USC Graduate Exams Real Analysis

William Chang *

Contents

1	Spring 1992	2
2	Fall 1993	3
3	Spring 1994	5

^{*}chan087@usc.edu

1 Spring 1992

1. Let (X, Σ, μ) be a measure space and $\{f_n\}$ a sequence in $L^1(d\mu)$ which converges a.e. to $f \in L^1(X, \mu)$ Prove: $f_n \to f$ in $L^1(X, \mu)$ iff $\int |f_n| d\mu \to \int |f| d\mu$.

Proof. Let us first suppose that $\int |f_n| d\mu \to \int |f| d\mu$ in $L^1(X,\mu)$. We consider the function $|f| + |f_n| - |f - f_n|$ is non-negative due to the triangle inequality and measurable because f_n, f are both measurable. Thus, we can apply Fatou's lemma to obtain:

$$\int \liminf_{n \to \infty} |f| + |f_n| - |f - f_n| d\mu \le \liminf_{n \to \infty} \int |f| + |f_n| - |f - f_n| d\mu$$
(1.1)

The RHS of the above equation is $2 \int |f| d\mu + \liminf_{n \to \infty} - \int |f - f_n| d\mu$ while the LHS of the above is $2 \int |f| d\mu$. Thus, we have

$$\liminf_{n \to \infty} -\int |f - f_n| d\mu = -\limsup_{n \to \infty} \int |f - f_n| d\mu \ge 0$$
(1.2)

proving that $\lim_{n\to\infty} \int |f - f_n| d\mu = 0$ as desired.

Conversely, suppose that $f_n \to f$ in $L^1(X, \mu)$. It's easy to prove that ove the reals, $||f_n| - |f|| \le |f - f_n|$. Thus if $\int_X |f_n - f|$

$$\left| \int_{X} |f_n| d\mu - \int_{X} |f| d\mu \right| \le \int_{X} |f_n - f| d\mu \tag{1.3}$$

proving that $\int |f_n| d\mu \to \int |f| d\mu$ as desired.

2. Let $\{f_n\}$ be a sequence of Lebesgue-measurable real-valued functions on [0,1] such that

$$\lim_{n \to \infty} \int_0^1 |f_n(x)| dx = 0$$
 (1.4)

Prove there exists a subsequence of $\{f_n\}$ such that $\{f_{n_i}(x)\}$ converges to 0 for a.e. x.

Proof. Suppose the opposite was true and there was a set $S \subset [0,1]$ with nonzero measure such that there is no subsequence $f_{n_i}(x)$ that converges to 0. Then there is an $\epsilon > 0$ such that $\forall x \in S$ there is Letting μ be the standard euclidean measure on [0,1], we know that $\forall \epsilon > 0$, it is true that $\int_0^1 |f_n(x)| dx > \mu(\{x : |f_n(x)| > \epsilon\})\epsilon > \mu(S)\epsilon$.

3. Prove that Lebesgue measure λ on \mathbb{R} is translation-invariant: if A is Lebesgue-measurable subset of \mathbb{R} then for each $u \in \mathbb{R}$, u + A is also Lebesgue-measurable and $\lambda(u + A) = \lambda(A)$.

Proof. Suppose we had an open cover of intervals U_i which cover A, then $U_i + u$ is an open cover of intervals which cover u + A. Conversely, any cover V_i of u + A gives rise to a cover $V_i - u$ of A. This bijection of covers proves that A being measurable implies u + A is measurable and that they have the same measure.

4. A function $f : \mathbb{R} \to \mathbb{R}$ is said to be lower semi-continuous provided

$$f(x) \le \liminf_{n \to \infty} f(x_n) \tag{1.5}$$

whenever $\lim_{n \to \infty} x_n = x$. Show that every lower semi-continuous function is Borel measurable.

5. Show that the function φ defined by

$$\varphi(p) = \int_0^\infty x^p e^{-x} dx \quad (p \ge 0)$$
(1.6)

is well-defined and differentiable on $(0, \infty)$.

Proof. Proving φ is well defined is same as proving the integral is bounded. We can evaluate this integral by integrating by parts |p| times to obtain:

$$\int_{1}^{\infty} x^{p} e^{-x} dx = p(p-1) \cdots (p-\lfloor p \rfloor + 1) \int_{0}^{\infty} \frac{x^{p-\lfloor p \rfloor}}{e^{x}} dx < \int_{0}^{\infty} \frac{x}{e^{x}} dx = 1$$
(1.7)

We can now prove differentiability by differentiating under the integral sign and proving the result is well defined. Doing so yields:

$$\varphi'(p) = \int_0^\infty p x^{p-1} e^{-x} dx \tag{1.8}$$

which we can apply the reasoning from before to prove that this is bounded and thus well defined. \Box

2 Fall 1993

1. Define $D_r = \{z \in \mathbb{C} : |z| < r\}$, the open r-disk. Let M > 0 and $f_n : D_1 \to D_M$ for n = 1, 2, ... be a sequence of analytic functions. Prove there is a subsequence which converges uniformly on $D_{1/2}$.

Proof. Since f_n analytic on the complex space, it is also holomorphic. It's also clear that D_r is uniformly bounded Since $D_{1/2}$ is compact, can apply Montel's therem if we can prove that f_n is

2. Prove or find a counterexample: Let D be a coutable dense subset of (0, 1) and let G be an open subset of \mathbb{R} such that $G \supset D$, then $G \supset (0, 1)$.

Proof. We shall find a counterexample. Let D be the rational numbers in (0, 1), which is dense and countable in (0, 1). Now let $G = (0, \frac{\sqrt{2}}{2}) \cup (\frac{\sqrt{2}}{2}, 1)$. It's clear that $G \supset D$, and that G is open. However, G doesn't contain (0, 1), thus giving us our counterexample.

3. Let f be a non-constant meromorphic function with is doubly periodic (i.e. has two periods linearly independent over the reals). Prove that f has at least one singularity.

Proof. Since the reals is one dimensional vector space, I assume they mean "has two periods linearly independent over the complex numbers". Let the periods be $a, b \in \mathbb{C}$. Then every point in the complex plane can be expressed as z = xa + yb for some $x, y \in \mathbb{R}$. Since f is periodic, we have $f(xa + yb) = f((x \pm 1)a, y(\pm 1)b)$. Thus, we have f(z) = f(z') for some z' within the parallelogram with vertices 0, a, a+b, b. If there is no singularity, since this is a compact set f will reach its maximum on this parallelogram, and thus f will have a global maximum. However, by the maximum principles, f, being a complex valued function, cannot attain a maximum on an open set. Thus f has at least one singularity.

4. How many roots of the equation f(z) = 0 lie in the right half-plane, where

$$f(z) = z^4 + \sqrt{2}z^3 + 2z^2 - 5z + 2 \tag{2.1}$$

Proof. We let our contour be the curve from iR to -iR, and around the semicircle of radius R in the right half plane. If we set $g(z) = z^4 + 2$ then $|g(z)| \ge R^4 - 2$ when |z| = R On the other hand, when z is on the imaginary axis, we have:

$$f(it) = t^4 - i\sqrt{2}t^3 - 2t^2 - 5it + 2$$
(2.2)

for $t \in \mathbb{R}$. We let our $o|f(it)| = \sqrt{(t^4 - 2t^2 + 2)^2 + (\sqrt{2}t^3 + 5t)^2}$. Let $g(z) = z^4 - 5z$ Let $g(z) = z^4 + 2$

5. Show that a function $f:(a,b) \to \mathbb{R}$ which is absolutely continuous is both uniformly continuous and of bounded variation.

Proof. Since f is absolutely continuous, for all $\epsilon > 0$, there exists $\delta > 0$ such that if a sequence of pairwise disjoint subintervals (x_k, y_k) of (a, b) satisfy $\sum_k (y_k - x_k) < \delta$, then $\sum_k |f(y_k) - f(x_k)| < \epsilon$. Letting k = 1 proves that f is uniformly continuous.

Now we prove that f has bounded variation. Let define $var_{(a,b)}f$ to be the variation of f on the interval (a,b). By hypothesis, there is a $\delta > 0$ such that $\sum_{k} |f(y_k) - f(x_k)| < 1$ for all disjoint subintervals (x_i, y_i) and $\sum_{k} |y_k - x_k| < \delta$. Let N be an integer greater than $\frac{b-a}{\delta}$, and partition (a,b) into N evenly space intervals $\left(a + \frac{j(b-a)}{N}, a + \frac{(j+1)(b-a)}{N}\right)$. Thus, $var_{(a,b)}f = \sum_{j=1}^{N} var_{\left(a + \frac{j(b-a)}{N}, a + \frac{(j+1)(b-a)}{N}\right)} < \sum_{j=1}^{N} 1 = N$.

6. Show that $\frac{\sin x}{x} \in L^2(\mathbb{R}^+)$ and evaluate its L^2 norm.

Proof. We first show $\left(\int_0^\infty \left(\frac{\sin x}{x}\right)^2 dx\right)^{\frac{1}{2}} < \infty$. By Lhopital's rule, $\lim_{x \to 0} \frac{\sin x}{x} = 1$ so by continuity of $\frac{\sin x}{x}$, it follows that $\left(\int_0^1 \left(\frac{\sin x}{x}\right)^2 dx\right)^{\frac{1}{2}} < \infty$. Now we just have to show that $\left(\int_1^\infty \left(\frac{\sin x}{x}\right)^2 dx\right)^2 < \infty$.

This follows from

$$\left(\int_{1}^{\infty} \left(\frac{\sin x}{x}\right)^{2} dx\right)^{\frac{1}{2}} < \left(\int_{1}^{\infty} \frac{1}{x^{2}} dx\right)^{\frac{1}{2}} < \infty = 1 < \infty$$

$$(2.3)$$

Now to evaluate this integral, we can use calculus of residues. Since this function is even we can Evaluated it from $-\infty$ to ∞ and divide the result by 2.

7. Suppose f is a non-negative function which is Lebesgue integrable on [0, 1], and $\{r_n : n = 1, 2, ...\}$ is an enumeration of the rational numbers in [0, 1]. Show that the infinite series

$$\sum_{n=1}^{\infty} \frac{1}{2^n} f(|x - r_n|) \tag{2.4}$$

converges for a.e. $x \in [0, 1]$.

Proof. We will set $g(x) = \sum_{n=1}^{\infty} \frac{1}{2^n} f(|x - r_n|)$, and prove that $\int_0^1 g(x) dx < \infty$. From this it will immediately follow that $g(x) < \infty$ a.e. First, we note that $\int_0^1 f(|x - r_n|) \leq \int_{-1}^1 f(|x - r_n|) = 2 \int_0^1 f(x)$. Thus:

$$\int_{0}^{1} g(x)dx = \sum_{n=1}^{\infty} \int_{0}^{1} \frac{1}{2^{n}} f(|x - r_{n}|)$$
(2.5)

$$\leq 2 \int_0^1 f(x) dx \sum_{n=1}^\infty \frac{1}{2^n}$$
(2.6)

$$=2\int_{0}^{1}f(x)<\infty$$
 (2.7)

as desired.

3 Spring 1994

1. Evaluate $\int_0^\infty \frac{\log x}{1+x^2} dx$.

Proof. Let us integrate this in the complex plane with respect to complex variable z, consider the path γ from -R to R, then moving along Re^{it} for $t \in [0, \pi]$ back to -R. Let us consider the contribution of the integral around the path $z = Re^{it}$ for $t \in [0, \pi]$. Changing the variable of integration from z to t yields:

$$\left| \int_0^\infty \frac{\log x}{1+x^2} dx \right| < M \int_0^{2\pi} \frac{\log R}{|1+R^2|} dt$$
(3.1)

$$\leq M \frac{\log R}{R} \tag{3.2}$$

for some constant M and sufficiently large R. Thus, the integral around γ reduces to the portion of the integral on the real number line as $R \to \infty$. We can use the calculus of residues to evaluate this integral. There is only 1 reside at z = i evaluated as follows:

$$Res(f(z); z = i) = \lim_{z \to i} (z - i) \frac{\log z}{(z - i)(z + i)}$$
(3.3)

2. Show that [0,1] cannot be written as the countably infinite union of disjoint nonempty closed intervals.

Proof. We prove this statement by contradiction. Suppose [0,1] was the union of countably many closed intervals. Then removing the endpoints of each interval we get that there is a sequence of disjoint open intervals I_n such that

$$0,1] = \bigcup_{n=1}^{\infty} I_n \tag{3.5}$$

=

Letting $I_n = [x_n, y_n]$ we consider the union of the endpoints;

$$U = \bigcup_{n=1}^{\infty} \{x_n, b_n\}$$
(3.6)

U is clearly closed, and we can see that U is also perfect since every point in U is a limit point. We can now apply the Baire category theorem which shows that a perfect subset of a complete metric space can't be countable infinite. The result follows.

3. Let $f: D \to \mathbb{C}$ be analytic such that $\Re f(z) > 0$ for all z. Prove

$$|f(z)| \le |f(0)| \frac{1+|z|}{1-|z|} \tag{3.7}$$

Proof. We note the map $g(z) = \frac{f(0)-z}{f(0)+z}$ maps the right half complex plane conformally onto the unit disk such that g(f(0)) = 0. Thus, we can apply Schwarz's lemma to the function g(f(z)) to obtain $|g(f(z))| \le |z|$. We also have

$$g^{-1}(z) = f(0)\frac{1-z}{1+z}$$
(3.8)

Thus,
$$|f(z)| \le g^{-1}(|z|) = f(0)\frac{1-|z|}{1+|z|}$$
 as desired.

4. Let $f: [1, +\infty) \to [0, +\infty)$ be Lebesgue measurable. Prove:

$$\int_{1}^{\infty} \frac{f(x)^2}{x^2} < +\infty \Rightarrow \int_{1}^{\infty} \frac{f(x)}{x^2} dx < +\infty$$
(3.9)

Proof. Define $S_0 = \{x : f(x) < 1\}$, and $S_1 = \{x : f(x) \ge 1\}$. It's clear that $\int_1^\infty \frac{f(x)}{x^2} dx = \int_{S_0} \frac{f(x)}{x^2} dx + \int_{S_1} \frac{f(x)}{x^2}$, so if we can bound each of the integrals then we are done.

First, we have $\int_{S_0} \frac{f(x)}{x^2} dx \leq \int_{S_0} \frac{1}{x^2} dx < \int_1^\infty \frac{1}{x^2} dx < \infty$. On the other hand, we have $\int_{S_1} \frac{f(x)}{x^2} < \int_{S_1} \frac{f(x)^2}{x^2} < \int_1^\infty \frac{f(x)^2}{x^2} < \infty$ by hypothesis. Putting everything together yields our desired result.

5.

6. Let $([0,1], \mathcal{A}, \mu)$ denote the Lebesgue space on $f : [0,1] \to \mathbb{R}$ the condition "f is continuous a.e." neither implies, nor is implied by, the condition "there exists a continuous function $g : [0,1] \to \mathbb{R}$ such that f = g a.e."

Proof. Let g(x) = 0 and define f(x) as follows:

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$
(3.10)

Then because \mathbb{Q} has Lebesgue measure 0, it follows that g(x) = f(x) a.e. However, f(x) is nowhere continuous.

Conversely, let

$$f(x) = \begin{cases} 0 & \text{if } x \le \frac{1}{2} \\ 1 & \text{if } x > \frac{1}{2} \end{cases}$$
(3.11)

which will always differ from a continuous function g around an interval centered at $x = \frac{1}{2}$, and thus not equal to g a.e.

7. An entire function is said to have finite order if there exists c > 0 such that $|f(z)| \le exp(|z|^c)$ for all |z| sufficiently large; the order of f is the infimum of all such c > 0. Prove that the following function is entire and has order $\frac{1}{2}$.

$$f(z) = \prod_{k=1}^{\infty} \left(1 + \frac{z}{k^2} \right)$$
(3.12)

Proof.

8. Let $\{f_n\}$ be a sequence of measurable functions on some measure space (X, \mathcal{A}, μ) with $\mu(X) < \infty$. We say the sequence is uniformly integrable if

$$\lim_{n \to \infty} \sum_{n} \int_{|f_n| > R} |f_n| d\mu = 0 \tag{3.13}$$

(a) Show that if there exists $g \in L^1(X)$ such that $|f_n(x)| \leq |g(x)|$ for all x, n then the $\{f_n\}$ are uniformly integrable.

Proof. Since $\mu(X) < \infty$, and $g \in L^1(X)$, it follows that $ess \sup_{x \in X} g(x) < \infty$. Thus, whenever $R > ess \sup_{x \in X} g(x)$, $\int_{|f_n| > R} |f_n| d\mu = 0$ for all n, and thus $\lim_{n \to \infty} \sum_n \int_{|f_n| > R} |f_n| d\mu = 0$ as desired.

(b) Prove that if $f_n \to f$ pointwise and the $\{f_n\}$ are uniformly integrable then $f \in L^1(\mathbb{R})$ and

$$\lim_{n} \int f_n d\mu = \int f d\mu \tag{3.14}$$

Proof. We have the following inequality:

$$\int_{X} |f| d\mu = \int_{|f| \le R} |f| + \int_{|f| > R} |f| d\mu < \int_{|f| \le R} |f| + \sum_{n} \int_{|f_n| > R} |f_n| d\mu < \infty$$
(3.15)

where in the last inequality follows we assume R is sufficiently large such that $\sum_n \int_{|f_n|>R} |f_n| < \infty$. Thus $f \in L^1(X)$ and by the Lebesgue dominated convergence theorem, it follows that $\lim_n \int f_n d\mu = \int f d\mu$ as desired. \Box