Spring 2014

1. For known values $x_{i, 1}, x_{i, 2}, i=1, \ldots, n$, let

$$
Z_{i}=\beta_{1} x_{i, 1}+\epsilon_{i}
$$

and

$$
Y_{i}=\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\epsilon_{i}, \quad i=1, \ldots, n
$$

where $\epsilon_{i}, i=1,2, \ldots, n$ are independent normal random variables with mean 0 and variance 1 .
a) Given the data $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{n}\right)$, compute the maximum likelihood estimate of β_{1} and show that it achieves the Cramer-Rao lower bound. Throughout this part and the following, make explicit any non-degeneracy assumptions that may need to be made.
Solution. Note that $Z_{i} \sim \mathcal{N}\left(\beta_{1} x_{i, 1}, 1\right)$. Hence, the likelihood is

$$
\mathcal{L}\left(\beta_{1} ; \boldsymbol{z}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} e^{-\frac{\left(z_{i}-\beta_{1} x_{i, 1}\right)^{2}}{2}}=(2 \pi)^{-\frac{n}{2}} \exp \left(-\frac{1}{2} \sum_{i=1}^{n}\left(z_{i}-\beta_{1} x_{i, 1}\right)^{2}\right)
$$

and so, the log-likelihood is

$$
\log \mathcal{L}\left(\beta_{1} ; \boldsymbol{z}\right)=-\frac{n}{2} \log (2 \pi)-\frac{1}{2} \sum_{i=1}^{n}\left(z_{i}-\beta_{1} x_{i, 1}\right)^{2}
$$

Taking the derivative with respect to β_{1}, we get

$$
\frac{d}{d \beta_{1}} \log \mathcal{L}\left(\beta_{1} ; \boldsymbol{z}\right)=\sum_{i=1}^{n} x_{i, 1}\left(z_{i}-\beta_{1} x_{i, 1}\right)=\sum_{i=1}^{n} x_{i, 1} z_{i}-\beta_{1} \sum_{i=1}^{n} x_{i, 1}^{2}
$$

Setting the above equation to zero and solving for β_{1} gives us

$$
\hat{\beta}_{1}=\frac{\sum x_{i, 1} z_{i}}{\sum x_{i, 1}^{2}}
$$

assuming that $\sum x_{i, 1}^{2} \neq 0$. We see that this is indeed the MLE since the second derivative

$$
\frac{d^{2}}{d \beta_{1}^{2}} \mathcal{L}\left(\beta_{1} ; \boldsymbol{z}\right)=-\sum_{i=1}^{n} x_{i, 1}^{2}
$$

is always negative. Note that $\hat{\beta}_{1}$ is unbiased:

$$
\mathbb{E} \hat{\beta}_{1}=\frac{\sum x_{i, 1} \mathbb{E} z_{i}}{\sum x_{i, 1}^{2}}=\frac{\sum x_{i, 1}^{2} \beta_{1}}{\sum x_{i, 1}^{2}}=\beta_{1}
$$

Now, the variance of $\hat{\beta}_{1}$ is
$\operatorname{Var}\left(\hat{\beta}_{1}\right)=\frac{1}{\left(\sum x_{i, 1}^{2}\right)^{2}} \operatorname{Var}\left(\sum x_{i, 1} z_{i}\right)=\frac{1}{\left(\sum x_{i, 1}^{2}\right)^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(x_{i, 1} z_{i}\right)=\frac{1}{\left(\sum x_{i, 1}^{2}\right)^{2}} \sum_{i=1}^{n} x_{i, 1}^{2}=\frac{1}{\sum x_{i, 1}^{2}}$.
On the other hand, the Fisher information is

$$
\mathcal{I}\left(\beta_{1}\right)=-\mathbb{E}_{\beta_{1}}\left[-\sum_{i=1}^{n} x_{i, 1}^{2}\right]=\sum_{i=1}^{n} x_{i, 1}^{2} .
$$

Hence, the Cramer-Rao lower bound is achieved by $\hat{\beta}_{1}$.
b) Based on $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$, compute the Cramer-Rao lower bound for the estimation of $\left(\beta_{1}, \beta_{2}\right)$, and in particular, compute a variance lower bound for the estimation of β_{1} in the presence of unknown β_{2}.
Solution. Note that $Y_{i} \sim \mathcal{N}\left(\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}, 1\right)$. Similarly as in part (a), we see that the likelihood function is

$$
\mathcal{L}\left(\beta_{1}, \beta_{2} ; \boldsymbol{y}\right)=(2 \pi)^{-\frac{n}{2}} \exp \left(-\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\beta_{1} x_{i, 1}-\beta_{2} x_{i, 2}\right)^{2}\right)
$$

and so, the log-likelihood is

$$
\log \mathcal{L}\left(\beta_{1}, \beta_{2} ; \boldsymbol{y}\right)=-\frac{n}{2} \log (2 \pi)-\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\beta_{1} x_{i, 1}-\beta_{2} x_{i, 2}\right)^{2}
$$

Since the first partial derivatives are

$$
\begin{aligned}
\frac{\partial}{\partial \beta_{1}} \log \mathcal{L}\left(\beta_{1}, \beta_{2} ; \boldsymbol{y}\right) & =\sum_{i=1}^{n} x_{i, 1}\left(y_{i}-\beta_{1} x_{i, 1}-\beta_{2} x_{i, 2}\right), \text { and } \\
\frac{\partial}{\partial \beta_{2}} \log \mathcal{L}\left(\beta_{1}, \beta_{2} ; \boldsymbol{y}\right) & =\sum_{i=1}^{n} x_{i, 2}\left(y_{i}-\beta_{1} x_{i, 1}-\beta_{2} x_{i, 2}\right),
\end{aligned}
$$

the second partial derivatives are

$$
\frac{\partial^{2}}{\partial \beta_{1}^{2}} \log \mathcal{L}=-\sum_{i=1}^{n} x_{i, 1}^{2}, \frac{\partial^{2}}{\partial \beta_{1} \beta_{2}} \log \mathcal{L}=-\sum_{i=1}^{n} x_{i, 1} x_{i, 2}, \text { and } \frac{\partial^{2}}{\partial \beta_{2}^{2}} \log \mathcal{L}=-\sum_{i=1}^{n} x_{i, 2}^{2}
$$

Hence, the Cramer-Rao lower bound is

$$
\begin{aligned}
\mathcal{I}^{-1}\left(\beta_{1}, \beta_{2}\right) & =\left(\begin{array}{cc}
\sum x_{i, 1}^{2} & \sum x_{i, 1} x_{i, 2} \\
\sum x_{i, 1} x_{i, 2} & \sum x_{i, 2}^{2}
\end{array}\right)^{-1} \\
& =\frac{1}{\sum x_{i, 1}^{2} \sum x_{i, 2}^{2}-\left(\sum x_{i, 1} x_{i, 2}\right)^{2}}\left(\begin{array}{cc}
\sum x_{i, 2}^{2} & -\sum x_{i, 1} x_{i, 2} \\
-\sum x_{i, 1} x_{i, 2} & \sum x_{i, 1}^{2}
\end{array}\right) .
\end{aligned}
$$

In particular, the variance lower bound for the estimation of β_{1} in the presence of unknown β_{2} is

$$
\frac{\sum x_{i, 2}^{2}}{\sum x_{i, 1}^{2} \sum x_{i, 2}^{2}-\left(\sum x_{i, 1} x_{i, 2}\right)^{2}}
$$

c) Compare the variance lower bound in (a), which is the same as the one for the model for Y_{i} where β_{2} is known to be equal to zero, to the one in (b), where β_{2} is unknown, and show the latter one is always at least as large as the former.
Solution. Since $\sum x_{i, 1}^{2} \sum x_{i, 2}^{2} \geq \sum x_{i, 1}^{2} \sum x_{i, 2}^{2}-\left(\sum x_{i, 1} x_{i, 2}\right)^{2} \geq 0$, where the last inequality follows by Cauchy-Schwarz, it follows that

$$
\frac{\sum x_{i, 2}^{2}}{\sum x_{i, 1}^{2} \sum x_{i, 2}^{2}-\left(\sum x_{i, 1} x_{i, 2}\right)^{2}} \geq \frac{1}{\sum x_{i, 1}^{2}}
$$

and so, the variance lower bound in part (b), where β_{2} is unknown, is greater than or equal to the variance lower bound in part (a), where β_{2} is known to be zero.
2. Suppose we observe the pair (X, Y), where X has a $\operatorname{Poisson}(\lambda)$ distribution and Y has a Bernoulli $(\lambda /(1+$ $\lambda)$) distribution, that is,

$$
P_{\lambda}(X=j)=\frac{\lambda^{j} e^{-\lambda}}{j!}, j=0,1,2, \ldots
$$

and

$$
P_{\lambda}(Y=1)=\frac{\lambda}{1+\lambda}=1-P_{\lambda}(Y=0)
$$

with X and Y independent, and $\lambda \in(0, \infty)$ unknown.
a) Find a one-dimensional sufficient statistic for λ based on (X, Y).

The joint density is, for $j=0,1,2, \ldots$ and $k=0,1$,

$$
P_{\lambda}(X=x, Y=y)=\frac{\lambda^{x} e^{-\lambda}}{x!}\left(\frac{\lambda}{1+\lambda}\right)^{y}\left(\frac{1}{1+\lambda}\right)^{1-y}=\frac{\lambda^{x+y} e^{-\lambda}}{x!(1+\lambda)}=\left(\frac{e^{-\lambda}}{1+\lambda} \lambda^{x+y}\right) \cdot \frac{1}{x!},
$$

and so, by the Neyman-Fisher Factorization Theorem, $T(X, Y)=X+Y$ is a sufficient statistic for λ. Since the joint pmf is

$$
\frac{1}{x!} \frac{e^{-\lambda}}{1+\lambda} \exp ((x+y) \log \lambda)
$$

and since $\{\log \lambda: \lambda>0\}$ contains an open set in \mathbb{R}, we see that $T(X, Y)=X+Y$ is complete and sufficient.
b) Is there a UMVUE of λ ? If so, find it.

Solution. Note that

$$
\begin{aligned}
P(Y=1 \mid X+Y=k) & =\frac{P(Y=1, X+Y=k)}{P(X+Y=k)}=\frac{P(Y=1, X=k-1)}{P(Y=1, X=k-1)+P(Y=0, X=k)} \\
& =\frac{\left(\frac{e^{-\lambda}}{1+\lambda} \lambda^{k}\right) \frac{1}{(k-1)!}}{\left(\frac{e^{-\lambda}}{1+\lambda} \lambda^{k}\right) \frac{1}{(k-1)!}+\left(\frac{e^{-\lambda}}{1+\lambda} \lambda^{k}\right) \frac{1}{k!}}=\frac{k}{k+1},
\end{aligned}
$$

and so,

$$
\mathbb{E}(Y \mid X+Y)=P(Y=1 \mid X+Y)=\frac{X+Y}{X+Y+1}
$$

Since $X=X+Y-Y$ is an unbiased estimator of λ and $X+Y$ is a complete and sufficient statistic, we see that

$$
\begin{aligned}
\mathbb{E}(X \mid X+Y) & =\mathbb{E}(X+Y \mid X+Y)-\mathbb{E}(Y \mid X+Y)=X+Y-\frac{X+Y}{X+Y+1} \\
& =\frac{(X+Y)^{2}}{(X+Y)+1}
\end{aligned}
$$

is a UMVUE of λ.
c) Is there a UMVUE of $\lambda /(1+\lambda)$? If so, find it.

Solution. Note that Y is an unbiased estimator of $\lambda /(1+\lambda)$, and so, as we saw in part (b),

$$
\mathbb{E}(Y \mid X+Y)=\frac{X+Y}{(X+Y)+1}
$$

is a UMVUE of $\frac{\lambda}{1+\lambda}$.

