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1. For known values xi,1, xi,2, i = 1, . . . , n, let

Zi = β1xi,1 + εi

and
Yi = β1xi,1 + β2xi,2 + εi, i = 1, . . . , n,

where εi, i = 1, 2, . . . , n are independent normal random variables with mean 0 and variance 1.

a) Given the data Z = (Z1, . . . , Zn), compute the maximum likelihood estimate of β1 and show that
it achieves the Cramer-Rao lower bound. Throughout this part and the following, make explicit
any non-degeneracy assumptions that may need to be made.

Solution. Note that Zi ∼ N (β1xi,1, 1). Hence, the likelihood is
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and so, the log-likelihood is
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Taking the derivative with respect to β1, we get
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Setting the above equation to zero and solving for β1 gives us
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∑

x2
i,1 6= 0. We see that this is indeed the MLE since the second derivative
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is always negative. Note that β̂1 is unbiased:
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Now, the variance of β̂1 is
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On the other hand, the Fisher information is
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Hence, the Cramer-Rao lower bound is achieved by β̂1.



b) Based on Y = (Y1, . . . , Yn), compute the Cramer-Rao lower bound for the estimation of (β1, β2),
and in particular, compute a variance lower bound for the estimation of β1 in the presence of
unknown β2.

Solution. Note that Yi ∼ N (β1xi,1 + β2xi,2, 1). Similarly as in part (a), we see that the likelihood
function is

L(β1, β2;y) = (2π)−
n
2 exp

(
−1

2

n∑
i=1

(yi − β1xi,1 − β2xi,2)
2

)
,

and so, the log-likelihood is
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Since the first partial derivatives are
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Hence, the Cramer-Rao lower bound is
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In particular, the variance lower bound for the estimation of β1 in the presence of unknown β2 is∑
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c) Compare the variance lower bound in (a), which is the same as the one for the model for Yi where
β2 is known to be equal to zero, to the one in (b), where β2 is unknown, and show the latter one
is always at least as large as the former.

Solution. Since
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and so, the variance lower bound in part (b), where β2 is unknown, is greater than or equal to
the variance lower bound in part (a), where β2 is known to be zero.



2. Suppose we observe the pair (X,Y ), whereX has a Poisson(λ) distribution and Y has a Bernoulli(λ/(1+
λ)) distribution, that is,

Pλ(X = j) =
λje−λ

j!
, j = 0, 1, 2, . . . ,

and

Pλ(Y = 1) =
λ

1 + λ
= 1− Pλ(Y = 0),

with X and Y independent, and λ ∈ (0,∞) unknown.

a) Find a one-dimensional sufficient statistic for λ based on (X,Y ).

The joint density is, for j = 0, 1, 2, . . . and k = 0, 1,

Pλ(X = x, Y = y) =
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and so, by the Neyman-Fisher Factorization Theorem, T (X,Y ) = X + Y is a sufficient statistic
for λ. Since the joint pmf is

1

x!

e−λ

1 + λ
exp ((x+ y) log λ) ,

and since {log λ : λ > 0} contains an open set in R, we see that T (X,Y ) = X + Y is complete

and sufficient.

b) Is there a UMVUE of λ? If so, find it.

Solution. Note that
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and so,

E(Y | X + Y ) = P (Y = 1 | X + Y ) =
X + Y

X + Y + 1
.

Since X = X + Y − Y is an unbiased estimator of λ and X + Y is a complete and sufficient
statistic, we see that

E(X | X + Y ) = E(X + Y | X + Y )− E(Y | X + Y ) = X + Y − X + Y

X + Y + 1

=
(X + Y )2
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is a UMVUE of λ.

c) Is there a UMVUE of λ/(1 + λ)? If so, find it.

Solution. Note that Y is an unbiased estimator of λ/(1 + λ), and so, as we saw in part (b),

E(Y | X + Y ) =
X + Y

(X + Y ) + 1

is a UMVUE of λ
1+λ .


