Qualifying Exam: Real Analysis

Unofficial solutions by Alex Fu*

Spring 2021

Answer all four questions. Partial credit will be awarded, but in the event that you cannot fully solve a problem, you should state clearly what it is you have done and what you have left out. Unacknowledged omissions, incorrect reasoning, and guesswork will lower your score. Start each problem on a fresh sheet of paper, and write on only one side of the paper.

1. Suppose that *f* is a bounded nonnegative function on a measure space (X, \mathcal{A}, μ) with $\mu(X) = \infty$. Prove that *f* is integrable if and only if

(*)
$$\sum_{n=1}^{\infty} \frac{1}{2^n} \mu(\{x \in X : f(x) > 2^{-n}\}) < \infty.$$

Solution. Let *M* be a finite constant such that $f \le M$ almost everywhere. For convenience, write $E_t = \{x \in X : f(x) > t\}$, and observe that $t \mapsto \mu(E_t)$ is a nonincreasing function.

Suppose that f is integrable. Then, by the tail-sum formula and the monotone convergence theorem,

$$\infty > \int_X f \, \mathrm{d}\mu$$
$$= \int_0^M \mu(E_t) \, \mathrm{d}t$$
$$\ge \sum_{n=0}^\infty \int_{2^{-n}}^{2^{-n+1}} \mu(E_t) \, \mathrm{d}t$$
$$\ge \sum_{n=0}^\infty 2^{-n} \cdot \mu(E_{2^{-n+1}}),$$

which implies (*). Conversely, suppose (*). It follows that

$$\infty > \sum_{n=1}^{\infty} 2^{-n} \cdot \mu(E_{2^{-n}})$$
$$\ge \sum_{n=1}^{\infty} \int_{2^{-n}}^{2^{-n+1}} \mu(E_t) dt$$
$$= \int_0^1 \mu(E_t) dt.$$

If $\mu(E_{1/2}) = \infty$, then (*) would not hold, so we must have that $\mu(E_{1/2}) < \infty$, and hence $\mu(E_1) < \infty$. Therefore, $\int_1^M \mu(E_t) dt \le M \cdot \mu(E_1) < \infty$, and we conclude that *f* is integrable:

$$\int_X f \,\mathrm{d}\mu = \int_0^1 \mu(E_t) \,\mathrm{d}t + \int_1^M \mu(E_t) \,\mathrm{d}t < \infty.$$

^{*}Reach out to me at alexfu.math@usc.edu for any questions, comments, or corrections :)

2. Let *f* be a real-valued function on [0, 1], and let *E* be the set of points where *f* is continuous. Prove that *E* is Lebesgue-measurable.

Solution. For every $\varepsilon > 0$ and every $\delta > 0$, define

$$E_{\varepsilon,\delta} = \{x \in [0,1] : |f(y) - f(z)| < \varepsilon \text{ for all } y, z \in \text{Ball}(x,\delta)\},\$$

and observe by the ε - δ definition of continuity that

$$E = \bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} E_{1/n,1/m}.$$

Let us show that each $U_n = \bigcup_{m=1}^{\infty} E_{1/n,1/m}$ is open. If $x \in U_n$, then there exists $\delta > 0$ such that |f(y) - f(z)| < 1/n for all $y, z \in \text{Ball}(x, \delta)$. Hence, if $y \in \text{Ball}(x, \delta/2)$, then $\text{Ball}(y, \delta/2) \subseteq \text{Ball}(x, \delta)$, which implies that $y \in E_{1/n,\delta/2} \subseteq U_n$; in other words, $\text{Ball}(x, \delta/2) \subseteq U_n$. Therefore, U_n is open, and we conclude that E is Lebesgue-measurable as the intersection of countably many open sets.

3. Let *f* be a Lebesgue-integrable function on \mathbb{R} , and let $\beta \in (0, 1)$. Prove that for almost every $\alpha \in \mathbb{R}$,

$$\int_0^\infty \frac{|f(x)|}{|x-\alpha|^\beta} \,\mathrm{d}x < \infty.$$

Solution. Let $n \ge 1$, and observe that

$$\int_{-n}^{n} |x-\alpha|^{-\beta} d\alpha = \frac{|x+n|^{1-\beta} - |x-n|^{1-\beta}}{1-\beta} = \frac{x^{1-\beta}(|1+n/x|^{1-\beta} - |1-n/x|^{1-\beta})}{1-\beta}.$$

Call this $I_n(x)$. For all x > n, we find that up to a constant factor, $I_n(x)$ is asymptotically equivalent to

$$x^{1-\beta} \left(1 + (1-\beta)\frac{n}{x} - \left(1 - (1-\beta)\frac{n}{x} \right) \right) = 2(1-\beta)nx^{-\beta}$$

as $x \to \infty$; in particular, $\lim_{x\to\infty} I_n(x) = 0$. Because $I_n(x) = \int_{x-n}^{x+n} |\alpha|^{-\beta} d\alpha$ is continuous in x, it follows that I_n is essentially bounded. Now, by Tonelli's theorem, we have that

$$\int_{-n}^{n} \int_{0}^{\infty} \frac{|f(x)|}{|x-\alpha|^{\beta}} dx d\alpha = \int_{0}^{\infty} \int_{-n}^{n} \frac{|f(x)|}{|x-\alpha|^{\beta}} d\alpha dx$$
$$= \int_{0}^{\infty} |f(x)| \cdot I_{n}(x) dx$$
$$\leq \|f\|_{L^{1}} \cdot \|I_{n}\|_{L^{\infty}}$$
$$< \infty.$$

Hence, the inner integral on the left-hand side is finite for almost every $\alpha \in [-n, n]$. Because $n \ge 1$ is arbitrary, we conclude that $\int_0^\infty |f(x)|/|x-\alpha|^\beta dx < \infty$ for almost every $\alpha \in \mathbb{R}$.

Remark. This problem (and solution) is similar in spirit to question 4 on the spring 2023 exam.

4. Let $(f_n)_{n\geq 1}$ be a sequence of real-valued functions on [a, b] that converges pointwise, let $f = \lim_{n\to\infty} f_n$, and let $V_a^b(f)$ be the total variation of f on [a, b]. Show that

$$V_a^b(f) \le \liminf_{n \to \infty} V_a^b(f_n).$$

Solution. First, let us recall the definition of total variation:

$$V_a^b(f) = \sup\left\{\sum_{i=1}^m |f(x_i) - f(x_{i-1})| : m \ge 1, a = x_0 < \dots < x_m = b\right\}.$$

Let $m \ge 1$, and let $a = x_0 < \cdots < x_m = b$. Then, because $f = \lim_{n \to \infty} f_n$,

$$\sum_{i=1}^{m} |f(x_i) - f(x_{i-1})| = \liminf_{n \to \infty} \sum_{i=1}^{m} |f_n(x_i) - f_n(x_{i-1})| \le \liminf_{n \to \infty} V_a^b(f_n).$$

Taking the supremum of the left-hand-side sum over every $m \ge 1$ and every partition $x_0 < \cdots < x_n$ of [a, b], we conclude that

$$V_a^b(f) \le \liminf_{n \to \infty} V_a^b(f_n).$$