Fall 2009

1. Let X_{1}, \ldots, X_{n} be a random sample from a Bernoulli distribution with parameter $p \in(0,1)$, that is,

$$
P\left(X_{i}=1\right)=p, \quad \text { and } \quad P\left(X_{i}=0\right)=1-p
$$

a) Determine the UMVUE of

$$
q(p)=p(1-p)
$$

Solution. The joint density is

$$
f(\boldsymbol{x} ; p)=\prod_{i=1}^{n} p^{x_{i}}(1-p)^{1-x_{i}}=p^{\sum x_{i}}(1-p)^{n-\sum x_{i}}
$$

and so, by the Factorization theorem, $T(\boldsymbol{X})=\sum_{i=1}^{n} X_{i}$ is sufficient. We can also write the joint density as

$$
f(\boldsymbol{x} ; p)=(1-p)^{n}\left(\frac{p}{1-p}\right)^{\sum x_{i}}=(1-p)^{n} \exp \left(\sum_{i=1}^{n} x_{i} \log \left(\frac{p}{1-p}\right)\right)
$$

and since $\{\log p-\log (1-p): p \in(0,1)\}$ contains an open set in \mathbb{R}, we have that $T(\boldsymbol{X})=\sum_{i=1}^{n} X_{i}$ is a complete and sufficient statistic. Note that $\mathbf{1}\left(X_{1}=1, X_{2}=0\right)$ is an unbiased estimator of $p(1-p)$. Also,

$$
\begin{aligned}
P\left(X_{1}=1, X_{2}=0 \mid \sum_{i=1}^{n} X_{i}=k\right) & =\frac{P\left(X_{1}=1, X_{2}=0, \sum_{i=3}^{n} X_{i}=k-1\right)}{P\left(\sum_{i=1}^{n} X_{i}=k\right)} \\
& =\frac{p(1-p)\binom{n-2}{k-1} p^{k-1}(1-p)^{n-k-1}}{\binom{n}{k} p^{k}(1-p)^{n-k}} \\
& =\frac{\binom{n-2}{k-1} p^{k}(1-p)^{n-k}}{\binom{n}{k} p^{k}(1-p)^{n-k}} \\
& =\frac{\binom{n-2}{k-1}}{\binom{n}{k}} \quad(\text { yay sufficiency! }) \\
& =\frac{k(n-k)}{n(n-1)},
\end{aligned}
$$

and so,

$$
\mathbb{E}\left(\mathbf{1}\left(X_{1}=1, X_{2}=0\right) \mid \sum_{i=1}^{n} X_{i}\right)=P\left(X_{1}=1, X_{2}=0 \mid \sum_{i=1}^{n} X_{i}\right)=\frac{\sum X_{i}\left(n-\sum X_{i}\right)}{n(n-1)}
$$

Hence,

$$
\frac{n}{n-1} \frac{\sum X_{i}}{n}\left(1-\frac{\sum X_{i}}{n}\right)
$$

is the UMVUE for $p(1-p)$.
b) Prove that the odds ratio

$$
q(p)=\frac{p}{1-p}
$$

is not unbiasedly estimatable.
Solution. Suppose that $S(\boldsymbol{X})$ is an unbiased estimator of $q(p)$. Then,

$$
S^{*}(\boldsymbol{X}):=\mathbb{E}[S(\boldsymbol{X}) \mid T(\boldsymbol{X})]
$$

is a UMVUE of $q(p)$, and so, $S^{*}(\boldsymbol{X})$ can be written as a function of $T(\boldsymbol{X})$, say $S^{*}(\boldsymbol{X})=g(T(\boldsymbol{X}))$. Then,

$$
\frac{p}{1-p}=\mathbb{E} S^{*}(\boldsymbol{X})=\sum_{k=0}^{n} g(k)\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Note that the RHS is a polynomial in p of degreen at most n, while $p /(1-p)$ cannot be written as a polynomial, which is a contradiction. Hence, no unbiased estimator of $p /(1-p)$ exists.
c) Determine necessary and sufficient conditions on $q(p)$ such that the UMVUE of $q(p)$ exists.

Solution. If $q(p)$ is a polynomial in p of degree at most n, then UMVUE of $q(p)$ exists. Is this condition sufficient?...
2. Let Y_{1}, \ldots, Y_{n} be independent with distribution $Y_{i} \sim \mathcal{N}\left(\theta_{0}+\theta_{1} x_{i}, 1\right)$, where x_{1}, \ldots, x_{n} are known real numbers.
a) Determine the maximum likelihood estimator $\left(\hat{\theta}_{0}, \hat{\theta}_{1}\right)$ of $\left(\theta_{0}, \theta_{1}\right)$.

Solution. The likelihood function is

$$
\mathcal{L}\left(\theta_{0}, \theta_{1} ; \boldsymbol{y}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{\left(y_{i}-\theta_{0}-\theta_{1} x_{i}\right)^{2}}{2}\right)=(2 \pi)^{-\frac{n}{2}} \exp \left(-\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\theta_{0}-\theta_{1} x_{i}\right)^{2}\right)
$$

and so, the log-likelihood function is

$$
\log \mathcal{L}\left(\theta_{0}, \theta_{1} ; \boldsymbol{y}\right)=-\frac{n}{2} \log (2 \pi)-\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\theta_{0}-\theta_{1} x_{i}\right)^{2}
$$

Now, the first partial derivatives are

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{0}} \log \mathcal{L} & =\sum_{i=1}^{n}\left(y_{i}-\theta_{0}-\theta_{1} x_{i}\right)=\sum_{i=1}^{n} y_{i}-n \theta_{0}-\theta_{1} \sum_{i=1}^{n} x_{i}, \text { and } \\
\frac{\partial}{\partial \theta_{1}} \log \mathcal{L} & =\sum_{i=1}^{n} x_{i}\left(y_{i}-\theta_{0}-\theta_{1} x_{i}\right)=\sum_{i=1}^{n} x_{i} y_{i}-\theta_{0} \sum_{i=1}^{n} x_{i}-\theta_{1} \sum_{i=1}^{n} x_{i}^{2} .
\end{aligned}
$$

Setting them equal to zero gives us the linear system

$$
\begin{aligned}
n \theta_{0}+\theta_{1} \sum_{i=1}^{n} x_{i} & =\sum_{i=1}^{n} y_{i} \\
\theta_{0} \sum_{i=1}^{n} x_{i}+\theta_{1} \sum_{i=1}^{n} x_{i}^{2} & =\sum_{i=1}^{n} x_{i} y_{i}
\end{aligned}
$$

The second partial derivatives are

$$
\frac{\partial^{2}}{\partial \theta_{0}^{2}} \log \mathcal{L}=-n, \frac{\partial^{2}}{\partial \theta_{0} \partial \theta_{1}} \log \mathcal{L}=-\sum_{i=1}^{n} x_{i}, \text { and } \frac{\partial^{2}}{\partial \theta_{1}^{2}} \log \mathcal{L}=-\sum_{i=1}^{n} x_{i}^{2}
$$

The second derivative test gives us that

$$
\left(\hat{\theta}_{0}, \hat{\theta}_{1}\right)=\left(\frac{\sum x_{i}^{2} \sum Y_{i}-\sum x_{i} \sum\left(x_{i} Y_{i}\right)}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}, \frac{n \sum\left(x_{i} Y_{i}\right)-\sum x_{i} \sum Y_{i}}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}\right)
$$

is the MLE of $\left(\theta_{0}, \theta_{1}\right)$.
b) Calculate the Fisher information matrix for $\left(\theta_{0}, \theta_{1}\right)$.

Solution. Using the second derivatives we found in part (a), we see that the Fisher information matrix is

$$
\mathcal{I}\left(\theta_{0}, \theta_{1}\right)=\left[\begin{array}{cc}
n & \sum x_{i} \\
\sum x_{i} & \sum x_{i}^{2}
\end{array}\right] .
$$

c) Compare the Cramer-Rao lower bound for the estimation of θ_{1} when θ_{0} is unknown to the case where θ_{0} is known, and show this second lower bound is the smaller.
Solution. The inverse of the Fisher information matrix from part (b) is

$$
\mathcal{I}^{-1}\left(\theta_{0}, \theta_{1}\right)=\frac{1}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}\left[\begin{array}{cc}
\sum x_{i}^{2} & -\sum x_{i} \\
-\sum x_{i} & n
\end{array}\right] .
$$

Hence, the Cramer-Rao lower bound for the estimation of θ_{1} when θ_{0} is unknown is

$$
\frac{n}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}} .
$$

The log-likelihood function, when θ_{0} is known, is

$$
\log \mathcal{L}\left(\theta_{1} ; \boldsymbol{y}\right)=-\frac{n}{2} \log (2 \pi)-\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\theta_{0}-\theta_{1} x_{i}\right)^{2}
$$

and so,

$$
\frac{d}{d \theta_{1}} \log \mathcal{L}=\sum_{i=1}^{n} x_{i} y_{i}-\theta_{0} \sum_{i=1}^{n} x_{i}-\theta_{1} \sum_{i=1}^{n} x_{i}^{2}
$$

Hence,

$$
\frac{d^{2}}{d \theta_{1}^{2}} \log \mathcal{L}=-\sum i=1^{n} x_{i}^{2}
$$

and so, the Fisher information is

$$
\mathcal{I}\left(\theta_{1}\right)=\sum_{i=1}^{n} x_{i}^{2}
$$

and thus, the Cramer-Rao lower bound for the estimation of θ_{1} when θ_{0} is known is

$$
\frac{1}{\sum x_{i}^{2}}
$$

We see that the bound when θ_{0} is known is indeed smaller:

$$
\frac{1}{\sum x_{i}^{2}}=\frac{n}{n \sum x_{i}^{2}}<\frac{n}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}
$$

d) With both parameters unknown, find a simple necessary condition on a sequence of real numbers x_{1}, x_{2}, \ldots such that $\left(\hat{\theta}_{0}, \hat{\theta}_{1}\right)$ is consistent for $\left(\theta_{0}, \theta_{1}\right)$.

