Qualifying Exam: Real Analysis

Unofficial solutions by Alex Fu*

Fall 2022

Answer all four questions. Partial credit will be awarded, but in the event that you cannot fully solve a problem, you should state clearly what it is you have done and what you have left out. Unacknowledged omissions, incorrect reasoning, and guesswork will lower your score. Start each problem on a fresh sheet of paper, and write on only one side of the paper.

1. Let $f: \mathbb{R} \to \mathbb{R}$ be a Lebesgue-measurable function, and suppose that *E* is a measurable subset of \mathbb{R} such that $0 < \int_E f(x) dx < \infty$. Show that for every *t* ∈ (0, 1), there exists a measurable set $E_t \subseteq E$ for which

$$
\int_{E_t} f(x) \, \mathrm{d}x = t \int_E f(x) \, \mathrm{d}x.
$$

Solution. Write $E_\alpha = E \cap (-\infty, \alpha]$, and define $F : \mathbb{R} \to \mathbb{R}$ by

$$
F(\alpha) = \int_{E_{\alpha}} f(x) \, \mathrm{d}x.
$$

Let us show that *F* is continuous at every $\alpha \in \mathbb{R}$. Let $\varepsilon > 0$. Applying the dominated convergence theorem with $|f| \cdot 1_F$ as the dominating function, we obtain $N > 0$ such that

$$
\int_{\mathbb{R}} |f(x)| \cdot \mathbb{1}_{E \cap [\alpha - 1/N, \alpha + 1/N]} \, \mathrm{d}x < \varepsilon;
$$

hence, whenever $|\delta| < 1/N$, we have by monotonicity that $|F(\alpha + \delta) - F(\alpha)| < \varepsilon$. Now, *F* is continuous on all of R, and we know that $\lim_{\alpha\to-\infty} F(\alpha) = 0$ and $\lim_{\alpha\to\infty} F(\alpha) = \int_E f(x) dx$. Given any $t \in (0,1)$, by the intermediate value theorem, we can find some $\beta_t \in \mathbb{R}$ such that

$$
F(\beta_t) = \int_{E_{\beta_t}} f(x) dx = t \int_E f(x) dx.
$$

Taking $E_t = E_{\beta_t}$, we are done.

^{*}Reach out to me at alexfu.math@usc.edu for any questions, comments, or corrections :)

2. Let *f* ∈ *L*¹(ℝ), and let *F*(*t*) = $\int_{\mathbb{R}} f(x) e^{itx} dx$. Prove that *F* : ℝ → ℂ is continuous, and prove that

$$
\lim_{t \to -\infty} F(t) = \lim_{t \to \infty} F(t) = 0.
$$

Note: There is a typo in the original problem statement. The codomain of *F* is $\mathbb C$, not $\mathbb R$.

Solution. Let $t \in \mathbb{R}$. For every sequence $(\delta_n)_{n\geq 1}$ that converges to 0, by the dominated convergence theorem with $2|f|$ as the dominating function,

$$
\lim_{n \to \infty} |F(t+\delta_n) - F(t)| \le \lim_{n \to \infty} \int_{\mathbb{R}} |f(x)| \cdot |e^{i\delta_n x} - 1| \, \mathrm{d}x = 0.
$$

This shows that *F* is continuous at *t*.

Now, because $x \mapsto f(-x)$ also belongs to $L^1(\mathbb{R})$ and because $\lim_{t\to -\infty} F(t) = \lim_{t\to \infty} F(-t)$, it suffices to prove that $\lim_{t\to\infty} F(t) = 0$. Observe that for every $u > 0$,

$$
F(u) = \int_{\mathbb{R}} f\left(x + \frac{\pi}{u}\right) e^{iu(x + \pi/u)} dx
$$

$$
= -\int_{\mathbb{R}} f\left(x + \frac{\pi}{u}\right) e^{iux} dx.
$$

If *f* is continuous, then it follows from the dominated convergence theorem that

$$
2|F(u)| = \left| \int_{\mathbb{R}} \left(f(x) - f\left(x + \frac{\pi}{u}\right) \right) e^{iux} dx \right|
$$

$$
\leq \int_{\mathbb{R}} \left| f(x) + f\left(x - \frac{\pi}{u}\right) \right| dx
$$

$$
\xrightarrow{u \to \infty} 0.
$$

Otherwise, let $\varepsilon > 0$, and let $g : \mathbb{R} \to \mathbb{R}$ be a continuous function such that $||f - g||_{L^1} < \varepsilon$, so that

$$
\limsup_{t\to\infty}\left|\int_{\mathbb{R}}f(x)e^{itx}dx\right|\leq\|f-g\|_{L^{1}}+\lim_{t\to\infty}\left|\int_{\mathbb{R}}g(x)e^{itx}dx\right|<\varepsilon.
$$

This proves that $\lim_{t\to\infty} F(t) = 0$. We remark that this result is the *Riemann–Lebesgue lemma*.

3. Compute the following limit:

$$
\lim_{n \to \infty} \int_0^n \left(1 + \frac{x^2}{n}\right)^{-(n+1)} \mathrm{d}x.
$$

Solution. By the observation that

$$
0 \le \int_n^{\infty} \frac{1}{(1+x^2/n)^{n+1}} dx \le \int_n^{\infty} \frac{1}{(1+x)^{n+1}} dx = \frac{1}{n(n+1)^n},
$$

we find that the given limit is equal to

$$
\lim_{n \to \infty} \int_0^\infty \frac{1}{(1 + x^2/n)^{n+1}} \, \mathrm{d}x.
$$

Then, by the bounded convergence theorem, we have that

$$
\lim_{n \to \infty} \int_0^{\infty} \frac{1}{(1 + x^2/n)^{n+1}} dx = \int_0^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.
$$

4. Let $f \in L^1(\mathbb{R})$, and consider the maximal function

$$
Mf(x) = \sup_{h>0} \frac{1}{2h} \int_{x-h}^{x+h} |f(t)| dt.
$$

Prove that there exists a constant $A > 0$ such that for every $\alpha > 0$,

$$
m(\lbrace x \in \mathbb{R} : \mathbf{M}f(x) > \alpha \rbrace) \leq \frac{A}{\alpha} ||f||_{L^{1}}.
$$

Solution. In other words, we are asked to prove the Hardy–Littlewood maximal inequality. Write $E_\alpha = \{x \in \mathbb{R} :$ $Mf(x) > a$, and write $R_h(x) = (1/(2h)) \int_{x-h}^{x+h} |f(t)| dt$. For each $x \in E_\alpha$, there exists $h_x > 0$ such that $R_{h_x}(x) > \alpha$. Now, let $c < m(E_\alpha)$, and, by the inner regularity of the Lebesgue measure, let K be a compact subset of E_α such that $c < m(K)$. Then, the collection {Ball(x, h_x) : $x \in E_\alpha$ } is an open cover of *K*, so it includes a finite subcover $\mathscr{B} = \{B_1, \ldots, B_n\}$ of *K*. Let us choose a subcollection of \mathscr{B} consisting of disjoint open balls as follows:

- 1. Let A_1 be one of the B_i with the greatest measure;
- *j*. For each *j* ≥ 2, let *A*^{*j*} be one of the *B*^{*i*} with the greatest measure among all *B*^{*i*} disjoint from *A*¹∪···∪ *A*^{*j*−1</sub>}, until there is no such *Bⁱ* .

As a result, we have that $c < m(K) \le \sum_{i=1}^n m(B_i) \le 3\sum_{j\ge 1} m(A_j)$. Writing $A_j = \text{Ball}(x_j, h_{x_j})$, it follows that

$$
c \le 3 \sum_{j\ge 1} 2h_{x_j}
$$

\n
$$
\le 3 \sum_{j\ge 1} \frac{1}{\alpha} \int_{x_j - h_j}^{x_j + h_j} |f(t)| dt
$$

\n
$$
\le \frac{3}{\alpha} \int_{\mathbb{R}} |f(t)| dt
$$

\n
$$
= \frac{3}{\alpha} ||f||_{L^1}.
$$

Because $c < m(E_{\alpha})$ is arbitrary, we conclude that $m(E_{\alpha}) \leq (3/\alpha) \|f\|_{L^1}$.