)])n≥1 is a nondecreasing sequence of nonnegative functions, by the monotone
convergence theorem, we have that

lim
n→∞an =−

∫ ∞

0

1

y2(y +1)2 dy,

which we can evaluate using partial fraction decomposition:

−
∫ ∞

0

1

y2(y +1)2 dy =−
∫ ∞

0

−2y +1

y2 + 2y +3

(y +1)2 dy

=
∫ ∞

0

2

y
− 1

y2 − 2

y +1
− 1

(y +1)2 dy

=
[

2ln y + 1

y
−2ln(y +1)+ 1

y +1

]∞
0+

=−∞.

If g were differentiable at x = 0, then g ′(0) = limn→∞ an >−∞, a contradiction; hence, g is not differen-
tiable at x = 0.
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