
Fall 2009

1. Let X1, . . . , Xn be a random sample from a Bernoulli distribution with parameter p ∈ (0, 1), that is,

P (Xi = 1) = p, and P (Xi = 0) = 1− p.

a) Determine the UMVUE of
q(p) = p(1− p).

Solution. The joint density is

f(x; p) =

n∏
i=1

pxi(1− p)1−xi = p
∑

xi(1− p)n−
∑

xi ,

and so, by the Factorization theorem, T (X) =
∑n

i=1 Xi is sufficient. We can also write the joint
density as

f(x; p) = (1− p)n
(

p

1− p

)∑
xi

= (1− p)n exp

(
n∑

i=1

xi log

(
p

1− p

))
,

and since {log p− log(1−p) : p ∈ (0, 1)} contains an open set in R, we have that T (X) =
∑n

i=1 Xi

is a complete and sufficient statistic. Note that 1(X1 = 1, X2 = 0) is an unbiased estimator of
p(1− p). Also,

P

(
X1 = 1, X2 = 0

∣∣∣∣∣
n∑

i=1

Xi = k

)
=

P (X1 = 1, X2 = 0,
∑n

i=3 Xi = k − 1)

P (
∑n

i=1 Xi = k)

=
p(1− p)

(
n−2
k−1

)
pk−1(1− p)n−k−1(

n
k

)
pk(1− p)n−k

=

(
n−2
k−1

)
pk(1− p)n−k(

n
k

)
pk(1− p)n−k

=

(
n−2
k−1

)(
n
k

) (yay sufficiency!)

=
k(n− k)

n(n− 1)
,

and so,

E

(
1(X1 = 1, X2 = 0)

∣∣∣∣∣
n∑

i=1

Xi

)
= P

(
X1 = 1, X2 = 0

∣∣∣∣∣
n∑

i=1

Xi

)
=

∑
Xi(n−

∑
Xi)

n(n− 1)
.

Hence,

n

n− 1

∑
Xi

n

(
1−

∑
Xi

n

)
is the UMVUE for p(1− p).



b) Prove that the odds ratio

q(p) =
p

1− p

is not unbiasedly estimatable.

Solution. Suppose that S(X) is an unbiased estimator of q(p). Then,

S∗(X) := E [S(X) | T (X)]

is a UMVUE of q(p), and so, S∗(X) can be written as a function of T (X), say S∗(X) = g(T (X)).
Then,

p

1− p
= ES∗(X) =

n∑
k=0

g(k)

(
n

k

)
pk(1− p)n−k.

Note that the RHS is a polynomial in p of degreen at most n, while p/(1− p) cannot be written
as a polynomial, which is a contradiction. Hence, no unbiased estimator of p/(1− p) exists.

c) Determine necessary and sufficient conditions on q(p) such that the UMVUE of q(p) exists.

Solution. If q(p) is a polynomial in p of degree at most n, then UMVUE of q(p) exists. Is this
condition sufficient?...



2. Let Y1, . . . , Yn be independent with distribution Yi ∼ N (θ0 + θ1xi, 1), where x1, . . . , xn are known real
numbers.

a) Determine the maximum likelihood estimator
(
θ̂0, θ̂1

)
of (θ0, θ1).

Solution. The likelihood function is

L(θ0, θ1;y) =
n∏

i=1

1√
2π

exp

(
− (yi − θ0 − θ1xi)

2

2

)
= (2π)−

n
2 exp

(
−1

2

n∑
i=1

(yi − θ0 − θ1xi)
2

)
,

and so, the log-likelihood function is

logL(θ0, θ1;y) = −n

2
log(2π)− 1

2

n∑
i=1

(yi − θ0 − θ1xi)
2.

Now, the first partial derivatives are

∂

∂θ0
logL =

n∑
i=1

(yi − θ0 − θ1xi) =

n∑
i=1

yi − nθ0 − θ1

n∑
i=1

xi, and

∂

∂θ1
logL =

n∑
i=1

xi(yi − θ0 − θ1xi) =

n∑
i=1

xiyi − θ0

n∑
i=1

xi − θ1

n∑
i=1

x2
i .

Setting them equal to zero gives us the linear system

nθ0 + θ1

n∑
i=1

xi =

n∑
i=1

yi

θ0

n∑
i=1

xi + θ1

n∑
i=1

x2
i =

n∑
i=1

xiyi

The second partial derivatives are

∂2

∂θ20
logL = −n,

∂2

∂θ0∂θ1
logL = −

n∑
i=1

xi, and
∂2

∂θ21
logL = −

n∑
i=1

x2
i .

The second derivative test gives us that

(
θ̂0, θ̂1

)
=

(∑
x2
i

∑
Yi −

∑
xi

∑
(xiYi)

n
∑

x2
i − (

∑
xi)2

,
n
∑

(xiYi)−
∑

xi

∑
Yi

n
∑

x2
i − (

∑
xi)2

)
is the MLE of (θ0, θ1).

b) Calculate the Fisher information matrix for (θ0, θ1).

Solution. Using the second derivatives we found in part (a), we see that the Fisher information
matrix is

I(θ0, θ1) =
[

n
∑

xi∑
xi

∑
x2
i

]
.



c) Compare the Cramer-Rao lower bound for the estimation of θ1 when θ0 is unknown to the case
where θ0 is known, and show this second lower bound is the smaller.

Solution. The inverse of the Fisher information matrix from part (b) is

I−1(θ0, θ1) =
1

n
∑

x2
i − (

∑
xi)2

[ ∑
x2
i −

∑
xi

−
∑

xi n

]
.

Hence, the Cramer-Rao lower bound for the estimation of θ1 when θ0 is unknown is

n

n
∑

x2
i − (

∑
xi)2

.

The log-likelihood function, when θ0 is known, is

logL(θ1;y) = −n

2
log(2π)− 1

2

n∑
i=1

(yi − θ0 − θ1xi)
2,

and so,

d

dθ1
logL =

n∑
i=1

xiyi − θ0

n∑
i=1

xi − θ1

n∑
i=1

x2
i .

Hence,
d2

dθ21
logL = −

∑
i = 1nx2

i ,

and so, the Fisher information is

I(θ1) =
n∑

i=1

x2
i ,

and thus, the Cramer-Rao lower bound for the estimation of θ1 when θ0 is known is

1∑
x2
i

.

We see that the bound when θ0 is known is indeed smaller:

1∑
x2
i

=
n

n
∑

x2
i

<
n

n
∑

x2
i − (

∑
xi)2

.

d) With both parameters unknown, find a simple necessary condition on a sequence of real numbers

x1, x2, . . . such that
(
θ̂0, θ̂1

)
is consistent for (θ0, θ1).


