Fall 2011

1. Let Y_{1}, \ldots, Y_{n} be a random sample from the density $p(y \mid \theta)=2 y / \theta^{2}, 0<y<\theta$, where $\theta>0$ is an unknown parameter.
a) Let $\bar{Y}=(1 / n) \sum_{i=1}^{n} Y_{i}$. Find the mean and variance of \bar{Y}.

Solution. Note that

$$
\mathbb{E} \bar{Y}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E} Y_{i}=\int_{0}^{\theta} y \frac{2 y}{\theta^{2}} d y=\left.\frac{2}{3} \frac{y^{3}}{\theta^{2}}\right|_{0} ^{\theta}=\frac{2}{3} \theta
$$

and

$$
\mathbb{E} Y_{1}^{2}=\int_{0}^{\theta} y^{2} \frac{2 y}{\theta^{2}} d y=\left.\frac{1}{2} \frac{y^{4}}{\theta^{2}}\right|_{0} ^{\theta}=\frac{1}{2} \theta^{2}
$$

Hence,

$$
\operatorname{Var}(\bar{Y})=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(Y_{i}\right)=\frac{1}{n}\left(\mathbb{E} Y_{1}^{2}-\left(\mathbb{E} Y_{1}\right)^{2}\right)=\frac{1}{n}\left(\frac{1}{2} \theta^{2}-\frac{4}{9} \theta^{2}\right)=\frac{1}{18 n} \theta^{2}
$$

b) Show that $\hat{\theta}=(3 / 2) \bar{Y}$ is an unbiased estimator of θ.

Solution. As we saw in part (a), $\mathbb{E} \bar{Y}=\frac{2}{3} \theta$. Hence,

$$
\mathbb{E}\left(\frac{3}{2} \bar{Y}\right)=\frac{3}{2} \frac{2}{3} \theta=\theta
$$

and so, $\frac{3}{2} \bar{Y}$ is an unbiased estimator of θ.
c) State the Cramer-Rao inequality for the above situation.

Solution. The likelihood function is

$$
\mathcal{L}(\theta ; \boldsymbol{y})=\prod_{i=1}^{n} \frac{2 y_{i}}{\theta^{2}}=\frac{2^{n} \prod y_{i}}{\theta^{2 n}}
$$

and so, the log-likelihood function is

$$
\log \mathcal{L}(\theta ; \boldsymbol{y})=n \log 2+\sum_{i=1}^{n} \log y_{i}-2 n \log \theta
$$

Hence,

$$
\frac{d}{d \theta} \log \mathcal{L}(\theta ; \boldsymbol{y})=-\frac{2 n}{\theta}, \text { and } \frac{d^{2}}{d \theta^{2}} \log \mathcal{L}(\theta ; \boldsymbol{y})=\frac{2 n}{\theta^{2}}
$$

and so, the Fisher information is

$$
\mathcal{I}(\theta)=-\frac{2 n}{\theta^{2}}
$$

Thus, if the regularity conditions hold, Cramer-Rao inequality states that for any unbiased estimator $W(\boldsymbol{Y})$,

$$
\operatorname{Var}(W(\boldsymbol{Y})) \geq-\frac{\theta^{2}}{2 n}
$$

d) Show that $\operatorname{Var}(\hat{\theta})$ violates the Cramer-Rao inequality. Explain why.
2. a) Let X have normal distribution with mean θ and variance σ^{2}, and let g be a differentiable function satisfying $\mathbb{E}\left|g^{\prime}(X)\right|<\infty$. Show that

$$
\mathbb{E}[g(X)(X-\theta)]=\sigma^{2} \mathbb{E} g^{\prime}(X)
$$

[HINT: use integration by parts of Fubini's theorem.]
Solution. We have

$$
\begin{aligned}
\mathbb{E}[g(X)(X-\theta)] & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{\infty} g(x)(x-\theta) \exp \left(-\frac{(x-\theta)^{2}}{2 \sigma^{2}}\right) d x \\
& =-\frac{1}{\sqrt{2 \pi \sigma^{2}}} \sigma^{2}\left[\frac{\left.\left.g(x) \exp \left(-\frac{(x-\theta)^{2}}{2 \sigma^{2}}\right)\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} g^{\prime}(x) \exp \left(-\frac{(x-\theta)^{2}}{2 \sigma^{2}}\right) d x\right]}{}\right. \\
& =\sigma^{2} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{\infty} g^{\prime}(x) \exp \left(-\frac{(x-\theta)^{2}}{2 \sigma^{2}}\right) d x=\sigma^{2} \mathbb{E} g^{\prime}(X),
\end{aligned}
$$

where the marked quantity vanishes to 0 since $\mathbb{E}\left|g^{\prime}(X)\right|<\infty$.
b) Let $g(x)$ be a function with $-\infty<\mathbb{E} g(X)<\infty$ and $g(-1)$ is finite. If X has a Poisson distribution with mean λ, show that

$$
\mathbb{E}(\lambda g(X))=\mathbb{E}(X(g(X-1)))
$$

Solution. We have

$$
\begin{aligned}
\mathbb{E}(\lambda g(X)) & =\sum_{x=0}^{\infty} \lambda g(x) \frac{e^{-\lambda} \lambda^{x}}{x!}=\sum_{x=0}^{\infty} g(x) \frac{e^{-\lambda} \lambda^{x+1}}{(x+1)!}(x+1) \\
& \stackrel{(*)}{=} \sum_{x=0}^{\infty} x g(x-1) \frac{e^{-\lambda} \lambda^{x}}{x!} \\
& =\mathbb{E}(X(g(X-1)))
\end{aligned}
$$

where the index shift in $(*)$ works because $g(-1)$ is finite.

