Zejing Wang

1. Let f be a real valued function on a set X. Let \mathcal{M} be the smallest σ algebra on X for which f is measurable. Prove that $\{x\} \in \mathcal{M}$ for all $x \in X$ if and only if f is one-to-one.

(Hint: " \Leftarrow " is obvious. For " \Rightarrow " prove that $\mathcal{M} = f^{-1}(\mathcal{N})$, where \mathcal{N} is a collection of measurable sets of \mathbf{R} .)

Proof. For every $y \in f(X)$, $\{f^{-1}(y)\}$ is a single-point set. For every $x \in X$, there exists y such that y = f(x). Thus, $\{x\} \in M$ for all $x \in X$. " \Leftarrow " is proved.

Let $\mathcal{N}' = f^{-1}(\mathcal{N})$, where \mathcal{N} is a collection of measurable sets of **R**. $\mathcal{N}' \subset \mathcal{M}$ because f is measurable. Suffice to show that \mathcal{N}' is σ -algebra. Obviously, \mathcal{N} is σ -algebra. Let $\{N'_i\}_1^{\infty} \subset \mathcal{N}'$, then since $X = f^{-1}(\mathbf{R})$,

$$N_1'^c = f^{-1}(N_1)^c = f^{-1}(N_1^c) \in \mathcal{N}'.$$
$$\bigcup_{i=1}^{\infty} N_i' = \bigcup_{i=1}^{\infty} f^{-1}(N_i) = f^{-1}(\bigcup_{i=1}^{\infty} N_i) \in \mathcal{N}'.$$
$$N_1' \cap N_2' = f^{-1}(N_1) \cap f^{-1}(N_2) = f^{-1}(N_1 \cap N_2) \in \mathcal{N}'$$

Therefore, \mathcal{N}' is σ -algebra, which forces $\mathcal{N}' \supset \mathcal{M}$. Together we get $\mathcal{N}' = \mathcal{M}$. If $\{x\} \in M$, then $\{x\} = f^{-1}(f(x))$ for every $\{x\} \in M$, which means f is one-to-one.

2. Let *m* be the Lebesgue measure on [0, 1]. Let $f_n : [0, 1] \to \mathbf{R}$ be measurable functions. Assume that $\sum_{n=1}^{\infty} \int_0^1 |f_n(x)| dx \leq 1$. Prove that $f_n \to 0$ as $n \to \infty$ almost everywhere.

Proof.

$$A = \{x \in [0,1] | f_n \to 0\} = \bigcap_{r=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} \{x \in [0,1] | | f_n| < \frac{1}{r}\}$$

Since $\{x \in [0,1] | |f_n| < \frac{1}{r}\}$ is measurable for every n, r, A is measurable, thus A^c is also measurable. If $m(A^c) > 0$, let $F_j(x) = \sum_{i=1}^j |f_n(x)|$. From Fatou Lemma,

$$\int_{0}^{1} \lim_{n \to \infty} F_{n}(x) \le \lim_{n \to \infty} \int_{0}^{1} F_{n}(x) = \lim_{n \to \infty} \sum_{i=1}^{n} \int_{0}^{1} |f_{i}(x)| dx$$
$$= \sum_{i=1}^{\infty} \int_{0}^{1} |f_{i}(x)| dx \le 1.$$

For every $x \in A^c$, there exists ε_0 and $\{n_i\}_{i=1}^{\infty} \subset \mathbf{N}$ such that $f_{n_i}(x) > \varepsilon_0$. Since $F_n(x)$ increases as n increases,

$$\lim_{n \to \infty} F_n(x) \ge \sum_{i=1}^{\left[\frac{2}{\varepsilon_0 m(A^c)}\right]+1} |f_{n_i}(x)| > \varepsilon_0 \cdot \frac{2}{\varepsilon_0 m(A^c)} = \frac{2}{m(A^c)}$$

Take integrals on this equality, and

$$\int_0^1 \lim_{n \to \infty} F_n(x) \ge \int_{A^c} \lim_{n \to \infty} F_n(x) \ge \int_{A^c} \frac{2}{m(A^c)} = 2.$$

This is a contradiction! Thus, $m(A^c) = 0$ and m(A) = 1, meaning $f_n \to 0$ a.e. . \Box 3. Let *m* be the Lebesgue measure on [0,1]. Prove that there does not exists a measurable set $A \subset [0,1]$ such that $m(A \cap [a,b]) = (b-a)/2$ for all $0 \le a < b \le 1$. (Hint: generalization: for all measurable set $B \subset [0,1]$ $m(A \cap B) = 0$

(Hint: generalization: for all measurable set $B \subset [0,1], m(A \cap B) = m(B)/2.$)

Proof. First, for a=b, the conclusion is trivial. For any measurable $B \subset [0,1]$ and $m \in \mathbf{N}$, there exists finite disjoint union $\bigcup_{i=1}^{n} [a_i^{(m)}, b_i^{(m)}] \supset B$ such that $m(\bigcup_{i=1}^{n} [a_i^{(m)}, b_i^{(m)}]) < m(B) + \frac{1}{m}$. Thus, if A is measurable,

$$m(A \cap \bigcup_{i=1}^{n} [a_{i}^{(m)}, b_{i}^{(m)}]) \le m(A \cap B) + \frac{1}{m}$$

 $m(A \cap \bigcup_{i=1}^n [a_i^{(m)}, b_i^{(m)}])$ goes to $m(A \cap B)$ when m goes to $\infty.$ Besides,

$$m(A \cap \bigcup_{i=1}^{n} [a_{i}^{(m)}, b_{i}^{(m)}]) = m(\bigcup_{i=1}^{n} (A \cap [a_{i}^{(m)}, b_{i}^{(m)}])) = \sum_{i=1}^{n} m(A \cap [a_{i}^{(m)}, b_{i}^{(m)}])$$
$$= \sum_{i=1}^{n} \frac{b_{i}^{(m)} - a_{i}^{(m)}}{2} = \frac{m(\bigcup_{i=1}^{n} [a_{i}^{(m)}, b_{i}^{(m)}])}{2}.$$

This goes to m(B)/2 when m goes to ∞ . Thus we prove that if A is measurable, for all measurable set $B \subset [0, 1]$, $m(A \cap B) = m(B)/2$.

We have both $m(A) = m(A \cap [0,1]) = 1/2$ and $m(A) = m(A \cap A) = m(A)/2$. They cannot be true at the same time!

4. Let $V_f(0, x)$ be the total variation of f on [0, x]. Prove that if f(x) is absolutely continuous on [0, 1], then so is $V_f(0, x)$. (Hint: $V_f(0, x)$ is increasing function on [0, 1] and $V_f(0, 1)$ is finite!)

Proof. Same as the hint!