
Qualifying Exam: Real Analysis

Unofficial solutions by Alex Fu*

Fall 2023

Answer all four questions. Partial credit will be awarded, but in the event that you cannot fully solve a problem,
you should state clearly what it is you have done and what you have left out. Unacknowledged omissions, incorrect
reasoning, and guesswork will lower your score. Start each problem on a fresh sheet of paper, and write on only one
side of the paper.

1. Let µ be a measure on R, and let f : R→R be a nonnegative function that is integrable with respect to µ. Prove
that for every ε> 0, there exists a µ-measurable subset A of R such that µ(A) <∞ and∫

A
f dµ≥

∫
R

f dµ−ε.

Solution. Let En = {x ∈ R : f (x) ≤ n}, and let Em,n = {x ∈ R : m < f (x) ≤ n}. For each n ≥ 1, by the monotone
convergence theorem, there exists Mn ≥ 1 such that∫

EMn ,n

f dµ≥
∫

En

f dµ− ε

2
.

Again by the monotone convergence theorem, there exists N such that
∫

EN
f dµ≥ ∫

R f dµ−ε/2, for which∫
EMN ,N

f dµ≥
∫
R

f dµ−ε.

Therefore, let A = EMN ,N , and observe by Markov’s inequality that indeed

µ(A) ≤µ({x ∈R : f (x) > MN }) ≤ 1

MN

∫
R

f dµ<∞.

*Reach out to me at alexfu.math@usc.edu for any questions, comments, or corrections :)
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2. Prove that the following limit exists, or prove that it does not exist:

lim
n→∞

∫ 1

0

(3x −1)2n

1+ (3x −1)2n dx.

Solution. Write fn(x) = 1/(1+ (3x −1)2n), and observe that

lim
n→∞

∫ 1

0

(3x −1)2n

1+ (3x −1)2n dx = 1− lim
n→∞

∫ 1

0
fn(x)dx.

Also observe that the sequence ( fn(x))n≥1 is nondecreasing when 0 ≤ x ≤ 1/3 and decreasing when 1/3 < x ≤ 1.
Because every fn is nonnegative, by the monotone convergence theorem,

lim
n→∞

∫ 1/3

0
fn(x)dx =

∫ 1/3

0

1

1+1{x = 0}
dx = 1

3
;

by the dominated convergence theorem, with 1 as the dominating function,

lim
n→∞

∫ 1

1/3
fn(x)dx =

∫ 1

1/3
0dx = 0.

We conclude that the given limit exists and is equal to 2/3.
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3. Let m denote the Lebesgue measure on Rn , and suppose that f : Rn →Rn is such that
∫ | f |dm > 0. Prove that

the Hardy–Littlewood maximal function

M f (x) = sup
r>0

1

m(Ball(x,r ))

∫
Ball(x,r )

| f (y)|dy

does not belong to L1(Rn).

Solution. Since
∫ | f |dm > 0, by the monotone convergence theorem, we can choose r > 0 such that

0 <
∫

Ball(0,r )
| f (y)|dy <∞.

Let I be the value of this integral. For |x| > r , by the observation that Ball(x, |x|+ r ) ⊇ Ball(0,r ), we find that

M f (x) ≥ 1

m(Ball(x, |x|+ r ))

∫
Ball(x,|x|+r )

| f (y)|dy

≥ 1

m(Ball(x, |x|+ r ))

∫
Ball(0,r )

| f (y)|dy

= c

(|x|+ r )n · I ,

where c is a constant (for the volume of an n-dimensional ball). Consequently,∫
Rn

M f (x)dm(x) ≥ cI
∫

{|x|>r }

1

(|x|+ r )n dx =∞,

so M f does not belong to L1(Rn).
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4. Prove that if f : R→R is Lebesgue-measurable, then there exists a Borel-measurable function g : R→R such
that f = g almost everywhere with respect to the Lebesgue measure.

Solution. Let (ϕn)n≥1 be a sequence of simple Lebesgue-measurable functions that converges pointwise to f ,
and, for each n, write

ϕn =
mn∑
i=1

ci ·1Ei .

Then, because the Lebesgue σ-algebra on R is the completion of the Borel σ-algebra, each Ei contains a Borel
subset Bi such that Ei \ Bi is a Lebesgue-null set (i.e., a subset of a Borel-null set). Let

ψn =
mn∑
i=1

ci ·1Bi ,

so that ϕn =ψn almost everywhere for each n; it follows that

f = lim
n→∞ϕn = lim

n→∞ψn almost everywhere.

Now, every ψn is Borel-measurable, and the pointwise limit of a sequence of Borel-measurable functions is
Borel-measurable, so we are done after taking g = limn→∞ψn .
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