Qualifying Exam: Real Analysis

Unofficial solutions by Alex Fu*

Spring 2021

Answer all four questions. Partial credit will be awarded, but in the event that you cannot fully solve a problem,
you should state clearly what it is you have done and what you have left out. Unacknowledged omissions, incorrect
reasoning, and guesswork will lower your score. Start each problem on a fresh sheet of paper, and write on only one
side of the paper.

1. Suppose that f is a bounded nonnegative function on a measure space (X, <, p) with p(X) = co. Prove that f
is integrable if and only if
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Solution. Let M be a finite constant such that f < M almost everywhere. For convenience, write E; = {x € X :
f(x) > t}, and observe that ¢t — p(E;) is a nonincreasing function.

Suppose that f is integrable. Then, by the tail-sum formula and the monotone convergence theorem,
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which implies (*). Conversely, suppose (). It follows that
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If (Ey/2) = oo, then (x) would not hold, so we must have that p(Ej/2) < oo, and hence p(E;) < oo. Therefore,
flMp(Et) dt < M- u(E;) < oo, and we conclude that f is integrable:
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*Reach out to me at alexfu.math@usc.edu for any questions, comments, or corrections :)



2. Let f be areal-valued function on [0, 1], and let E be the set of points where f is continuous. Prove that E is
Lebesgue-measurable.

Solution. For every € > 0 and every § > 0, define
E.5=1{x€[0,1]:1f(y) - f(2)| < e for all y, z € Ball(x,5)},

and observe by the -6 definition of continuity that
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Let us show that each Uy, = US,_; E1/5,1/m is open. If x € Uy, then there exists 6 > 0 such that | f(y) - f(2)| < 1/n
for all y, z € Ball(x, ). Hence, if y € Ball(x,0/2), then Ball(y,6/2) < Ball(x, ), which implies that y € E1;,, 5/2 S
U,,; in other words, Ball(x,6/2) < U,,. Therefore, U,, is open, and we conclude that E is Lebesgue-measurable
as the intersection of countably many open sets.



3. Let f be a Lebesgue-integrable function on R, and let § € (0, 1). Prove that for almost every a € R,
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Solution. Let n =1, and observe that

g lx+ n'"P—1x—n"F X P1+n/x)" P -11-nix'P)
f |x—al Pda = .
n 1-8 1-8
Call this I,,(x). For all x > n, we find that up to a constant factor, I,,(x) is asymptotically equivalent to
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as x — oo; in particular, limy_ I,;(x) = 0. Because I,,(x) = f x+"|a| P da is continuous in x, it follows that I n
is essentially bounded. Now, by Tonelli’s theorem, we have that
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Hence, the inner integral on the left-hand side is finite for almost every « € [-n, n]. Because n = 1 is arbitrary,
we conclude that f0°°|f(x)|/|x — a|P dx < oo for almost every a € R.

Remark. This problem (and solution) is similar in spirit to question 4 on the spring 2023 exam.



4. Let (f,)n=1 be a sequence of real-valued functions on [a, b] that converges pointwise, let f =lim,_., f, and
let V2 (f) be the total variation of f on [a, b]. Show that
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Solution. First, let us recall the definition of total variation:
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Taking the supremum of the left-hand-side sum over every m = 1 and every partition xo < --- < x,, of [a, b], we
conclude that
V() <liminf VY (fy).



