Fall 2012

1.

a)

Let Xi,...,X,, ~ Poisson(\) be an iid sample. Find the method of moments estimate Avrom
and the maximum likelihood estimate Aj;rg of .
Solution. The first moment of X is
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and so, equating the first moment with the first sample moment gives us the moment estimate

Avom = %ZXi :
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The likelihood function is 5
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and so, the log-likelihood function is
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we have that

Avie = % Z X
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is the MLE of \.

Is )\ M LE unbiased? Is it efficient?
Solution. The Fisher information is
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and so, the Cramer-Rao lower bound is % On the other hand,
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and so, our MLE achieves the Cramer-Rao lower bound and is efficient. O
Give an example of a distribution where the MOM estimate and the MLE are different.
Solution. Let X1,..., X, ~U(0,0) be an iid sample, where 6 is unknown. Then, the first moment

of X1 is 6/2, and so, the method of moment estimator is Orron = % Z?:l X;. On the other hand,
the likelihood function is

which is decreasing in 6, and so the MLE of # is the minimum possible value of 6:
Orire = X (n)-

We see that éMOM#éMLE- O



a) Prove that, for any (possibly correlated) collection of random variables X7, ..., Xj,
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Solution. First note that if a = (aj,as,...,a,), and b = (1,1,...,1), then Cauchy-Schwarz
inequality gives us that
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In particular,
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Another application of Cauchy-Schwarz gives us

Cov(X,Y) < /Var(X)y/Var(Y)

Hence,
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and so, we are done. O]

b) Construct an example with k& > 2 where equality holds above.
Solution. Let us consider the case where X; = --- = Xj. Then,

(ZX) Var(kX,) = k*Var(X,),

and

kY Var(X;) = k*Var(X),

and so, equality is achieved. O



