USC Graduate Exams Real Analysis

William Chang *

Contents

1 Spring $1992 \quad 2$
2 Fall $1993 \quad 3$

3 Spring 1994×5
*chan087@usc.edu

1 Spring 1992

1. Let (X, Σ, μ) be a measure space and $\left\{f_{n}\right\}$ a sequence in $L^{1}(d \mu)$ which converges a.e. to $f \in L^{1}(X, \mu)$ Prove: $f_{n} \rightarrow f$ in $L^{1}(X, \mu)$ iff $\int\left|f_{n}\right| d \mu \rightarrow \int|f| d \mu$.

Proof. Let us first suppose that $\int\left|f_{n}\right| d \mu \rightarrow \int|f| d \mu$ in $L^{1}(X, \mu)$. We consider the function $|f|+$ $\left|f_{n}\right|-\left|f-f_{n}\right|$ is non-negative due to the triangle inequality and measurable because f_{n}, f are both measurable. Thus, we can apply Fatou's lemma to obtain:

$$
\begin{equation*}
\int \liminf _{n \rightarrow \infty}|f|+\left|f_{n}\right|-\left|f-f_{n}\right| d \mu \leq \liminf _{n \rightarrow \infty} \int|f|+\left|f_{n}\right|-\left|f-f_{n}\right| d \mu \tag{1.1}
\end{equation*}
$$

The RHS of the above equation is $2 \int|f| d \mu+\liminf _{n \rightarrow \infty}-\int\left|f-f_{n}\right| d \mu$ while the LHS of the above is $2 \int|f| d \mu$. Thus, we have

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}-\int\left|f-f_{n}\right| d \mu=-\limsup _{n \rightarrow \infty} \int\left|f-f_{n}\right| d \mu \geq 0 \tag{1.2}
\end{equation*}
$$

proving that $\lim _{n \rightarrow \infty} \int\left|f-f_{n}\right| d \mu=0$ as desired.
Conversely, suppose that $f_{n} \rightarrow f$ in $L^{1}(X, \mu)$. It's easy to prove that ove the reals, $\| f_{n}|-|f|| \leq\left|f-f_{n}\right|$. Thus if $\int_{X}\left|f_{n}-f\right|$

$$
\begin{equation*}
\left|\int_{X}\right| f_{n}\left|d \mu-\int_{X}\right| f|d \mu| \leq \int_{X}\left|f_{n}-f\right| d \mu \tag{1.3}
\end{equation*}
$$

proving that $\int\left|f_{n}\right| d \mu \rightarrow \int|f| d \mu$ as desired.
2. Let $\left\{f_{n}\right\}$ be a sequence of Lebesgue-measurable real-valued functions on $[0,1]$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)\right| d x=0 \tag{1.4}
\end{equation*}
$$

Prove there exists a subsequence of $\left\{f_{n}\right\}$ such that $\left\{f_{n_{i}}(x)\right\}$ converges to 0 for a.e. x.

Proof. Suppose the opposite was true and there was a set $S \subset[0,1]$ with nonzero measure such that there is no subsequence $f_{n_{i}}(x)$ that converges to 0 . Then there is an $\epsilon>0$ such that $\forall x \in S$ there is Letting μ be the standard euclidean measure on $[0,1]$, we know that $\forall \epsilon>0$, it is true that $\int_{0}^{1}\left|f_{n}(x)\right| d x>$ $\mu\left(\left\{x:\left|f_{n}(x)\right|>\epsilon\right\}\right) \epsilon>\mu(S) \epsilon$.
3. Prove that Lebesgue measure λ on \mathbb{R} is translation-invariant: if A is Lebesgue-measurable subset of \mathbb{R} then for each $u \in \mathbb{R}, u+A$ is also Lebesgue-measurable and $\lambda(u+A)=\lambda(A)$.

Proof. Suppose we had an open cover of intervals U_{i} which cover A, then $U_{i}+u$ is an open cover of intervals which cover $u+A$. Conversely, any cover V_{i} of $u+A$ gives rise to a cover $V_{i}-u$ of A. This bijection of covers proves that A being measurable implies $u+A$ is measurable and that they have the same measure.
4. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be lower semi-continuous provided

$$
\begin{equation*}
f(x) \leq \liminf _{n \rightarrow \infty} f\left(x_{n}\right) \tag{1.5}
\end{equation*}
$$

whenever $\lim _{n} x_{n}=x$. Show that every lower semi-continuous function is Borel measurable.

Proof.
5. Show that the function φ defined by

$$
\begin{equation*}
\varphi(p)=\int_{0}^{\infty} x^{p} e^{-x} d x \quad(p \geq 0) \tag{1.6}
\end{equation*}
$$

is well-defined and differentiable on $(0, \infty)$.

Proof. Proving φ is well defined is same as proving the integral is bounded. We can evaluate this integral by integrating by parts $\lfloor p\rfloor$ times to obtain:

$$
\begin{equation*}
\int_{1}^{\infty} x^{p} e^{-x} d x=p(p-1) \cdots(p-\lfloor p\rfloor+1) \int_{0}^{\infty} \frac{x^{p-\lfloor p\rfloor}}{e^{x}} d x<\int_{0}^{\infty} \frac{x}{e^{x}} d x=1 \tag{1.7}
\end{equation*}
$$

We can now prove differentiability by differentiating under the integral sign and proving the result is well defined. Doing so yields:

$$
\begin{equation*}
\varphi^{\prime}(p)=\int_{0}^{\infty} p x^{p-1} e^{-x} d x \tag{1.8}
\end{equation*}
$$

which we can apply the reasoning from before to prove that this is bounded and thus well defined.

$2 \quad$ Fall 1993

1. Define $D_{r}=\{z \in \mathbb{C}:|z|<r\}$, the open r-disk. Let $M>0$ and $f_{n}: D_{1} \rightarrow D_{M}$ for $n=1,2, \ldots$ be a sequence of analytic functions. Prove there is a subsequence which converges uniformly on $D_{1 / 2}$.

Proof. Since f_{n} analytic on the complex space, it is also holomorphic. It's also clear that D_{r} is uniformly bounded Since $D_{1 / 2}$ is compact, can apply Montel's therem if we can prove that f_{n} is
2. Prove or find a counterexample: Let D be a coutable dense subset of $(0,1)$ and let G be an open subset of \mathbb{R} such that $G \supset D$, then $G \supset(0,1)$.

Proof. We shall find a counterexample. Let D be the rational numbers in $(0,1)$, which is dense and countable in $(0,1)$. Now let $G=\left(0, \frac{\sqrt{2}}{2}\right) \cup\left(\frac{\sqrt{2}}{2}, 1\right)$. It's clear that $G \supset D$, and that G is open. However, G doesn't contain $(0,1)$, thus giving us our counterexample.
3. Let f be a non-constant meromorphic function with is doubly periodic (i.e. has two periods linearly independent over the reals). Prove that f has at least one singularity.

Proof. Since the reals is one dimensional vector space, I assume they mean "has two periods linearly independent over the complex numbers". Let the periods be $a, b \in \mathbb{C}$. Then every point in the complex plane can be expressed as $z=x a+y b$ for some $x, y \in \mathbb{R}$. Since f is periodic, we have $f(x a+y b)=f((x \pm 1) a, y(\pm 1) b)$. Thus, we have $f(z)=f\left(z^{\prime}\right)$ for some z^{\prime} within the parallelogram with vertices $0, a, a+b, b$. If there is no singularity, since this is a compact set f will reach its maximum on this parallelogram, and thus f will have a global maximum. However, by the maximum principles, f, being a complex valued function, cannot attain a maximum on an open set. Thus f has at least one singularity.
4. How many roots of the equation $f(z)=0$ lie in the right half-plane, where

$$
\begin{equation*}
f(z)=z^{4}+\sqrt{2} z^{3}+2 z^{2}-5 z+2 \tag{2.1}
\end{equation*}
$$

Proof. We let our contour be the curve from $i R$ to $-i R$, and around the semicircle of radius R in the right half plane. If we set $g(z)=z^{4}+2$ then $|g(z)| \geq R^{4}-2$ when $|z|=R$ On the other hand, when z is on the imaginary axis, we have:

$$
\begin{equation*}
f(i t)=t^{4}-i \sqrt{2} t^{3}-2 t^{2}-5 i t+2 \tag{2.2}
\end{equation*}
$$

for $t \in \mathbb{R}$. We let our o $|f(i t)|=\sqrt{\left(t^{4}-2 t^{2}+2\right)^{2}+\left(\sqrt{2} t^{3}+5 t\right)^{2}}$. Let $g(z)=z^{4}-5 z$ Let $g(z)=$ $z^{4}+2$
5. Show that a function $f:(a, b) \rightarrow \mathbb{R}$ which is absolutely continuous is both uniformly continuous and of bounded variation.

Proof. Since f is absolutely continuous, for all $\epsilon>0$, there exists $\delta>0$ such that if a sequence of pairwise disjoint subintervals $\left(x_{k}, y_{k}\right)$ of (a, b) satisfy $\sum_{k}\left(y_{k}-x_{k}\right)<\delta$, then $\sum_{k}\left|f\left(y_{k}\right)-f\left(x_{k}\right)\right|<\epsilon$. Letting $k=1$ proves that f is uniformly continuous.

Now we prove that f has bounded variation. Let define $\operatorname{var}_{(a, b)} f$ to be the variation of f on the interval (a, b). By hypothesis, there is a $\delta>0$ such that $\sum_{k}\left|f\left(y_{k}\right)-f\left(x_{k}\right)\right|<1$ for all disjoint subintervals $\left(x_{i}, y_{i}\right)$ and $\sum_{k}\left|y_{k}-x_{k}\right|<\delta$. Let N be an integer greater than $\frac{b-a}{\delta}$, and partition (a, b) into N evenly space intervals $\left(a+\frac{j(b-a)}{N}, a+\frac{(j+1)(b-a)}{N}\right)$. Thus, $\operatorname{var}_{(a, b)} f=\sum_{j=1}^{N} \operatorname{var}_{\left(a+\frac{j(b-a)}{N}, a+\frac{(j+1)(b-a)}{N}\right)}<\sum_{j=1}^{N} 1=$ N.
6. Show that $\frac{\sin x}{x} \in L^{2}\left(\mathbb{R}^{+}\right)$and evaluate its L^{2} norm.

Proof. We first show $\left(\int_{0}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x\right)^{\frac{1}{2}}<\infty$. By Lhopital's rule, $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ so by continuity of $\frac{\sin x}{x}$, it follows that $\left(\int_{0}^{1}\left(\frac{\sin x}{x}\right)^{2} d x\right)^{\frac{1}{2}}<\infty$. Now we just have to show that $\left(\int_{1}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x\right)^{2}<\infty$.

This follows from

$$
\begin{equation*}
\left(\int_{1}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x\right)^{\frac{1}{2}}<\left(\int_{1}^{\infty} \frac{1}{x^{2}} d x\right)^{\frac{1}{2}}<\infty=1<\infty \tag{2.3}
\end{equation*}
$$

Now to evaluate this integral, we can use calculus of residues. Since this function is even we can Evaluated it from $-\infty$ to ∞ and divide the result by 2 .
7. Suppose f is a non-negative function which is Lebesgue integrable on $[0,1]$, and $\left\{r_{n}: n=1,2, \ldots\right\}$ is an enumeration of the rational numbers in $[0,1]$. Show that the infinite series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{2^{n}} f\left(\left|x-r_{n}\right|\right) \tag{2.4}
\end{equation*}
$$

converges for a.e. $x \in[0,1]$.
Proof. We will set $g(x)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} f\left(\left|x-r_{n}\right|\right)$, and prove that $\int_{0}^{1} g(x) d x<\infty$. From this it will immediately follow that $g(x)<\infty$ a.e. First, we note that $\int_{0}^{1} f\left(\left|x-r_{n}\right|\right) \leq \int_{-1}^{1} f\left(\left|x-r_{n}\right|\right)=2 \int_{0}^{1} f(x)$. Thus:

$$
\begin{align*}
\int_{0}^{1} g(x) d x & =\sum_{n=1}^{\infty} \int_{0}^{1} \frac{1}{2^{n}} f\left(\left|x-r_{n}\right|\right) \tag{2.5}\\
& \leq 2 \int_{0}^{1} f(x) d x \sum_{n=1}^{\infty} \frac{1}{2^{n}} \tag{2.6}\\
& =2 \int_{0}^{1} f(x)<\infty \tag{2.7}
\end{align*}
$$

as desired.

3 Spring 1994

1. Evaluate $\int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x$.

Proof. Let us integrate this in the complex plane with respect to complex variable z, consider the path γ from $-R$ to R, then moving along $R e^{i t}$ for $t \in[0, \pi]$ back to $-R$. Let us consider the contribution of the integral around the path $z=R e^{i t}$ for $t \in[0, \pi]$. Changing the variable of integration from z to t yields:

$$
\begin{array}{r}
\left|\int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x\right|<M \int_{0}^{2 \pi} \\
\frac{\log R}{\left|1+R^{2}\right|} d t \tag{3.2}\\
\leq M \frac{\log R}{R}
\end{array}
$$

for some constant M and sufficiently large R. Thus, the integral around γ reduces to the portion of the integral on the real number line as $R \rightarrow \infty$. We can use the calculus of residues to evaluate this integral. There is only 1 reside at $z=i$ evaluated as follows:

$$
\begin{equation*}
\operatorname{Res}(f(z) ; z=i)=\lim _{z \rightarrow i}(z-i) \frac{\log z}{(z-i)(z+i)} \tag{3.3}
\end{equation*}
$$

2. Show that $[0,1]$ cannot be written as the countably infinite union of disjoint nonempty closed intervals.

Proof. We prove this statement by contradiction. Suppose $[0,1]$ was the union of countably many closed intervals. Then removing the endpoints of each interval we get that there is a sequence of disjoint open intervals I_{n} such that

$$
\begin{equation*}
[0,1]=\cup_{n=1}^{\infty} I_{n} \tag{3.5}
\end{equation*}
$$

Letting $I_{n}=\left[x_{n}, y_{n}\right]$ we consider the union of the endpoints;

$$
\begin{equation*}
U=\cup_{n=1}^{\infty}\left\{x_{n}, b_{n}\right\} \tag{3.6}
\end{equation*}
$$

U is clearly closed, and we can see that U is also perfect since every point in U is a limit point. We can now apply the Baire category theorem which shows that a perfect subset of a complete metric space can't be countable infinite. The result follows.
3. Let $f: D \rightarrow \mathbb{C}$ be analytic such that $\Re f(z)>0$ for all z. Prove

$$
\begin{equation*}
|f(z)| \leq|f(0)| \frac{1+|z|}{1-|z|} \tag{3.7}
\end{equation*}
$$

Proof. We note the map $g(z)=\frac{f(0)-z}{f(0)+z}$ maps the right half complex plane conformally onto the unit disk such that $g(f(0))=0$. Thus, we can apply Schwarz's lemma to the function $g(f(z))$ to obtain $|g(f(z))| \leq|z|$. We also have

$$
\begin{equation*}
g^{-1}(z)=f(0) \frac{1-z}{1+z} \tag{3.8}
\end{equation*}
$$

Thus, $|f(z)| \leq g^{-1}(|z|)=f(0) \frac{1-|z|}{1+|z|}$ as desired.
4. Let $f:[1,+\infty) \rightarrow[0,+\infty)$ be Lebesgue measurable. Prove:

$$
\begin{equation*}
\int_{1}^{\infty} \frac{f(x)^{2}}{x^{2}}<+\infty \Rightarrow \int_{1}^{\infty} \frac{f(x)}{x^{2}} d x<+\infty \tag{3.9}
\end{equation*}
$$

Proof. Define $S_{0}=\{x: f(x)<1\}$, and $S_{1}=\{x: f(x) \geq 1\}$. It's clear that $\int_{1}^{\infty} \frac{f(x)}{x^{2}} d x=\int_{S_{0}} \frac{f(x)}{x^{2}} d x+$ $\int_{S_{1}} \frac{f(x)}{x^{2}}$, so if we can bound each of the integrals then we are done.

First, we have $\int_{S_{0}} \frac{f(x)}{x^{2}} d x \leq \int_{S_{0}} \frac{1}{x^{2}} d x<\int_{1}^{\infty} \frac{1}{x^{2}} d x<\infty$.
On the other hand, we have $\int_{S_{1}} \frac{f(x)}{x^{2}}<\int_{S_{1}} \frac{f(x)^{2}}{x^{2}}<\int_{1}^{\infty} \frac{f(x)^{2}}{x^{2}}<\infty$ by hypothesis. Putting everything together yields our desired result.
5.
6. Let $([0,1], \mathcal{A}, \mu)$ denote the Lebesgue space on $f:[0,1] \rightarrow \mathbb{R}$ the condition " f is continuous a.e." neither implies, nor is implied by, the condition "there exists a continuous function $g:[0,1] \rightarrow \mathbb{R}$ such that $f=g$ a.e."

Proof. Let $g(x)=0$ and define $f(x)$ as follows:

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \tag{3.10}\\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

Then because \mathbb{Q} has Lebesgue measure 0, it follows that $g(x)=f(x)$ a.e. However, $f(x)$ is nowhere continuous.

Conversely, let

$$
f(x)= \begin{cases}0 & \text { if } x \leq \frac{1}{2} \tag{3.11}\\ 1 & \text { if } x>\frac{1}{2}\end{cases}
$$

which will always differ from a continuous function g around an interval centered at $x=\frac{1}{2}$, and thus not equal to g a.e.
7. An entire function is said to have finite order if there exists $c>0$ such that $|f(z)| \leq \exp \left(|z|^{c}\right)$ for all $|z|$ sufficiently large; the order of f is the infimum of all such $c>0$. Prove that the following function is entire and has order $\frac{1}{2}$.

$$
\begin{equation*}
f(z)=\prod_{k=1}^{\infty}\left(1+\frac{z}{k^{2}}\right) \tag{3.12}
\end{equation*}
$$

Proof.
8. Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on some measure space (X, \mathcal{A}, μ) with $\mu(X)<\infty$. We say the sequence is uniformly integrable if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{n} \int_{\left|f_{n}\right|>R}\left|f_{n}\right| d \mu=0 \tag{3.13}
\end{equation*}
$$

(a) Show that if there exists $g \in L^{1}(X)$ such that $\left|f_{n}(x)\right| \leq|g(x)|$ for all x, n then the $\left\{f_{n}\right\}$ are uniformly integrable.

Proof. Since $\mu(X)<\infty$, and $g \in L^{1}(X)$, it follows that ess $\sup _{x \in X} g(x)<\infty$. Thus, whenever $R>\operatorname{ess} \sup _{x \in X} g(x), \int_{\left|f_{n}\right|>R}\left|f_{n}\right| d \mu=0$ for all n, and thus $\lim _{n \rightarrow \infty} \sum_{n} \int_{\left|f_{n}\right|>R}\left|f_{n}\right| d \mu=0$ as desired.
(b) Prove that if $f_{n} \rightarrow f$ pointwise and the $\left\{f_{n}\right\}$ are uniformly integrable then $f \in L^{1}(\mathbb{R})$ and

$$
\begin{equation*}
\lim _{n} \int f_{n} d \mu=\int f d \mu \tag{3.14}
\end{equation*}
$$

Proof. We have the following inequality:

$$
\begin{equation*}
\int_{X}|f| d \mu=\int_{|f| \leq R}|f|+\int_{|f|>R}|f| d \mu<\int_{|f| \leq R}|f|+\sum_{n} \int_{\left|f_{n}\right|>R}\left|f_{n}\right| d \mu<\infty \tag{3.15}
\end{equation*}
$$

where in the last inequality follows we assume R is sufficiently large such that $\sum_{n} \int_{\left|f_{n}\right|>R}\left|f_{n}\right|<$ ∞. Thus $f \in L^{1}(X)$ and by the Lebesgue dominated convergence theorem, it follows that $\lim _{n} \int f_{n} d \mu=\int f d \mu$ as desired.

