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1. a) Let X1, . . . , Xn ∼ Poisson(λ) be an iid sample. Find the method of moments estimate λ̂MOM

and the maximum likelihood estimate λ̂MLE of λ.

Solution. The first moment of X1 is
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∞∑
k=1

λk

(k − 1)!
= λe−λ

∑
k=1

λk−1

(k − 1)!
= λ,

and so, equating the first moment with the first sample moment gives us the moment estimate
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The likelihood function is
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and so, the log-likelihood function is
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we have that
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is the MLE of λ.

b) Is λ̂MLE unbiased? Is it efficient?

Solution. The Fisher information is
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−
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and so, the Cramer-Rao lower bound is λ
n . On the other hand,
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and so, our MLE achieves the Cramer-Rao lower bound and is efficient.

c) Give an example of a distribution where the MOM estimate and the MLE are different.

Solution. Let X1, . . . , Xn ∼ U(0, θ) be an iid sample, where θ is unknown. Then, the first moment

of X1 is θ/2, and so, the method of moment estimator is θ̂MOM = 2
n

∑n
i=1 Xi. On the other hand,

the likelihood function is

L(θ;x) =
n∏
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1

θ
=
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θn
,

which is decreasing in θ, and so the MLE of θ is the minimum possible value of θ:

θ̂MLE = X(n).

We see that θ̂MOM 6= θ̂MLE .



2. a) Prove that, for any (possibly correlated) collection of random variables X1, . . . , Xk,

Var
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Xi

)
≤ k

k∑
i=1

Var(Xi).

Solution. First note that if a = 〈a1, a2, . . . , an〉, and b = 〈1, 1, . . . , 1〉, then Cauchy-Schwarz
inequality gives us that (
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In particular, (
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Another application of Cauchy-Schwarz gives us
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Hence,
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and so, we are done.

b) Construct an example with k ≥ 2 where equality holds above.

Solution. Let us consider the case where X1 = · · · = Xk. Then,

Var
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)
= Var(kX1) = k2Var(X1),

and

k
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and so, equality is achieved.


