Zejing Wang

1. Let f be a real valued function on a set X. Let \mathcal{M} be the smallest σ algebra on X for which f is measurable. Prove that $\{x\} \in \mathcal{M}$ for all $x \in X$ if and only if f is one-to-one.
(Hint: $" \Leftarrow "$ is obvious. For $" \Rightarrow "$ prove that $\mathcal{M}=f^{-1}(\mathcal{N})$, where \mathcal{N} is a collection of measurable sets of \mathbf{R}.)

Proof. For every $y \in f(X),\left\{f^{-1}(y)\right\}$ is a single-point set. For every $x \in X$, there exists y such that $y=f(x)$. Thus, $\{x\} \in M$ for all $x \in X$. $" \Leftarrow "$ is proved.

Let $\mathcal{N}^{\prime}=f^{-1}(\mathcal{N})$, where \mathcal{N} is a collection of measurable sets of \mathbf{R}. $\mathcal{N}^{\prime} \subset \mathcal{M}$ because f is measurable. Suffice to show that \mathcal{N}^{\prime} is σ-algebra. Obviously, \mathcal{N} is σ-algebra. Let $\left\{N_{i}^{\prime}\right\}_{1}^{\infty} \subset \mathcal{N}^{\prime}$, then since $X=f^{-1}(\mathbf{R})$,

$$
\begin{gathered}
N_{1}^{\prime c}=f^{-1}\left(N_{1}\right)^{c}=f^{-1}\left(N_{1}^{c}\right) \in \mathcal{N}^{\prime} . \\
\bigcup_{i=1}^{\infty} N_{i}^{\prime}=\bigcup_{i=1}^{\infty} f^{-1}\left(N_{i}\right)=f^{-1}\left(\bigcup_{i=1}^{\infty} N_{i}\right) \in \mathcal{N}^{\prime} . \\
N_{1}^{\prime} \cap N_{2}^{\prime}=f^{-1}\left(N_{1}\right) \cap f^{-1}\left(N_{2}\right)=f^{-1}\left(N_{1} \cap N_{2}\right) \in \mathcal{N}^{\prime} .
\end{gathered}
$$

Therefore, \mathcal{N}^{\prime} is σ-algebra, which forces $\mathcal{N}^{\prime} \supset \mathcal{M}$. Together we get $\mathcal{N}^{\prime}=\mathcal{M}$. If $\{x\} \in M$, then $\{x\}=f^{-1}(f(x))$ for every $\{x\} \in M$, which means f is one-to-one.
2. Let m be the Lebesgue measure on $[0,1]$. Let $f_{n}:[0,1] \rightarrow \mathbf{R}$ be measurable functions. Assume that $\sum_{n=1}^{\infty} \int_{0}^{1}\left|f_{n}(x)\right| d x \leq 1$. Prove that $f_{n} \rightarrow 0$ as $n \rightarrow \infty$ almost everywhere.

Proof.

$$
A=\left\{x \in[0,1] \mid f_{n} \rightarrow 0\right\}=\bigcap_{r=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty}\left\{x \in[0,1]| | f_{n} \left\lvert\,<\frac{1}{r}\right.\right\}
$$

Since $\left\{x \in[0,1]\left|\left|f_{n}\right|<\frac{1}{r}\right\}\right.$ is measurable for every n, r, A is measurable, thus A^{c} is also measurable. If $m\left(A^{c}\right)>0$, let $F_{j}(x)=\sum_{i=1}^{j}\left|f_{n}(x)\right|$. From Fatou Lemma,

$$
\begin{aligned}
\int_{0}^{1} \underline{\underline{\lim }} F_{n}(x) \leq \underline{\lim _{n \rightarrow \infty}} \int_{0}^{1} F_{n}(x) & =\underset{n \rightarrow \infty}{\lim } \sum_{i=1}^{n} \int_{0}^{1}\left|f_{i}(x)\right| d x \\
& =\sum_{i=1}^{\infty} \int_{0}^{1}\left|f_{i}(x)\right| d x \leq 1 .
\end{aligned}
$$

For every $x \in A^{c}$, there exists ε_{0} and $\left\{n_{i}\right\}_{i=1}^{\infty} \subset \mathbf{N}$ such that $f_{n_{i}}(x)>\varepsilon_{0}$. Since $F_{n}(x)$ increases as n increases,

$$
\underline{l i m}_{n \rightarrow \infty} F_{n}(x) \geq \sum_{i=1}^{\left[\frac{2}{\varepsilon_{0} m\left(A^{c}\right)}\right]+1}\left|f_{n_{i}}(x)\right|>\varepsilon_{0} \cdot \frac{2}{\varepsilon_{0} m\left(A^{c}\right)}=\frac{2}{m\left(A^{c}\right)}
$$

Take integrals on this equality, and

$$
\int_{0}^{1} \underline{\lim _{n \rightarrow \infty}} F_{n}(x) \geq \int_{A^{c}} \underline{\lim } F_{n}(x) \geq \int_{A^{c}} \frac{2}{m\left(A^{c}\right)}=2 .
$$

This is a contradiction! Thus, $m\left(A^{c}\right)=0$ and $m(A)=1$, meaning $f_{n} \rightarrow 0$ a.e. .
3. Let m be the Lebesgue measure on $[0,1]$. Prove that there does not exists a measurable set $A \subset[0,1]$ such that $m(A \cap[a, b])=(b-a) / 2$ for all $0 \leq a<b \leq 1$.
(Hint: generalization: for all measurable set $B \subset[0,1], m(A \cap B)=$ $m(B) / 2$.)

Proof. First, for $\mathrm{a}=\mathrm{b}$, the conclusion is trivial. For any measurable $B \subset$ $[0,1]$ and $m \in \mathbf{N}$, there exists finite disjoint union $\bigcup_{i=1}^{n}\left[a_{i}^{(m)}, b_{i}^{(m)}\right] \supset B$ such that $m\left(\bigcup_{i=1}^{n}\left[a_{i}^{(m)}, b_{i}^{(m)}\right]\right)<m(B)+\frac{1}{m}$. Thus, if A is measurable,

$$
m\left(A \cap \bigcup_{i=1}^{n}\left[a_{i}^{(m)}, b_{i}^{(m)}\right]\right) \leq m(A \cap B)+\frac{1}{m}
$$

$m\left(A \cap \bigcup_{i=1}^{n}\left[a_{i}^{(m)}, b_{i}^{(m)}\right]\right)$ goes to $m(A \cap B)$ when m goes to ∞. Besides,

$$
\begin{aligned}
m\left(A \cap \bigcup_{i=1}^{n}\left[a_{i}^{(m)}, b_{i}^{(m)}\right]\right) & =m\left(\bigcup_{i=1}^{n}\left(A \cap\left[a_{i}^{(m)}, b_{i}^{(m)}\right]\right)\right)=\sum_{i=1}^{n} m\left(A \cap\left[a_{i}^{(m)}, b_{i}^{(m)}\right]\right) \\
& =\sum_{i=1}^{n} \frac{b_{i}^{(m)}-a_{i}^{(m)}}{2}=\frac{m\left(\bigcup_{i=1}^{n}\left[a_{i}^{(m)}, b_{i}^{(m)}\right]\right)}{2} .
\end{aligned}
$$

This goes to $m(B) / 2$ when m goes to ∞. Thus we prove that if A is measurable, for all measurable set $B \subset[0,1], m(A \cap B)=m(B) / 2$. We have both $m(A)=m(A \cap[0,1])=1 / 2$ and $m(A)=m(A \cap A)=$ $m(A) / 2$. They cannot be true at the same time!
4. Let $V_{f}(0, x)$ be the total variation of f on $[0, x]$. Prove that if $f(x)$ is absolutely continuous on $[0,1]$, then so is $V_{f}(0, x)$.
(Hint: $V_{f}(0, x)$ is increasing function on $[0,1]$ and $V_{f}(0,1)$ is finite!)
Proof. Same as the hint!

