Fall 2008

1. Let $p \in(0,1)$ and $q=1-p$.
a) Show that

$$
P(X=-1)=p \quad \text { and } \quad P(X=k)=q^{2} p^{k}, \quad k=0,1, \ldots
$$

defines a probability distribution for the random variable X.
Solution. Since

$$
\sum_{k=-1}^{\infty} P(X=k)=p+\sum_{k=0}^{\infty}(1-p)^{2} p^{k}=p+(1-p)^{2} \frac{1}{1-p}=p+(1-p)=1
$$

we see that the above is a probability distribution for X.
b) Given the single observation X, the statistic X is sufficient; is X also complete?

Solution. Suppose that we define g such that $g(-1)=-g(1)(1-p)^{2}$, and 0 everywhere else. Then,
$\mathbb{E} g(X)=p g(-1)+\sum_{k=0}^{\infty} g(k)(1-p)^{2} p^{k}=p g(0)+p\left(g(1)(1-p)^{2}+g(-1)\right)+\sum_{k=2}^{\infty} g(k) p^{k}(1-p)^{2}=0$.
However, $P(g(X)=0) \neq 1$, and so, we see that X is not complete.
c) Determine all unbiased estimators of p, given one observation of X from the family above. [HINT: Consider $T(X)=\mathbf{1}(X=-1)$.]
Solution. Suppose that $g(X)$ is an unbiased estimator of p. Then, we have

$$
p=\mathbb{E} g(X)=p g(-1)+(1-p)^{2} \sum_{k=0}^{\infty} g(k) p^{k}
$$

Since

$$
\begin{aligned}
\frac{1}{(1-p)^{2}}=\left(\sum_{k=0}^{\infty} p^{k}\right)^{2} & =\left(1+p+p^{2}+\cdots\right)\left(1+p+p^{2}+\cdots\right) \\
& =1+2 p+3 p^{2}+4 p^{3}+\cdots \\
& =\sum_{k=0}^{\infty}(k+1) p^{k}
\end{aligned}
$$

setting $\alpha=1-g(-1)$, we see that

$$
\frac{\alpha p}{(1-p)^{2}}=\alpha \sum_{k=0}^{\infty}(k+1) p^{k+1}=\sum_{k=0}^{\infty} g(k) p^{k}
$$

from which, it follows that $g(k)=\alpha k$ for $k=0,1,2, \ldots$, i.e.

$$
g(x)= \begin{cases}1-\alpha & x=-1 \\ \alpha x & x=0,1,2, \ldots\end{cases}
$$

Note that when $\alpha=0, g$ is precisely $\mathbf{1}(X=-1)$. Hence, any unbiased estimator of p is of the form

$$
g(X)=a \mathbf{1}(X=-1)+(1-a) X
$$

where $a \in \mathbb{R}$.
d) Find the UMVUE of p, or prove that it does not exist.

Solution. From part (c), we saw that all unbiased estimator of p are of the form

$$
g_{\alpha}(X)=\alpha \mathbf{1}(X=-1)+(1-\alpha) X
$$

Note that

$$
\begin{aligned}
\sum_{k=0}^{\infty} k^{2} p^{k} & =\sum_{k=0}^{\infty} k(k-1) p^{k}+\sum_{k=0}^{\infty} k p^{k}=p^{2} \sum_{k=0}^{\infty} k(k-1) p^{k-2}+p \sum_{k=0}^{\infty} k p^{k-1} \\
& =p^{2}\left(\frac{1}{1-p}\right)^{\prime \prime}+p\left(\frac{1}{1-p}\right)^{\prime}=\frac{2 p^{2}}{(1-p)^{3}}+\frac{p}{(1-p)^{2}}
\end{aligned}
$$

Hence, the second moment of $g_{\alpha}(X)$ is

$$
\begin{aligned}
\mathbb{E} g_{\alpha}(X)^{2} & =(1-\alpha)^{2} P(X=-1)+\sum_{k=0}^{\infty} \alpha^{2} k^{2} P(X=k) \\
& =(1-\alpha)^{2} p+\alpha^{2}(1-p)^{2} \sum_{k=0}^{\infty} k^{2} p^{k} \\
& =(1-\alpha)^{2} p+\alpha^{2}(1-p)^{2}\left[\frac{2 p^{2}}{(1-p)^{3}}+\frac{p}{(1-p)^{2}}\right] \\
& =(1-\alpha)^{2} p+\alpha^{2} \frac{p+p^{2}}{1-p}
\end{aligned}
$$

Thus, the variance of $g_{\alpha}(X)$ is

$$
\mathbb{E} g_{\alpha}(X)^{2}-\left(\mathbb{E} g_{\alpha}(X)\right)^{2}=\left(p+\frac{p+p^{2}}{1-p}\right) \alpha^{2}-2 p \alpha+p-p^{2}=\frac{2 p}{1-p} \alpha^{2}-2 p \alpha+\left(p-p^{2}\right)
$$

which is a quadratic in α with positive coefficient. Taking the derivative and setting it equal to zero gives us that the minimal variance occurs at

$$
\alpha=\frac{1-p}{2}
$$

which depends on p. Hence, there does not exist a UMVUE of p.
2. Consider the Pareto distribution $P(a, c)$, with positive parameters a and c, whose density function is given by

$$
p(x ; a, c)=\frac{a c^{a}}{x^{a+1}} \quad \text { for } x \geq c
$$

a) Verify $p(x ; a, c)$ is a density function, and find the associated distribution function.

Solution. Since

$$
\int_{c}^{\infty} \frac{a c^{a}}{x^{a+1}} d x=-\left.\frac{c^{a}}{x^{a}}\right|_{c} ^{\infty}=1
$$

we see that $p(x ; a, c)$ is indeed a density function. The associated distribution function is

$$
F_{X}(x)=P(X \leq x)=\int_{c}^{x} \frac{a c^{a}}{t^{a+1}} d t=-\left.\left(\frac{c}{t}\right)^{a}\right|_{c} ^{x}=1-\left(\frac{c}{x}\right)^{a}
$$

b) When X has density $p(x ; a, c)$, determine the distribution of $Y=\log X$. Note that

$$
F_{Y}(y)=P(\log Y \leq y)=P\left(Y \leq e^{y}\right)=1-\frac{c^{a}}{e^{a y}}
$$

and so, the density function of $Y=\log X$ is

$$
f(y ; a, c)=a c^{a} \exp (-a y), y \geq \log c
$$

which is the exponential distribution with parameter a shifted $\log c$.
c) Let X_{1}, \ldots, X_{n} be a random sample from the Pareto $P(a, c)$ distribution. Find the maximum likelihood estimators \hat{a} and \hat{c} of a and c, respectively.
Solution. The likelihood function is

$$
\mathcal{L}(a, c ; \boldsymbol{x})=\prod_{i=1}^{n} \frac{a c^{a}}{x_{i}^{a+1}}=a^{n} c^{a n}\left(\prod_{i=1}^{n} x_{i}\right)^{-(a+1)}
$$

and so, the log-likelihood function is

$$
\log \mathcal{L}(a, c ; \boldsymbol{x})=n \log a+a n \log c-(a+1) \sum_{i=1}^{n} \log x_{i}
$$

Taking the partial with respect to c, we get

$$
\frac{\partial}{\partial c} \log \mathcal{L}=\frac{a n}{c}
$$

which is always increasing, and so, the log-likelihood reaches its maximum with respect to c when

$$
\hat{c}=\min X_{i}=X_{(1)}
$$

Taking the partial of the log-likelihood with respect to a, we get

$$
\frac{\partial}{\partial a} \log \mathcal{L}=\frac{n}{a}+n \log c-\sum_{i=1}^{n} \log x_{i}
$$

and since

$$
\frac{\partial^{2}}{\partial a^{2}} \log \mathcal{L}=-\frac{n}{a^{2}}<0
$$

we see that the MLE for a is

$$
\hat{a}=\frac{n}{\sum_{i=1}^{n} \log X_{i}-n \log \hat{c}}=\frac{n}{\sum_{i=1}^{n} \log \left(X_{i} / X_{(1)}\right)} .
$$

d) Determine the distribution of \hat{c} or of $2 n a / \hat{a}$.

Solution. The distribution function of \hat{c} is

$$
F_{\hat{c}}(x)=P\left(\min X_{i} \leq x\right)=1-P\left(\min X_{i} \geq x\right)=1-\prod_{i=1}^{n} P\left(X_{i} \geq x\right)=1-\left(\frac{c}{x}\right)^{a n}
$$

and so, \hat{c} has density

$$
f(x ; a, c)=a n \frac{c^{a n}}{x^{a n+1}}
$$

for $x \geq c$. In part (b), we saw that $\log X_{i}$ has an exponential distribution, and, with some manipulation, we can see that $2 n a / \hat{a}$ can be expressed as a sum of iid exponential distributions, which has the Gamma distribution.

