Spring 2011

1. Let X_{1}, \ldots, X_{n} be iid with distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$ and $n \geq 2$.
a) Find UMVU estimates $\hat{\mu}$ and $\hat{\sigma}^{2}$ of μ and σ^{2}, respectively, and prove that they are such.

Solution. The joint density is

$$
\begin{aligned}
f(\boldsymbol{x} ; \theta) & =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right)=\left(2 \pi \sigma^{2}\right)^{-\frac{n}{2}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right) \\
& =\left(2 \pi \sigma^{2}\right)^{-\frac{n}{2}} \exp \left(-\frac{n \mu^{2}}{2 \sigma^{2}}\right) \exp \left(\frac{\mu}{\sigma^{2}} \sum_{i=1}^{n} x_{i}\right) \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n} x_{i}^{2}\right)
\end{aligned}
$$

Hence, by the Factorization theorem, $\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{2}\right)$ are sufficient for μ and σ^{2}. Also, since $\left\{\left(\frac{\mu}{\sigma^{2}},-\frac{1}{2 \sigma^{2}}\right): \mu \in \mathbb{R}, \sigma^{2} \in \mathbb{R}^{+}\right\}$contains an open set in \mathbb{R}^{2}, it follows that $\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{2}\right)$ are complete as well. Now, note that

$$
\mathbb{E} \sum_{i=1}^{n} X_{i}=n \mathbb{E} X_{1}=n \mu
$$

Hence,

$$
\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\mu
$$

and so, $\hat{\mu}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is an UMVUE for μ. Now, define

$$
\begin{aligned}
\hat{\sigma}^{2} & :=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}^{2}-2 X_{i} \bar{X}+\bar{X}^{2}\right) \\
& =\frac{1}{n-1}\left[\left(\sum_{i=1}^{n} X_{i}^{2}\right)-\frac{2}{n}\left(\sum_{i=1}^{n} X_{i}\right)^{2}+\frac{1}{n}\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right] \\
& =\frac{1}{n-1}\left(\sum_{i=1}^{n} X_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right)
\end{aligned}
$$

which is a function of our complete and sufficient statistics. Since

$$
\begin{aligned}
\mathbb{E} \hat{\sigma}^{2} & =\frac{1}{n-1} \mathbb{E}\left[\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right]=\frac{1}{n-1} \mathbb{E}\left[\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}\right] \\
& =\frac{1}{n-1}\left[n\left(\mu^{2}+\sigma^{2}\right)-n\left(\mu^{2}+\frac{\sigma^{2}}{n}\right)\right]=\frac{1}{n-1} \frac{n-1}{n} \sigma^{2}=\sigma^{2}
\end{aligned}
$$

by Lehmann-Scheffe theorem, we have that $\hat{\sigma}^{2}$ is an UMVUE for σ^{2}.
b) Derive the marginal distributions of $\hat{\mu}$ and $\hat{\sigma}^{2}$, and prove that these estimators are independent.

Solution. Since $\sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right)$, we have that

$$
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right) .
$$

Now, define $P=I-\frac{1}{n} \mathbf{1 1}^{T}$. Note that P is an orthogonal projection, i.e. $P^{2}=P$, and $P^{T}=P$. Since P is symmetric, there exists T and Λ such that $P=T^{T} \Lambda T$, where T is orthogonal and Λ is diagonal. Also, since P is an orthogonal projection, the entries of Λ are either 0 or 1 . Then,

$$
\begin{aligned}
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} & =\left\|\left[\begin{array}{c}
X_{1}-\bar{X} \\
\vdots \\
X_{n}-\bar{X}
\end{array}\right]\right\|^{2}=\|P \boldsymbol{X}\|^{2}=(P \boldsymbol{X})^{T} P \boldsymbol{X}=\boldsymbol{X}^{T} P^{T} P \boldsymbol{X}=\boldsymbol{X}^{T} P \boldsymbol{X} \\
& =\boldsymbol{X}^{T} T^{T} \Lambda T \boldsymbol{X}=(T \boldsymbol{X})^{T} \Lambda(T \boldsymbol{X}) .
\end{aligned}
$$

Now,

$$
\begin{aligned}
\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} & =\sum_{i=1}^{n}\left[\frac{X_{i}-\mu-(\bar{X}-\mu)}{\sigma}\right]^{2}=\sum_{i=1}^{n}\left(Z_{i}-\bar{Z}\right)^{2}, \quad Z_{i} \sim \mathcal{N}(0,1) \\
& =\boldsymbol{Z}^{T} P \boldsymbol{Z}=(T \boldsymbol{Z})^{T} \Lambda(T \boldsymbol{Z})={ }_{d} \boldsymbol{Z}^{T} \Lambda \boldsymbol{Z}
\end{aligned}
$$

(since normal distributions are invariant under reflection and rotation)

$$
=\sum_{i=1}^{n} \lambda_{i} Z_{i}^{2}=(n-1) Z_{1}^{2} \sim \chi_{n-1}^{2}
$$

since

$$
\sum_{i=1}^{n} \lambda_{i}=\operatorname{tr}(P)=\operatorname{tr}\left(I-\frac{1}{n} \mathbf{1 1}^{T}\right)=n-\frac{1}{n} \operatorname{tr}\left(\mathbf{1 1}^{T}\right)=n-1
$$

Now, since

$$
\begin{aligned}
\operatorname{Cov}\left(\frac{1}{n} \mathbf{1}^{T} \boldsymbol{X}, P \boldsymbol{X}\right) & =\frac{1}{n} \mathbf{1}^{T} \operatorname{Var}(\boldsymbol{X}) P^{T}=\frac{1}{n} \mathbf{1}^{T}\left(\sigma^{2} I\right) P=\frac{\sigma^{2}}{n} \mathbf{1}^{T}\left(I-\frac{1}{n} \mathbf{1 1}^{T}\right) \\
& =\frac{\sigma^{2}}{n}\left(\mathbf{1}^{T}-\frac{1}{n} \mathbf{1}^{T} \mathbf{1}^{T}\right)=\frac{\sigma^{2}}{n}\left(\mathbf{1}^{T}-\frac{1}{n} n \mathbf{1}^{T}\right)=0,
\end{aligned}
$$

we have that $\bar{X}=\frac{1}{n} \mathbf{1}^{T} \boldsymbol{X}$ and $P \boldsymbol{X}=\boldsymbol{X}-\mathbf{1} \bar{X}$ are independent. Now, for any measurable f, we know that \bar{X} and $f(\boldsymbol{X}-\mathbf{1} \bar{X})$ will be independent. In particular, take $f(\boldsymbol{x})=\frac{1}{n-1} \boldsymbol{x}^{T} \boldsymbol{x}$. Then,

$$
f(\boldsymbol{X}-\mathbf{1} \bar{X})=\frac{1}{n-1}\left[\begin{array}{lll}
X_{1}-\bar{X} & \cdots & X_{n}-\bar{X}
\end{array}\right]\left[\begin{array}{c}
X_{1}-\bar{X} \\
\vdots \\
X_{n}-\bar{X}
\end{array}\right]=\hat{\sigma}^{2}
$$

and so, $\hat{\mu}$ and $\hat{\sigma}^{2}$ are independent.
2. For $\theta \in \mathbb{R}$, let $X_{1}, X_{2}, \ldots, X_{n}$ be independent continuous random variables, each having density function

$$
p(x ; \theta)=\exp (-(x-\theta)) I\{x>\theta\},
$$

where $I(x)=1$ if $x>0$ and $I(x)=0$ otherwise. Let $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ be the corresponding order statistics.
a) Find the joint density function of $\left(X_{(1)}, X_{(2)}\right)$, and the marginal densities of $X_{(1)}$ and $X_{(2)}$. Solution. First, note that the cumulative distribution function is

$$
F(x)=P(X \leq x)=\int_{\theta}^{x} e^{-(x-\theta)} d x=1-e^{-(x-\theta)}
$$

for $x>\theta$. Then, the joint density function is

$$
\begin{aligned}
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) & =\binom{n}{1,1, n-2} f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)\left(1-F\left(x_{2}\right)\right)^{n-2} \\
& =\frac{n!}{(n-2)!} e^{-\left(x_{1}-\theta\right)} e^{-\left(x_{2}-\theta\right)}\left(e^{-\left(x_{2}-\theta\right)}\right)^{n-2} \\
& =n(n-1) e^{-\left(x_{1}-\theta\right)} e^{-(n-1)\left(x_{2}-\theta\right)} .
\end{aligned}
$$

As for the marginal densities, we have

$$
f_{X_{(1)}}\left(x_{1}\right)=\binom{n}{n-1} f_{X_{1}}\left(x_{1}\right)\left(1-F\left(x_{1}\right)\right)^{n-1}=n e^{-n\left(x_{1}-\theta\right)}
$$

and

$$
f_{X_{(2)}}\left(x_{2}\right)=\binom{n}{1,1, n-2} F\left(x_{2}\right) f_{X_{2}}\left(x_{2}\right)\left(1-F\left(x_{2}\right)\right)^{n-2}=n(n-1)\left(1-e^{-\left(x_{2}-\theta\right)}\right) e^{-(n-1)\left(x_{2}-\theta\right)}
$$

b) Show that

$$
T=X_{(1)}-(n-1)\left(X_{(2)}-X_{(1)}\right) / n
$$

is an unbiased estimator of θ.
Solution. Note that

$$
\mathbb{E} X_{(1)}=\int_{\theta}^{\infty} x n e^{-n(x-\theta)} d x=-\left.x e^{-n(x-\theta)}\right|_{\theta} ^{\infty}+\int_{\theta}^{\infty} e^{-n(x-\theta)} d x=\theta-\left.\frac{e^{-n(x-\theta)}}{n}\right|_{\theta} ^{\infty}=\theta+\frac{1}{n}
$$

and

$$
\begin{aligned}
\mathbb{E} X_{(2)}= & \int_{\theta}^{\infty} x n(n-1) e^{-(n-1)(x-\theta)} d x-\int_{\theta}^{\infty} x n(n-1) e^{-n(x-\theta)} d x \\
= & \left(-\left.n x e^{-(n-1)(x-\theta)}\right|_{\theta} ^{\infty}+\int_{\theta}^{\infty} n e^{-(n-1)(x-\theta)} d x\right) \\
& -\left(-\left.(n-1) x e^{-n(x-\theta)}\right|_{\theta} ^{\infty}+\int_{\theta}^{\infty}(n-1) e^{-n(x-\theta)} d x\right) \\
= & \left(n \theta+\frac{n}{n-1}\right)-\left((n-1) \theta+\frac{n-1}{n}\right)=\theta+\frac{2 n-1}{n(n-1)}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\mathbb{E} T & =\mathbb{E} X_{(1)}-\frac{n-1}{n}\left(\mathbb{E} X_{(2)}-\mathbb{E} X_{(1)}\right)=\left(\theta+\frac{1}{n}\right)-\frac{n-1}{n}\left(\theta-\frac{2 n-1}{n(n-1)}-\theta-\frac{1}{n}\right) \\
& =\left(\theta+\frac{1}{n}\right)-\frac{n-1}{n} \frac{n}{n(n-1)}=\theta,
\end{aligned}
$$

and so, T is an unbiased estimator of θ.
c) Find the maximum likelihood estimate of θ.

Solution. The likelihood function is

$$
\mathcal{L}(\theta ; \boldsymbol{x})=\prod_{i=1}^{n} \exp \left(-\left(x_{i}-\theta\right)\right)=\exp \left(-\sum_{i=1}^{n} x_{i}\right) \exp (n \theta)
$$

and so, the log-likelihood function is

$$
\log \mathcal{L}(\theta ; \boldsymbol{x})=-\sum_{i=1}^{n} x_{i}+n \theta
$$

Hence, the derivative of the log-likelihood function with respect to θ is

$$
\frac{d}{d \theta} \log \mathcal{L}(\theta ; \boldsymbol{x})=n>0
$$

which means that the log-likelihood function is always increasing. Hence, the MLE is the maximum possible value of θ, which is

$$
\hat{\theta}=X_{(1)}
$$

