Spring 2012

1. a) Let Z_{i} be independent $N(0,1), i=1,2, \ldots, n$. Are $\bar{Z}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $S_{Z}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Z_{i}-\bar{Z}\right)^{2}$ independent? Prove your claim.
Solution. Define $\boldsymbol{Z}=\left[\begin{array}{lll}Z_{1} & \cdots & Z_{n}\end{array}\right]^{T}$. Then, $\bar{Z}=\frac{1}{n} \mathbf{1}^{T} \boldsymbol{Z}$, and

$$
\boldsymbol{Z}-\mathbf{1} \bar{Z}=\left[\begin{array}{c}
Z_{1}-\bar{Z} \\
Z_{2}-\bar{Z} \\
\vdots \\
Z_{n}-\bar{Z}
\end{array}\right]=\boldsymbol{Z}-\frac{1}{n} \mathbf{1 1}^{T} \boldsymbol{Z}=\left(I-\frac{1}{n} \mathbf{1 1}^{T}\right) \boldsymbol{Z}
$$

It is easily verified that $P:=I-\frac{1}{n} \mathbf{1 1}^{T}$ is an orthogonal projection; i.e. $P^{2}=P$ and $P^{T}=P$. Now, we claim that \bar{Z} and $P \boldsymbol{Z}$ are independent. To see this, we consider the covariance:

$$
\begin{aligned}
\operatorname{Cov}\left(\frac{1}{n} \mathbf{1}^{T} \boldsymbol{Z}, P \boldsymbol{Z}\right) & =\frac{1}{n} \mathbf{1}^{T} \operatorname{Var}(\boldsymbol{Z}) P^{T}=\frac{1}{n} \mathbf{1}^{T} I P=\frac{1}{n} \mathbf{1}^{T}\left(I-\frac{1}{n} \mathbf{1}^{T}\right)=\frac{1}{n}\left(\mathbf{1}^{T}-\frac{1}{n} \mathbf{1}^{T} \mathbf{1}^{T}\right) \\
& =\frac{1}{n}\left(\mathbf{1}^{T}-\frac{1}{n} n \mathbf{1}^{T}\right)=0
\end{aligned}
$$

and so, $\bar{Z}=\frac{1}{n} \mathbf{1}^{T} \boldsymbol{Z}$ and $\boldsymbol{Z}-\mathbf{1} \bar{Z}=P \boldsymbol{Z}$ are independent. Now, for any measurable f, we know that \bar{Z} and $f(\boldsymbol{Z}-\mathbf{1} \bar{Z})$ will be independent. In particular, take $f(\boldsymbol{x})=\frac{1}{n-1} \boldsymbol{x}^{T} \boldsymbol{x}$. Then,

$$
f(\boldsymbol{Z}-\mathbf{1} \bar{Z})=\frac{1}{n-1}\left[\begin{array}{lll}
Z_{1}-\bar{Z} & \cdots & Z_{n}-\bar{Z}
\end{array}\right]\left[\begin{array}{c}
Z_{1}-\bar{Z} \\
\vdots \\
Z_{n}-\bar{Z}
\end{array}\right]=S_{Z}^{2}
$$

and so, \bar{Z} and S_{Z}^{2} are independent.
b) Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent identically distributed normal with mean θ and variance θ^{2}, where $\theta>0$ is unknown. Let

$$
\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}, \quad S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

Are \bar{X} and S^{2} independent? Prove your claim. [HINT: you can directly use the result from part (a).]

Solution. Note that $X_{i}=\theta+\theta Z_{i}$, and so, $\bar{X}=\theta+\theta \bar{Z}$. Also,

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\theta+\theta Z_{i}-\theta-\theta \bar{Z}\right)^{2}=\theta^{2} S_{Z}^{2}
$$

Hence,

$$
\begin{aligned}
P\left(\bar{X} \leq a, S^{2} \leq b\right) & =P\left(\theta+\theta \bar{Z} \leq a, \theta^{2} S_{Z}^{2} \leq b\right)=P\left(\bar{Z} \leq \frac{a-\theta}{\theta}, S_{Z}^{2} \leq \frac{b}{\theta^{2}}\right) \\
& \stackrel{(a)}{=} P\left(\bar{Z} \leq \frac{a-\theta}{\theta}\right) P\left(S_{Z}^{2} \leq \frac{b}{\theta^{2}}\right)=P(\bar{X} \leq a) P\left(S^{2} \leq b\right)
\end{aligned}
$$

and so, \bar{X} and S^{2} are independent.
c) Show that $\left(\bar{X}, S^{2}\right)$ is a sufficient statistic for θ, but it is not complete.

Solution. The joint density is

$$
\begin{aligned}
f(\boldsymbol{x} ; \theta) & =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \theta^{2}}} \exp \left(-\frac{\left(x_{i}-\theta\right)^{2}}{2 \theta^{2}}\right)=(2 \pi)^{-\frac{n}{2}} \theta^{-n} \exp \left(-\frac{1}{2 \theta^{2}} \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}\right) \\
& =(2 \pi)^{-\frac{n}{2}} \theta^{-n} \exp \left(-\frac{1}{2 \theta^{2}}\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+\sum_{i=1}^{n}(\bar{x}-\theta)^{2}\right)\right) \\
& =(2 \pi)^{-\frac{n}{2}} \theta^{-n} \exp \left(-\frac{n-1}{2 \theta^{2}} \frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right) \exp \left(-\frac{n}{2 \theta^{2}}\left(\bar{x}^{2}-2 \theta \bar{x}+\theta^{2}\right)\right)
\end{aligned}
$$

and so, by Neymar-Fisher factorization theorem, $\left(\bar{X}, S^{2}\right)$ is a sufficient statistic for θ. Now, consider the function $g(x, y)=(x-\theta)^{2}-\frac{1}{n} y$. Then,

$$
\mathbb{E} g\left(\bar{X}, S^{2}\right)=\mathbb{E}\left[(\bar{X}-\theta)^{2}-\frac{1}{n} S^{2}\right]=\operatorname{Var}(\bar{X})-\frac{1}{n} \mathbb{E} S^{2}=\frac{\theta^{2}}{n}-\frac{\theta^{2}}{n}=0
$$

However, $P_{\theta}(g=0) \neq 1$, and so, $\left(\bar{X}, S^{2}\right)$ is not complete.
2. a) Let $X_{1}, X_{2}, \ldots, X_{n}$ be exponentially distributed with density

$$
f(x)=\lambda \exp (-\lambda x), \quad x>0
$$

Let $c>0$ be a constant and if $X_{i}<c$, we observe X_{i}, otherwise we observe c.

$$
S_{n}=\sum_{i=1}^{n} X_{i} I\left(X_{i}<c\right), \quad T_{n}=\sum_{i=1}^{n} I\left(X_{i}>c\right)
$$

where $I(A)=1$ if event A occurs and $I(A)=0$ otherwise. Write down the likelihood function of the observed values in terms of T_{n} and S_{n}.
Solution. If $T_{n}=t_{n} c$'s are observed, without loss of generality, we can assume it is the first t_{n} X_{i} 's that are greater than c. The likelihood function is

$$
\begin{aligned}
\mathcal{L}(\lambda ; \boldsymbol{x}) & =\prod_{i=1}^{t_{n}} P\left(X_{i}>c\right) \prod_{i=t_{n}+1}^{n} f_{X_{i}}\left(x_{i}\right)=(\exp (-c \lambda))^{t_{n}} \prod_{i=t_{n}+1}^{n} \lambda \exp \left(-\lambda x_{i}\right) \\
& =\lambda^{n-t_{n}} \exp \left(-c \lambda t_{n}-\lambda \sum_{i=t_{n}+1}^{n} x_{i}\right) \\
& =\lambda^{n-t_{n}} \exp \left(-c \lambda t_{n}-\lambda s_{n}\right)
\end{aligned}
$$

b) Show the maximum likelihood estimator of λ is

$$
\hat{\lambda}_{n}=\frac{n-T_{n}}{S_{n}+c T_{n}}
$$

Solution. The log-likelihood function is

$$
\log \mathcal{L}(\lambda ; \boldsymbol{x})=\left(n-t_{n}\right) \log \lambda-c \lambda t_{n}-\lambda s_{n}
$$

and so, we have

$$
\frac{d}{d \lambda} \log \mathcal{L}(\lambda ; \boldsymbol{x})=\frac{n-t_{n}}{\lambda}-c t_{n}-s_{n}
$$

and

$$
\frac{d^{2}}{d \lambda^{2}} \log \mathcal{L}(\lambda ; \boldsymbol{x})=-\frac{n-t_{n}}{\lambda}<0
$$

Thus,

$$
\hat{\lambda}=\frac{n-T_{n}}{c T_{n}+S_{n}}
$$

is the MLE of λ.

