Fall 2012

1. a) Let $X_{1}, \ldots, X_{n} \sim \operatorname{Poisson}(\lambda)$ be an iid sample. Find the method of moments estimate $\hat{\lambda}_{M O M}$ and the maximum likelihood estimate $\hat{\lambda}_{M L E}$ of λ.
Solution. The first moment of X_{1} is

$$
\mathbb{E} X_{1}=\sum_{k=0}^{\infty} k e^{-\lambda} \frac{\lambda^{k}}{k!}=e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k}}{(k-1)!}=\lambda e^{-\lambda} \sum_{k=1} \frac{\lambda^{k-1}}{(k-1)!}=\lambda
$$

and so, equating the first moment with the first sample moment gives us the moment estimate

$$
\hat{\lambda}_{M O M}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

The likelihood function is

$$
\mathcal{L}(\lambda ; \boldsymbol{x})=\prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{x_{i}}}{x_{i}!}=e^{-n \lambda} \frac{\lambda^{\sum x_{i}}}{\prod x_{i}!}
$$

and so, the log-likelihood function is

$$
\log \mathcal{L}(\lambda ; \boldsymbol{x})=-n \lambda+\sum_{i=1}^{n} x_{i} \log \lambda-\log \prod_{i=1}^{n} x_{i}!
$$

Since

$$
\frac{d}{d \lambda} \log \mathcal{L}=-n+\frac{\sum x_{i}}{\lambda}
$$

and

$$
\frac{d^{2}}{d \lambda^{2}} \log \mathcal{L}=-\frac{\sum x_{i}}{\lambda^{2}} \leq 0
$$

we have that

$$
\hat{\lambda}_{M L E}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

is the MLE of λ.
b) Is $\hat{\lambda}_{M L E}$ unbiased? Is it efficient?

Solution. The Fisher information is

$$
\mathcal{I}(\lambda)=-\mathbb{E}\left(-\frac{\sum X_{i}}{\lambda^{2}}\right)=\frac{n \lambda}{\lambda^{2}}=\frac{n}{\lambda}
$$

and so, the Cramer-Rao lower bound is $\frac{\lambda}{n}$. On the other hand,

$$
\operatorname{Var}\left(\hat{\lambda}_{M L E}\right)=\frac{1}{n}^{2} n \operatorname{Var}\left(X_{1}\right)=\frac{\lambda}{n}
$$

and so, our MLE achieves the Cramer-Rao lower bound and is efficient.
c) Give an example of a distribution where the MOM estimate and the MLE are different.

Solution. Let $X_{1}, \ldots, X_{n} \sim \mathcal{U}(0, \theta)$ be an iid sample, where θ is unknown. Then, the first moment of X_{1} is $\theta / 2$, and so, the method of moment estimator is $\hat{\theta}_{M O M}=\frac{2}{n} \sum_{i=1}^{n} X_{i}$. On the other hand, the likelihood function is

$$
\mathcal{L}(\theta ; \boldsymbol{x})=\prod_{i=1}^{n} \frac{1}{\theta}=\frac{1}{\theta^{n}}
$$

which is decreasing in θ, and so the MLE of θ is the minimum possible value of θ :

$$
\hat{\theta}_{M L E}=X_{(n)}
$$

We see that $\hat{\theta}_{M O M} \neq \hat{\theta}_{M L E}$.
2. a) Prove that, for any (possibly correlated) collection of random variables X_{1}, \ldots, X_{k},

$$
\operatorname{Var}\left(\sum_{i=1}^{k} X_{i}\right) \leq k \sum_{i=1}^{k} \operatorname{Var}\left(X_{i}\right)
$$

Solution. First note that if $\boldsymbol{a}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, and $\boldsymbol{b}=\langle 1,1, \ldots, 1\rangle$, then Cauchy-Schwarz inequality gives us that

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=\langle\boldsymbol{a}, \boldsymbol{b}\rangle^{2} \leq\langle\boldsymbol{a}, \boldsymbol{a}\rangle\langle\boldsymbol{b}, \boldsymbol{b}\rangle=n \sum_{i=1}^{n} a_{i}^{2}
$$

In particular,

$$
\left(\sum_{i=1}^{k} \sqrt{\operatorname{Var}\left(X_{i}\right)}\right)^{2} \leq k \sum_{i=1}^{k} \operatorname{Var}\left(X_{i}\right)
$$

Another application of Cauchy-Schwarz gives us

$$
\operatorname{Cov}(X, Y) \leq \sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}
$$

Hence,

$$
\begin{aligned}
\operatorname{Var}\left(\sum_{i=1}^{k} X_{i}\right) & =\sum_{i=1}^{k} \sum_{j=1}^{k} \operatorname{Cov}\left(X_{i}, X_{j}\right) \leq \sum_{i=1}^{k} \sum_{j=1}^{k} \sqrt{\operatorname{Var}\left(X_{i}\right)} \sqrt{\operatorname{Var}\left(X_{j}\right)} \\
& =\left(\sum_{i=1}^{k} \sqrt{\operatorname{Var}\left(X_{i}\right)}\right)^{2} \leq k \sum_{i=1}^{k} \operatorname{Var}\left(X_{i}\right)
\end{aligned}
$$

and so, we are done.
b) Construct an example with $k \geq 2$ where equality holds above.

Solution. Let us consider the case where $X_{1}=\cdots=X_{k}$. Then,

$$
\operatorname{Var}\left(\sum_{i=1}^{k} X_{i}\right)=\operatorname{Var}\left(k X_{1}\right)=k^{2} \operatorname{Var}\left(X_{1}\right)
$$

and

$$
k \sum_{i=1}^{k} \operatorname{Var}\left(X_{i}\right)=k^{2} \operatorname{Var}\left(X_{1}\right)
$$

and so, equality is achieved.

