
Fall 2013

1. For p ∈ (0, 1) unknown, let X0, X1, . . . be independent identically distributed random variables taking
values in {0, 1} with distribution

P (Xi = 1) = 1− P (Xi = 0) = p,

and suppose that

Tn =

n−1∑
i=0

I(Xi = 1, Xi+1 = 1) (1)

is observed.

a) Calculate the mean and variance of Tn.

Solution. Writing Yi = I(Xi = 1, Xi+1 = 1), we see that

ETn =

n−1∑
i=0

P (Yi) = np2,

and

Var(Tn) =

n−1∑
i=0

Var(Yi) +
∑
i 6=j

Cov(Yi, Yj)

=

n−2∑
i=0

(EY 2
i − (EYi)

2) + 2

n−1∑
i=0

(EYiYi+1 − EYiEYi+1)

= n(p2 − p4) + 2(n− 1)(p3 − p4).

b) Find a consistent method of moments p̂n = gn(Tn) estimator for the unknown p as a function gn
of Tn that may depend on n, and prove that your estimate is consistent for p.

Solution. Since ETn = np2, we see that

p̂n =

√
Tn

n
= gn(Tn)

is a method of moments estimator for p. Note that

E
∣∣∣∣Tn

n
− p2

∣∣∣∣2 = Var

(
Tn

n

)
=

1

n2
Var(Tn) = O

(
1

n

)
→ 0

as n → ∞. Since L2 convergence implies convergence in probability, we have that

Tn

n
→ p2

in probability, and so taking g(x) =
√
x, by the continuous mapping theorem, we have that

p̂ =

√
Tn

n
→ p

in probability. Thus, our moment estimate p̂ is consistent for p.



c) Show that Tn is not the sum of independent, identically distributed random variables. Never-
theless, determine the non-trivial limiting distribution of p̂n, after an appropriate centering and
scaling, as if (1) was the sum of iid variables and has the same mean and variance as the one
computed in part (a).

Solution. Since P (Y0 = 1, Y1 = 1) = P (X0 = 1, X1 = 1, X2 = 1) = p3 and P (Y0 = 1)P (Y1 = 1) =
p4, we have that Yi’s are not independent. Hence, Tn is not the sum of iid random variables.

Now, if we assumed that Tn is the sum of iid variables, then since EYi = p2 and Var(Yi) =

EY 2
i − (EYi)

2
= p2 − p4, and so, by the Central Limit Theorem, we have that

√
n

(
Tn

n
− p2

)
=

√
n

(
1

n

n∑
i=1

Yi − p2

)
⇒ N

(
0, p2 − p4

)
.

Using the Delta method with g(x) =
√
x, we have that

√
n (p̂− p) =

√
n

(
g

(
Tn

n

)
− g(p2)

)
⇒ N

(
0, (p2 − p4)

1

2p

)
= N

(
0,

p− p3

2

)
.

d) Explain why you would, or would not, expect p̂n to have the same limiting distribution as the
one determined in part (c).



2. Let X1, X2, . . . , Xn be independent identically distributed random variables with density given by

fβ(x) =
xα−1

βαΓ(α)
exp(−x/β), for x > 0,

where α > 0 and is known. Suppose it is desired to estimate β3.

a) Find the Cramer-Rao lower bound for the variance of an unbiased estimator of β3.

Solution. The likelihood function is

L(β3;x) =

n∏
i=1

xα−1
i

βαΓ(α)
exp

(
−xi

β

)
=

(
∏n

i=1 xi)
α−1

βαnΓ(α)n
exp

(
−
∑n

i=1 xi

β

)
,

and so, the log-likelihood function is

logL(β3;x) = (α− 1)

n∑
i=1

log xi − αn log β − n log Γ(α)− 1

β

n∑
i=1

xi.

Hence,
d

dβ3
logL = − αn

3β3
+

1

3

∑
xi

β4
,

and so,
d2

d(β3)2
logL =

αn

3β6
− 4

9

∑
xi

β7
.

Thus, the Fisher information for β3 is

I(β3) = −E
[
αn

3β6
− 4

9

∑
Xi

β7

]
= − αn

3β6
+

4

9

nαβ

β7
=

1

9

nα

β6
,

and so, the Cramer-Rao lower bound is

I(β3)−1 =
9β6

αn
.

b) Find a complete and sufficient statistic for β. Then, compute its kth moment, where k is a positive
integer.

Solution. In part (a), we saw that the likelihood function was

L(β;x) =
(
∏n

i=1 xi)
α−1

βαnΓ(α)n
exp

(
−
∑n

i=1 xi

β

)
,

and so, by the Neyman-Fisher factorization theorem, we see that T (X) =
∑n

i=1 Xi is a sufficient
statistic for β. Also, since Xi’s are chosen iid from an exponential family and the set {1/β : β ∈
R+} contains an open set in R, we see that T (X) is also complete. Also, since the Xi’s are iid,
we have that T (X) =

∑n
i=1 Xi ∼ Γ(nα, β). Hence, the moment generating function of T (X) is

MT (t) = (1− βt)−nα,

for t < β−1, and taking multiple derivatives gives us the kth moments of T :

ET k = nαβk(nα+ 1)(nα+ 2) · · · (nα+ k − 1) .



c) If a UMVUE exists, find its variance and compare it to the bound in part (a).

Solution. From part (b), we see that

ET 3 = nαβ3(nα+ 1)(nα+ 2).

Hence,

S(X) =
1

nα(nα+ 1)(nα+ 2)
T 3(X)

is an UMVUE of β3 by Lehmann-Scheffe. As for the variance of S(X), we have

Var(S(X)) =
1

n2α2(nα+ 1)2(nα+ 2)2
(
ET 6 − (ET 3)2

)
=

β6nα(nα+ 1) · · · (nα+ 5)−
(
β3nα(nα+ 1)(nα+ 2)

)2
n2α2(nα+ 1)2(nα+ 2)2

= β6 (nα+ 3)(nα+ 4)(nα+ 5)− nα(nα+ 1)(nα+ 2)

nα(nα+ 1)(nα+ 2)

= β6 9n2α2 + 45nα+ 60

n3α3 + 3n2α2 + 2nα

=
β6

nα

9n2α2 + 45nα+ 60

n2α2 + 3nα+ 2

>
β6

nα

9n2α2 + 27nα+ 18

n2α2 + 3nα+ 2
= 9

β6

nα
,

and so, we see that our UMVUE does not achieve the Cramer-Rao lower bound.


