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1. Let µ > 0 be an unknown parameter, and suppose that X1 and X2 are independent random variables,
each having the exponential distribution with density function

p(x;µ) =
1

µ
exp

(
−x

µ

)
, x > 0.

It is clear that since the distribution p(x;µ) has mean µ that an unbiased estimator of µ is given by
X = (X1 +X2)/2.

a) Calculate the variance of the estimator X of µ.

Solution. Note that

EX2
1 =

∫ ∞

0

x2 1

µ
e−x/µ dx =�������:0

−x2e−x/µ
∣∣∣∞
0

+

∫ ∞

0

2xe−x/µ dx =
�������:0
−2µxe−x/µ

∣∣∣∞
0

+

∫ ∞

0

2µe−x/µ dx

= −2µ2e−x/µ
∣∣∣∞
0

= 2µ2.

Then,

EX̄2 = E
(
X1 +X2

2

)2

=
1

4
EX2

1 +
1

2
EX1EX2 +

1

4
EX2

2 =
µ2

2
+

µ2

2
+

µ2

2
=

3

2
µ2,

and so,

Var(X̄) = EX̄2 −
(
EX̄
)2

=
3

2
µ2 − µ2 =

µ2

2
.

b) Now consider the estimator of µ given by T (X1, X2) =
√
X1X2. Calculate the bias of T (X1, X2).

Solution. Note that

E
√
X1 =

∫ ∞

0

√
x
1

µ
e−x/µ dx =

∫ ∞

0

2u2

µ
e−u2/µ du =�������:0

−ue−u2/µ
∣∣∣∞
0

+

∫ ∞

0

e−u2/µ du =

√
π

2

√
µ.

Then, ET = E
√
X1X2 = E

√
X1E

√
X2 = π

4µ, and so the bias of T is

π

4
µ− µ =

(π
4
− 1
)
µ .

c) Show that the mean square error of T (X1, X2) as an estimator of µ, that is

MSE(T ) = E [T (X1, X2)− µ]
2
,

is strictly smaller than the mean squared error of the estimator X of µ.

Solution. We have

MSE(T ) = E[T − µ]2 = ET 2 − 2µET + µ2

= EX1X2 − 2
(π
4

)
µ2 + µ2

= µ2 − π

2
µ2 + µ2 =

(
2− π

2

)
µ2,

and

MSE(X̄) = E[X̄ − µ]2 = EX̄2 − 2µEX̄ + µ2

=
3

2
µ2 − 2µ2 + µ2 =

1

2
µ2.

Since 2− π
2 < 1

2 , it follows that MSE(T ) < MSE(X̄).



2. A random variable X has the Weibull(α, β) distribution if

Pα,β(X > x) = exp
[
−(x/α)β

]
for x ≥ 0.

Suppose thatX1, . . . , Xn are iid Weibull(α0, β0), where (α0, β0) is in the interior of a compact parameter
space Θ ⊆ R+ × R+.

a) Show that the MLE of α is given by

α̂ =

(
n−1

n∑
i=1

X β̂
i

)1/β̂

,

where β̂ is the MLE of β.

Solution. Note that P (X ≤ x;α, β) = 1− exp
[
−
(
x
α

)β]
, and so, the probability density function

of X is

f(x;α, β) = β
xβ−1

αβ
exp

[
−
(x
α

)β]
.

Then, the likelihood function is

L(α, β;x) =

n∏
i=1

(
β
xβ−1
i

αβ
exp

[
−
(xi

α

)β])
=

βn

αβn

(
n∏

i=1

xi

)β−1

exp

[
−

n∑
i=1

(xi

α

)β]
,

and so, the log-likelihood function is

logL(α, β;x) = n log β − βn logα+ (β − 1) log

(
n∏

i=1

xi

)
−

n∑
i=1

(xi

α

)β
.

The partial derivative of the log-likelihood function with respect to α is

∂

∂α
logL(α, β;x) = −βn

α
+ β

∑n
i=1 x

β
i

αβ+1
,

and setting it equal to zero gives us

βn

α
= β

∑n
i=1 x

β
i

αβ+1
=⇒ αβ = n−1

n∑
i=1

xβ
i .

Thus, the MLE of α is

α̂ =

(
n−1

n∑
i=1

X β̂
i

)1/β̂

.



b) As an alternative to maximum likelihood, let β̃ be any estimator of β and consider the estimator
of α given by

α̃ =

(
n−1

n∑
i=1

X β̃
i

)1/β̃

.

Show that α̃ is a “pseudo-MLE” in the sense that it maximizes l(α, β̃), where l(α, β) is the
log-likelihood function.

Solution. From part (a), we have that

l(α, β̃) = n log β̃ − β̃n logα+ (β̃ − 1) log

(
n∏

i=1

xi

)
−

n∑
i=1

(xi

α

)β̃
.

Taking the partial derivative of l(α, β̃) with respect to α gives us

∂

∂α
l(α, β̃) = − β̃n

α
+ β̃

∑n
i=1 x

β̃
i

αβ̃+1
,

and so, similarly as above, we see that

α̃ =

(
n−1

n∑
i=1

X β̃
i

)1/β̃

maximizes l(α, β̃), and so, α̃ is “pseudo-MLE.”

c) Prove that EXβ0

1 = αβ0

0 .

Solution. We have

EXβ
1 =

∫ ∞

0

xββ
xβ−1

αβ
exp

[
−
(x
α

)β]
dx =

∫ ∞

0

β
x2β−1

αβ
exp

[
−
(x
α

)β]
dx

=
�����������:0

−xβ exp

[
−
(x
α

)β]∣∣∣∣∞
0

+

∫ ∞

0

βxβ−1 exp

[
−
(x
α

)β]
dx

= −αβ exp

[
−
(x
α

)β]∣∣∣∣∞
0

= αβ ,

and so, EXβ0

1 = αβ0

0 .

d) Prove that if β̃ is any consistent estimator, then α̃ given in (b) is consistent for α.

[HINT: Letting Yn(β) = n−1
∑

i X
β
i , argue that it suffices to prove that Yn(β̃) → αβ0 in proba-

bility. Then, using the convexity of Yn(β), show that

|Yn(β̃)− Yn(β0)|
p−→ 0

and complete the argument by applying (c) and the law of large numbers.]


