Fall 2014

1. Let p, q be values in $[0,1]$ and $\alpha \in(0,1]$. Assume α and q known, and that p is an unknown parameter we would like to estimate. A coin is tossed n times, resulting in the sequence of zero one valued random variables X_{1}, \ldots, X_{n}. At each toss, independently of all other tosses, the coin has probability p of success with probability α, and probability q of success with probability $1-\alpha$.
a) Write out the probability function of the observed sequence, and compute the maximum liklihood estimate \hat{p} of p, when p is considered a parameter over all of \mathbb{R}. Verify that when $\alpha=1$, one recovers the standard estimator of the unknown probability.
Solution. Note that

$$
P\left(X_{i}=1\right)= \begin{cases}p & \text { with probability } \alpha \\ q & \text { with probability } 1-\alpha\end{cases}
$$

Hence,

$$
P\left(X_{i}=1\right)=p \alpha+q(1-\alpha)
$$

and

$$
P\left(X_{i}=0\right)=1-P\left(X_{i}=1\right)=1-p \alpha-q(1-\alpha)
$$

Thus, the likelihood function is

$$
\mathcal{L}(p ; \boldsymbol{x})=(p \alpha+q(1-\alpha))^{\sum x_{i}}(1-p \alpha-q(1-\alpha))^{n-\sum x_{i}}
$$

and so, the log-likelihood function is

$$
\log \mathcal{L}(p ; \boldsymbol{x})=\sum_{i=1}^{n} x_{i} \log (p \alpha+q(1-\alpha))+\left(n-\sum_{i=1}^{n} x_{i}\right) \log (1-p \alpha-q(1-\alpha))
$$

The first derivative of the log-likelihood function is

$$
\frac{d}{d p} \log \mathcal{L}=\frac{\alpha \sum x_{i}}{p \alpha+q(1-\alpha)}-\frac{\alpha\left(n-\sum x_{i}\right)}{1-p \alpha-q(1-\alpha)}
$$

and since the second derivative of the log-likelihood function,

$$
\frac{d^{2}}{d p^{2}} \log \mathcal{L}=-\frac{\alpha^{2} \sum x_{i}}{(p \alpha+q(1-\alpha))^{2}}-\frac{\alpha^{2}\left(n-\sum x_{i}\right)}{(1-p \alpha-q(1-\alpha))^{2}}
$$

is always negative, we see that

$$
\hat{p}=\frac{1}{\alpha}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}-q(1-\alpha)\right)
$$

is the MLE of p. When $\alpha=1$, the MLE becomes

$$
\hat{p}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

which is the MLE for the Bernoulli distribution with parameter p, which is what we expected.
b) Show \hat{p} is unbiased, and calculate its variance.

Solution. Note that

$$
\mathbb{E} \hat{p}=\frac{1}{\alpha}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbb{E} X_{i}-q(1-\alpha)\right)=\frac{1}{\alpha}(p \alpha+q(1-\alpha)-q(1-\alpha))=p
$$

and so, \hat{p} is unbiased. As for the variance, since $X_{i} \sim \operatorname{Bernoulli}(p \alpha+q(1-\alpha))$, we have that

$$
\operatorname{Var}\left(X_{i}\right)=(p \alpha+q(1-\alpha))(1-(p \alpha+q(1-\alpha)))
$$

Hence,

$$
\operatorname{Var}(\hat{p})=\frac{1}{\alpha^{2}} \operatorname{Var}\left(\bar{X}_{n}-q(1-\alpha)\right)=\frac{1}{n \alpha^{2}}(p \alpha+q(1-\alpha))(1-(p \alpha+q(1-\alpha)))
$$

c) Calculate the information bound for p, and determine if it is achieved by \hat{p}.

Solution. The Fisher information is

$$
\begin{aligned}
\mathcal{I}(p) & =-\mathbb{E}\left[-\frac{\alpha^{2} \sum x_{i}}{(p \alpha+q(1-\alpha))^{2}}-\frac{\alpha^{2}\left(n-\sum x_{i}\right)}{(1-p \alpha-q(1-\alpha))^{2}}\right] \\
& =\frac{n \alpha^{2}}{p \alpha+q(1-\alpha)}+\frac{n \alpha^{2}}{1-(p \alpha+q(1-\alpha))} \\
& =\frac{n \alpha^{2}}{(p \alpha+q(1-\alpha))(1-(p \alpha+q(1-\alpha)))}
\end{aligned}
$$

and so, the Cramer-Rao lower bound is

$$
\mathcal{I}^{-1}(p)=\frac{1}{n \alpha^{2}}(p \alpha+q(1-\alpha))(1-(p \alpha+q(1-\alpha)))
$$

which is achieved by \hat{p}.
d) If one of the other parameters is unknown, can p still be estimated consistently?

Solution. We can still get an MLE for p, and since MLEs are consistent, why not?
2. Let $\boldsymbol{X} \in \mathbb{R}^{n}$ be distributed according to the density of mass function $p(\boldsymbol{x} ; \theta)$ for $\theta \in \Theta \subset \mathbb{R}^{d}$.
a) State the definition for $T(\boldsymbol{X})$ to be sufficient for θ.

Solution. $T(\boldsymbol{X})$ is sufficient for θ if

$$
P(\boldsymbol{X}=\boldsymbol{x} \mid T(\boldsymbol{X})=T(\boldsymbol{x}))
$$

is independent from θ.
b) Prove that if the (discrete) mass functions $p(\boldsymbol{x} ; \theta)$ can be factored as $h(\boldsymbol{x}) g(T(\boldsymbol{x}), \theta)$ for some functions h and g, then $T(\boldsymbol{X})$ is sufficient for θ.
Solution. Define $A_{T(\boldsymbol{x})}=\{\boldsymbol{y}: T(\boldsymbol{y})=T(\boldsymbol{x})\}$. Now,

$$
\begin{aligned}
P(\boldsymbol{X}=\boldsymbol{x} \mid T(\boldsymbol{X})=T(\boldsymbol{x})) & =\frac{P(\boldsymbol{X}=\boldsymbol{x}, T(\boldsymbol{X})=T(\boldsymbol{x}))}{P(T(\boldsymbol{X})=T(\boldsymbol{x}))} \\
& =\frac{P(\boldsymbol{X}=\boldsymbol{x})}{P(T(\boldsymbol{X})=T(\boldsymbol{x}))} \\
& =\frac{P(\boldsymbol{X}=\boldsymbol{x})}{\sum_{\boldsymbol{y} \in A_{T(\boldsymbol{x}}} P(\boldsymbol{X}=\boldsymbol{y})} \\
& =\frac{h(\boldsymbol{x}) g(T(\boldsymbol{x}), \theta)}{\sum_{\boldsymbol{y} \in A_{T(\boldsymbol{x}}} h(\boldsymbol{y}) g(T(\boldsymbol{y}), \theta)} \\
& =\frac{h(\boldsymbol{x}) g(T(\boldsymbol{x}), \theta)}{g(T(\boldsymbol{x}), \theta) \sum_{\boldsymbol{y} \in A_{T(\boldsymbol{x})}} h(\boldsymbol{y})} \\
& =\frac{h(\boldsymbol{x})}{\sum_{\boldsymbol{y} \in A_{T(\boldsymbol{x})}} h(\boldsymbol{y})}
\end{aligned}
$$

is independent of θ, and so, $T(\boldsymbol{X})$ is sufficient for θ.
c) Let X_{1}, \ldots, X_{n} be independent with the Cauchy distribution $\mathcal{C}(\theta), \theta \in \mathbb{R}$ given by

$$
p(x ; \theta)=\frac{1}{\pi\left(1+(x-\theta)^{2}\right)}
$$

Prove that the unordered sample $S=\left\{X_{1}, \ldots, X_{n}\right\}$ can be determined from any $T(\boldsymbol{X})$ sufficient for θ. [HINT: Produce a polynomial from which S can be determined.]
Solution. Basically, we want to show that S is minimal sufficient, i.e. for all sufficient statistic $T(\boldsymbol{X}), S(\boldsymbol{X})=g(T(\boldsymbol{X}))$. Recall that if

$$
\frac{f(x \mid \theta)}{f(y \mid \theta)} \text { is constant as a function of } \theta \Longleftrightarrow S(x)=S(y)
$$

then $S(X)$ is minimal sufficient.
The reverse direction is trivial. As for the forward direction, suppose that $f(x \mid \theta) / f(y \mid \theta)=c \neq$ 0 . Then,

$$
\prod_{i=1}^{n}\left(1+\left(x_{i}-\theta\right)^{2}\right)=c \prod_{j=1}^{n}\left(1+\left(y_{j}-\theta\right)^{2}\right)
$$

Note that the LHS is a polynomial of θ of degree $2 n$ with roots $\theta=x_{i} \pm i$ and the RHS is a polynomial of θ of degreen $2 n$ with roots $\theta=y_{j} \pm i$. Since the roots must be equal we have that there exists a permutation that can match the roots up, i.e. $S(X)=S(Y)$. Hence, S is minimal sufficient, and we are done.

