
Qualifying Exam: Applied Probability

Unofficial solutions by Alex Fu*

Spring 2024

Answer all three questions. Partial credit will be awarded, but in the event that you cannot fully solve a problem,
you should state clearly what it is you have done and what you have left out. Unacknowledged omissions, incorrect
reasoning, and guesswork will lower your score. Start each problem on a new page and write on only one side of
the paper. For problems with multiple parts, if you cannot get an answer to one part, you might still get credit for
other parts by assuming the correct answer to the part you could not solve. Be aware of the passage of time, so that
you can attempt all three problems. When a problem asks you to find something, you are expected to simplify the
answer as much as possible.

1. Let X1 and X2 be independent random variables with distributions Poisson(λ1) and Poisson(λ2) respectively.

a. Find P(X1 = k | X1 +X2 = n) for 0 ≤ k ≤ n.

Solution. By direct computation,

P(X1 = k | X1 +X2 = n) = P(X1 = k, X1 +X2 = n)

P(X1 +X2 = n)

= P(X1 = k, X2 = n −k)∑n
ℓ=0P(X1 = ℓ, X2 = n −ℓ)

= P(X1 = k) ·P(X2 = n −k)∑n
ℓ=0P(X1 = ℓ) ·P(X2 = n −ℓ)

= λk
1λ

n−k
2 ����

e−λ1 e−λ2 /(k !(n −k)!)∑n
ℓ=0λ

ℓ
1λ

n−ℓ
2 ����

e−λ1 e−λ2 /(ℓ!(n −ℓ)!)

=
(n

k

)
λk

1λ
n−k
2∑n

ℓ=0

(n
ℓ

)
λℓ1λ

n−ℓ
2

=
(n

k

)
λk

1λ
n−k
2

(λ1 +λ2)n

=
(

n

k

)(
λ1

λ1 +λ2

)k (
λ2

λ1 +λ2

)n−k

.

Remark. What we have found, in other words, is that the conditional distribution of X1 given that X1 +
X2 = n is Binomial(n, p) with p =λ1/(λ1 +λ2). By symmetry, it follows that the conditional distribution
of X2 given that X1 +X2 = n is Binomial(n,1−p).

b. Find E(X 2
1 +X 2

2 | X1 +X2 = n).

Solution. Let us first compute E(X 2
1 | X1 +X2 = n). Write p =λ1/(λ1 +λ2). Because direct computation

*Reach out to me at alexfu.math@usc.edu for any questions, comments, or corrections :)
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is difficult, we will apply a common trick used when the probability mass function involves factorials:

E(X1(X1 −1) | X1 +X2 = n) =
n∑

k=0
k(k −1) ·P(X1 = k | X1 +X2 = n)

=
n∑

k=2
k(k −1) · n!

k !(n −k)!
pk (1−p)n−k

= n(n −1)
n∑

k=2

(n −2)!

(k −2)!(n −k)!
pk (1−p)n−k

= n(n −1)p2
n∑

k=2

(
n −2

k −2

)
pk−2(1−p)(n−2)−(k−2)

= n(n −1)p2,

E(X1 | X1 +X2 = n) =
n∑

k=0
k ·

(
n

k

)
pk (1−p)n−k

= np,

E(X 2
1 | X1 +X2 = n) = E(X1(X1 −1) | X1 +X2 = n)+E(X1 | X1 +X2 = n)

= n(n −1)p2 +np.

By symmetry, we have that

E(X 2
2 | X1 +X2 = n) = n(n −1)(1−p)2 +n(1−p).

By the linearity of expectation, we conclude that

E(X 2
1 +X 2

2 | X1 +X2 = n) = [n(n −1)p2 +np]+ [n(n −1)(1−p)2 +n(1−p)]

= 2n2p2 −2n2p −2np2 +n2 +2np.

Remark. Of course, if you remember the formula for the second moment of a binomial random variable,
then you can save yourself most of the work.
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2. Let X and Y be independent random variables with distributions Exponential(µ) and Exponential(λ) respec-
tively. Let U = max{X ,Y } and V = min{X ,Y }.

a. Find E(U ) and E(V ).

Solution. By the tail-sum formula,

E(V ) =
∫ ∞

0
P(V > v)dv

=
∫ ∞

0
P(X > v,Y > v)dv

=
∫ ∞

0
P(X > v) ·P(Y > v)dv

=
∫ ∞

0
e−µv ·e−λv dv

= 1

µ+λ .

By the identity X +Y =U +V and by the linearity of expectation, it follows that

E(U ) = E(X )+E(Y )−E(V )

= 1

µ
+ 1

λ
− 1

µ+λ .

Remark. In the solution above, we actually found thatP(V > v) = e−(µ+λ)v for every v ≥ 0; in other words,
V has distribution Exponential(µ+λ).

b. Find cov(U ,V ).

Hint: This requires no integration.

Solution. By the observation that UV = X Y , we find that

E(UV ) = E(X Y )

= E(X ) ·E(Y )

= 1

µλ
,

cov(U ,V ) = E(UV )−E(U ) ·E(V )

= 1

µλ
− 1

µ(µ+λ)
− 1

λ(µ+λ)
+ 1

(µ+λ)2 .

c. Find the probability density function, fZ (z), of Z =V /U .

Solution. For 0 < z ≤ 1, let us compute

fZ (z) =
∫ ∞

0
fZ ,U (z,u)du

=
∫ ∞

0
|u| · fV ,U (uz,u)du,

where, as a reminder, u is the Jacobian determinant of the linear transformation (v,u) 7→ (z,u):∣∣∣∣det

[
∂v/∂z ∂v/∂u
∂u/∂z ∂u/∂u

]∣∣∣∣= ∣∣∣∣det

[
u z
0 1

]∣∣∣∣= |u| .
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Now, the joint distribution of V and U is given by

fV ,U (v,u) = fX ,Y (v,u)+ fX ,Y (u, v)

= fX (v) · fY (u)+ fX (u) · fY (v)

=µλ(e−(µv+λu) +e−(µu+λv))

whenever v < u. Thus, for 0 < z < 1, we find that

fZ (z) =
∫ ∞

0
|u| ·µλ(e−(µuz+λu) +e−(µu+λuz))du

=µλ
∫ ∞

0
ue−(µz+λ)u +ue−(µ+λz)u du

= µλ

(µz +λ)2 + µλ

(µ+λz)2 .

For z = 1, we find that the probability density is halved:

fZ (1) =
∫ ∞

0
u ·µλe−(µ+λ)u du

= µλ

(µ+λ)2 .
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3. Let n ≥ 2, and let X1, . . . , Xn be i.i.d. Uniform([0,1]) random variables. Let A denote the number of ascents in
the sequence (X1, . . . , Xn):

A = #{1 ≤ i ≤ n −1 : Xi < Xi+1}.

Similarly, let D denote the number of descents in (X1, . . . , Xn):

D = #{1 ≤ j ≤ n −1 : X j > X j+1}.

Note: Your answers to the following questions should be functions of n.

Hint: This problem requires no integration at all.

a. Find P(A = 0), and find E(A).

Solution. By the symmetry of all n! possible orderings of X1, . . . , Xn , we have that

P(A = 0) =P(X1 > ·· · > Xn) = 1

n!
.

Now, because the given random variables are i.i.d. and continuous, we know that with probability one,
X1, . . . , Xn take on n distinct values. Consequently, with probability one, A+D = n−1. Thus, by symmetry
again, we find that

E(A) = n −1

2
.

Remark. One way to see the second instance of symmetry is to consider 1−X1, . . . ,1−Xn .

b. Find P(A = 1 | X1 < X2).

Solution. If n = 2, then P(A = 1 | X1 < X2) = 1. Otherwise, n ≥ 3, and

P(A = 1 | X1 < X2) =P(X2 > ·· · > Xn | X1 < X2)

= P(X1 < X2, X2 > ·· · > Xn)

P(X1 < X2)

= (n −1)/n!

1/2

= 2(n −1)

n!
.

(It turns out that this formula holds for all n ≥ 2.)

c. Find P(Xi < Xi+1, X j > X j+1) for all i and j .

Solution. If i = j , then P(Xi < Xi+1, X j > X j+1) = 0. Otherwise, take i < j without loss of generality. In
the particular case where i +1 = j ,

P(Xi < Xi+1, X j > X j+1) =P(X j−1 < X j , X j > X j+1) = 2

3!
= 1

3
.

In the remaining case where i +1 < j , we have by independence that

P(Xi < Xi+1, X j > X j+1) =P(Xi < Xi+1) ·P(X j > X j+1) =
(

1

2

)2

= 1

4
.

To summarize, for 1 ≤ i , j ≤ n −1,

P(Xi < Xi+1, X j > X j+1) =


0 if i = j ,

1/3 if i +1 = j or i −1 = j ,

1/4 otherwise.
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d. Find cov(A,D).

Solution. Observe that we can write A and D as sums of n −1 indicator functions. By the bilinearity of
covariance, we have that

cov(A,D) =
n−1∑
i=1

n−1∑
j=1

cov(1{Xi < Xi+1},1{X j > X j+1})

=
n−1∑
i=1

n−1∑
j=1

P(Xi < Xi+1, X j > X j+1)−P(Xi < Xi+1) ·P(X j > X j+1),

where n−1 terms correspond to the case of i = j and 2(n−2) terms correspond to the case of i +1 = j or
i −1 = j . Therefore, by part (c), we find that

cov(A,D) = (n −1)

(
0− 1

4

)
+2(n −2)

(
1

3
− 1

4

)
=− n

12
− 1

12
.
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