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1. Let X1, . . . , Xn be iid with distribution N (µ, σ2) and n ≥ 2.

a) Find UMVU estimates µ̂ and σ̂2 of µ and σ2, respectively, and prove that they are such.

Solution. The joint density is
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Hence, by the Factorization theorem,
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which is a function of our complete and sufficient statistics. Since
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by Lehmann-Scheffe theorem, we have that σ̂2 is an UMVUE for σ2.



b) Derive the marginal distributions of µ̂ and σ̂2, and prove that these estimators are independent.

Solution. Since
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Now, define P = I − 1
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T . Note that P is an orthogonal projection, i.e. P 2 = P , and PT = P .
Since P is symmetric, there exists T and Λ such that P = TTΛT , where T is orthogonal and Λ
is diagonal. Also, since P is an orthogonal projection, the entries of Λ are either 0 or 1. Then,
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we have that X̄ = 1
n1

TX and PX = X − 1X̄ are independent. Now, for any measurable f , we
know that X̄ and f(X − 1X̄) will be independent. In particular, take f(x) = 1
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and so, µ̂ and σ̂2 are independent.



2. For θ ∈ R, let X1, X2, . . . , Xn be independent continuous random variables, each having density func-
tion

p(x; θ) = exp (− (x− θ)) I{x > θ},
where I(x) = 1 if x > 0 and I(x) = 0 otherwise. Let X(1), X(2), . . . , X(n) be the corresponding order
statistics.

a) Find the joint density function of
(
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)
, and the marginal densities of X(1) and X(2).

Solution. First, note that the cumulative distribution function is
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b) Show that
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Solution. Note that
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and so, T is an unbiased estimator of θ.



c) Find the maximum likelihood estimate of θ.

Solution. The likelihood function is

L(θ;x) =
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and so, the log-likelihood function is

logL(θ;x) = −
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Hence, the derivative of the log-likelihood function with respect to θ is

d
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which means that the log-likelihood function is always increasing. Hence, the MLE is the maxi-
mum possible value of θ, which is

θ̂ = X(1) .


