Qualifying Exam: Real Analysis

Unofficial solutions by Alex Fu*

Spring 2022

Answer all four questions. Partial credit will be awarded, but in the event that you cannot fully solve a problem, you should state clearly what it is you have done and what you have left out. Unacknowledged omissions, incorrect reasoning, and guesswork will lower your score. Start each problem on a fresh sheet of paper, and write on only one side of the paper.

1. Prove that for almost every $x \in [0, 1]$, there exist at most finitely many rational numbers r = p/q, where $q \ge 2$ and p/q is in reduced form, such that

$$\left|x-\frac{p}{q}\right| < \frac{1}{(q\log q)^2}.$$

Hint: Consider intervals of length $2/(q \log q)^2$ centered at rational points p/q.

Solution. Let *E* denote the set of all $x \in [0, 1]$ with the property given in the problem statement; we want to show that m(E) = 1. For each $q \ge 2$, define

$$E_q = \bigcup_{p:\gcd(p,q)=1} \left(\frac{p}{q} - \frac{1}{(q\log q)^2}, \frac{p}{q} + \frac{1}{(q\log q)^2} \right),$$

and observe that E_q is a disjoint union of at most q intervals of length $2/(q \log q)^2$ each. Hence,

$$m(E_q) < \frac{2}{q(\log q)^2}.$$

Because $\sum_{q\geq 2} m(E_q) < \infty$, by the Borel–Cantelli lemma, we conclude that

$$m(E) = 1 - m\left(\limsup_{q \to \infty} E_q\right) = 1.$$

Remark. The final step requires the observation that

 $[0,1] \setminus \limsup_{q \to \infty} E_q = \{x \in [0,1] : \text{there exist at most finitely many } q \text{ such that } x \in E_q\}.$

^{*}Reach out to me at alexfu.math@usc.edu for any questions, comments, or corrections :)

2. Let *S* be a closed subset of \mathbb{R} , and let $f \in L^1([0,1])$. Suppose that for every measurable subset *E* of [0,1] with m(E) > 0, we have that

$$\frac{1}{m(E)}\int_E f(x)\,\mathrm{d}x\in S.$$

Prove that $f(x) \in S$ for almost every $x \in [0, 1]$.

Solution. Let $U = \mathbb{R} \setminus S$, and suppose for the sake of contradiction that $m(f^{-1}(U)) > 0$. In particular, $f^{-1}(U)$ is a nonempty open set, so there exists an open interval $(a, b) \subseteq U$ such that $m(f^{-1}((a, b))) > 0$. Using continuity from below, choose $\delta > 0$ such that $[a+\delta, b-\delta] \subseteq (a, b)$ and $m(f^{-1}([a+\delta, b-\delta])) > 0$; then, for the measurable set $E = f^{-1}([a+\delta, b-\delta])$, we have that

$$a+\delta \leq \frac{1}{m(E)}\int_E f(x)\,\mathrm{d}x \leq b-\delta.$$

However, $[a + \delta, b - \delta]$ is disjoint from *S*, so we have obtained a contradiction. We conclude that $m(f^{-1}(S)) = 1$.

3. Compute the following limit:

$$\lim_{n \to \infty} \int_0^1 \frac{1 + nx}{(1 + x)^n} \,\mathrm{d}x.$$

Solution. For all x > 0 and for every $n \ge 2$, observe that

$$\frac{1+nx}{(1+x)^n} \le \frac{1+nx}{\binom{n}{2}x^2} = \frac{2}{x^2} \cdot \frac{1}{n(n-1)} + \frac{2}{x} \cdot \frac{1}{n-1},$$

which converges to 0 as $n \to \infty$, and observe that $(1 + nx)/(1 + x)^n \le 1$ by the binomial theorem. Hence, by the bounded convergence theorem,

$$\lim_{n \to \infty} \int_0^1 \frac{1+nx}{(1+x)^n} \, \mathrm{d}x = \int_0^1 \lim_{n \to \infty} \frac{1+nx}{(1+x)^n} \, \mathrm{d}x = 0.$$

4. Let (X, \mathscr{A}, μ) be a finite measure space, and let $(f_n)_{n \ge 1}$ be a sequence of nonnegative measurable functions on *X*. Prove that $f_n \to 0$ in measure if and only if

$$\lim_{n \to \infty} \int_X \frac{f_n(2+f_n)}{(1+f_n)^2} \,\mathrm{d}\mu = 0$$

Solution. Write $\varphi(y) = (y(2+y))/(1+y)^2$. The key observation is that for all $y \ge 0$,

$$3\min\{1, y\} \ge \varphi(y) \ge \frac{1}{2}\min\{1, y\},$$

of which a relevant corollary is that

$$\int_X \varphi(f_n) \, \mathrm{d}\mu \to 0 \quad \text{if and only if} \quad \int_X \min\{1, f_n\} \, \mathrm{d}\mu \to 0.$$

Let $g_n = \min\{1, f_n\}$. If $f_n \to 0$ in measure, then, because $\mu(\{x \in X : f_n(x) \ge \varepsilon\}) \ge \mu(\{x \in X : g_n(x) \ge \varepsilon\})$ for every $\varepsilon > 0$, we find that $g_n \to 0$ in measure as well; by the bounded convergence theorem, $\int_X g_n d\mu \to 0$.

Conversely, if $\int_X g_n d\mu \to 0$, then $g_n \to 0$ in measure; because $\mu(\{x : g_n(x) \ge \varepsilon\}) = \mu(\{x : f_n(x) \ge \varepsilon\})$ for $0 < \varepsilon \le 1$, and because $\lim_{n\to\infty} \mu(\{x : f_n(x) \ge \varepsilon\})$ is a decreasing function of ε , we find that $f_n \to 0$ in measure as well.

Remark. The motivation for considering $g_n = \min\{1, f_n\}$, a "truncated" version of f_n , is the bounded convergence theorem for finite measure spaces: $g_n \to 0$ in measure if and only if $\int_X g_n d\mu \to 0$. More generally, if φ is any function such that the ratios $\varphi/\min\{1,\cdot\}$ and $\min\{1,\cdot\}/\varphi$ are bounded, then $f_n \to 0$ in measure if and only if $\int_X \varphi(f_n) d\mu = 0$.

For example, let *k* be any positive integer, and define

$$\varphi(y) = 1 - \frac{1}{(1+y)^k}.$$

Then, we find the following inequalities:

$$\varphi(y) \ge \frac{ky}{(1+y)^k} \ge \frac{k}{2^k}y \qquad \text{whenever } 0 \le y \le 1,$$
$$\varphi(y) \le \frac{\sum_{i=1}^k \binom{k}{i}y}{(1+y)^k} \le (2^k - 1)y \qquad \text{whenever } 0 \le y \le 1,$$

and of course $k/2^k \le 1/2 \le \varphi(y) \le 1$ whenever $y \ge 1$. Putting everything together, we have that

$$(2^k - 1)\min\{1, y\} \ge \varphi(y) \ge \frac{k}{2^k}\min\{1, y\}.$$

When k = 2, we obtain precisely the function φ we defined in the solution above.