Qualifying Exam: Real Analysis

Unofficial solutions by Alex Fu*

Fall 2021

Answer all four questions. Partial credit will be awarded, but in the event that you cannot fully solve a problem, you should state clearly what it is you have done and what you have left out. Unacknowledged omissions, incorrect reasoning, and guesswork will lower your score. Start each problem on a fresh sheet of paper, and write on only one side of the paper.

1. Let *f* be a Lebesgue-integrable function on \mathbb{R}^d . Prove that for every $\varepsilon > 0$, there exists $\delta > 0$ such that

$$m(A) < \delta \implies \int_A |f(x)| \, \mathrm{d}m(x)$$

Solution. Write $E_n = \{x \in \mathbb{R}^d : |f(x)| > n\}$. By the dominated convergence theorem, there exists *N* such that

$$\int_{E_N} |f| \,\mathrm{d}m < \frac{\varepsilon}{2}.$$

Let $\delta = \varepsilon/(2N)$. Then, whenever *A* is a measurable set such that $m(A) < \delta$, we have that

$$\begin{split} \int_{A} |f| \, \mathrm{d}m &= \int_{A \cap E_{N}} |f| \, \mathrm{d}m + \int_{A \setminus E_{N}} |f| \, \mathrm{d}m \\ &\leq \int_{E_{N}} |f| \, \mathrm{d}m + N \cdot m(A \setminus E_{N}) \\ &< \frac{\varepsilon}{2} + N \cdot \delta \\ &= \varepsilon. \end{split}$$

Remark. What we have proven is that the measure $A \mapsto \int_A |f| dm$ is absolutely continuous with respect to *m*.

^{*}Reach out to me at alexfu.math@usc.edu for any questions, comments, or corrections :)

2. Let f be a Lebesgue-integrable function on $\mathbb R.$ Prove that

$$\lim_{h \to 0} \int_{\mathbb{R}} |f(x+h) - f(x)| \,\mathrm{d}x = 0.$$

Solution. If *f* is continuous, then we are done after applying the dominated convergence theorem with 2|f| as the dominating function. Otherwise, let $\varepsilon > 0$, and let *g* be a continuous function such that $||f - g||_{L^1} < \varepsilon/2$. By the triangle inequality and the continuity of *g*, we find that

$$\limsup_{h \to 0} \int_{\mathbb{R}} |f(x+h) - f(x)| \, \mathrm{d}x \le \limsup_{h \to 0} \int_{\mathbb{R}} |f(x+h) - g(x+h)| \, \mathrm{d}x + \int_{\mathbb{R}} |g(x) - f(x)| \, \mathrm{d}x < \varepsilon.$$

We conclude that $\lim_{h\to 0} \int_{\mathbb{R}} |f(x+h) - f(x)| dx = 0$.

3. Let *f* and $f_1, f_2, ...$ be Lebesgue-measurable functions on \mathbb{R} , and suppose that there exists a constant $C \ge 0$ such that for every $n \ge 1$,

$$\int_{\mathbb{R}} |f(x) - f_n(x)| \, \mathrm{d}x \le \frac{C}{n^2}.$$

Prove that $f_n \rightarrow f$ almost everywhere as $n \rightarrow \infty$.

Solution. Let $g(x) = \limsup_{n \to \infty} |f(x) - f_n(x)|$. For each $k \ge 2$, we find that

$$\begin{split} \int_{\mathbb{R}} g(x) \, \mathrm{d}x &\leq \int_{\mathbb{R}} \sup_{n \geq k} |f(x) - f_n(x)| \, \mathrm{d}x \\ &\leq \int_{\mathbb{R}} \sum_{n = k}^{\infty} |f(x) - f_n(x)| \, \mathrm{d}x \\ &= \sum_{n = k}^{\infty} \int_{\mathbb{R}} |f(x) - f_n(x)| \, \mathrm{d}x \\ &\leq C \sum_{n = k}^{\infty} \frac{1}{n^2} \\ &\leq \frac{C}{k - 1}. \end{split}$$

It follows that $\int_{\mathbb{R}} g(x) dx = 0$. Because *g* is a nonnegative function, we conclude that g = 0 almost everywhere, i.e., $f_n \to f$ almost everywhere.

4. Let *f* be a Lebesgue-measurable function on \mathbb{R} such that f(x) > 0 for almost every $x \in \mathbb{R}$, and let $(E_k)_{k \ge 1}$ be a sequence of Lebesgue-measurable subsets of [0, 1] such that

$$\lim_{k\to\infty}\int_{E_k}f(x)\,\mathrm{d}x=0.$$

Prove that $\lim_{k\to\infty} m(E_k) = 0$.

Solution. We will prove the contrapositive implication. Let $\varepsilon > 0$, and let $(E_{k_n})_{n \ge 1}$ be a subsequence such that $m(E_{k_n}) \ge \varepsilon$ for every *n*. Suppose without loss of generality that $E_{k_n} = E_n$. Define $F_j = \{x \in [0,1] : f(x) > 1/j\}$, so that $\{x \in [0,1] : f(x) > 0\} = \bigcup_{j=1}^{\infty} F_j$. By continuity from below, there exists $J \ge 1$ such that $m(F_J) \ge 1 - \varepsilon/2$. Then, for every *n*, we must have that $m(E_n \cap F_J) \ge \varepsilon/2$; otherwise, we would find the contradiction that m([0,1]) > 1. Therefore, for every $n \ge 1$,

$$\int_{E_n} f(x) \, \mathrm{d}x \ge \int_{E_n \cap F_J} f(x) \, \mathrm{d}x \ge \frac{1}{J} \cdot m(E_n \cap F_J) \ge \frac{\varepsilon}{2J},$$

which is positive. It follows that the sequence $(\int_{E_n} f(x) dx)_{n \ge 1}$ cannot converge to 0, and we conclude that

$$m(E_k) \not\rightarrow 0 \Longrightarrow \int_{E_k} f(x) \,\mathrm{d}x \not\rightarrow 0.$$

Remark. This is problem 1 on the spring 2023 exam.