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1 Spring 1992

1. Let (X,Σ, µ) be a measure space and {fn} a sequence in L1(dµ) which converges a.e. to f ∈ L1(X,µ)
Prove: fn → f in L1(X,µ) iff

∫
|fn|dµ→

∫
|f |dµ.

Proof. Let us first suppose that
∫
|fn|dµ →

∫
|f |dµ in L1(X,µ). We consider the function |f | +

|fn| − |f − fn| is non-negative due to the triangle inequality and measurable because fn, f are both

measurable. Thus, we can apply Fatou’s lemma to obtain:∫
lim inf
n→∞

|f |+ |fn| − |f − fn|dµ ≤ lim inf
n→∞

∫
|f |+ |fn| − |f − fn|dµ (1.1)

The RHS of the above equation is 2
∫
|f |dµ+ lim infn→∞−

∫
|f − fn|dµ while the LHS of the above is

2
∫
|f |dµ. Thus, we have

lim inf
n→∞

−
∫
|f − fn|dµ = − lim sup

n→∞

∫
|f − fn|dµ ≥ 0 (1.2)

proving that limn→∞
∫
|f − fn|dµ = 0 as desired.

Conversely, suppose that fn → f in L1(X,µ). It’s easy to prove that ove the reals, ||fn|−|f || ≤ |f−fn|.

Thus if
∫
X
|fn − f | ∣∣∣∣∫

X

|fn|dµ−
∫
X

|f |dµ
∣∣∣∣ ≤ ∫

X

|fn − f |dµ (1.3)

proving that
∫
|fn|dµ→

∫
|f |dµ as desired.

2. Let {fn} be a sequence of Lebesgue-measurable real-valued functions on [0, 1] such that

lim
n→∞

∫ 1

0

|fn(x)|dx = 0 (1.4)

Prove there exists a subsequence of {fn} such that {fni(x)} converges to 0 for a.e. x.

Proof. Suppose the opposite was true and there was a set S ⊂ [0, 1] with nonzero measure such that

there is no subsequence fni
(x) that converges to 0. Then there is an ε > 0 such that ∀x ∈ S there is

Letting µ be the standard euclidean measure on [0, 1], we know that ∀ε > 0, it is true that
∫ 1

0
|fn(x)|dx >

µ({x : |fn(x)| > ε})ε > µ(S)ε.

3. Prove that Lebesgue measure λ on R is translation-invariant: if A is Lebesgue-measurable subset of R
then for each u ∈ R, u+A is also Lebesgue-measurable and λ(u+A) = λ(A).

Proof. Suppose we had an open cover of intervals Ui which cover A, then Ui + u is an open cover of

intervals which cover u+ A. Conversely, any cover Vi of u+ A gives rise to a cover Vi − u of A. This

bijection of covers proves that A being measurable implies u+A is measurable and that they have the

same measure.
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4. A function f : R→ R is said to be lower semi-continuous provided

f(x) ≤ lim inf
n→∞

f(xn) (1.5)

whenever limn xn = x. Show that every lower semi-continuous function is Borel measurable.

Proof.

5. Show that the function ϕ defined by

ϕ(p) =

∫ ∞
0

xpe−xdx (p ≥ 0) (1.6)

is well-defined and differentiable on (0,∞).

Proof. Proving ϕ is well defined is same as proving the integral is bounded. We can evaluate this

integral by integrating by parts bpc times to obtain:∫ ∞
1

xpe−xdx = p(p− 1) · · · (p− bpc+ 1)

∫ ∞
0

xp−bpc

ex
dx <

∫ ∞
0

x

ex
dx = 1 (1.7)

We can now prove differentiability by differentiating under the integral sign and proving the result is

well defined. Doing so yields:

ϕ′(p) =

∫ ∞
0

pxp−1e−xdx (1.8)

which we can apply the reasoning from before to prove that this is bounded and thus well defined.

2 Fall 1993

1. Define Dr = {z ∈ C : |z| < r}, the open r-disk. Let M > 0 and fn : D1 → DM for n = 1, 2, ... be a
sequence of analytic functions. Prove there is a subsequence which converges uniformly on D1/2.

Proof. Since fn analytic on the complex space, it is also holomorphic. It’s also clear that Dr is

uniformly bounded Since D1/2 is compact, can apply Montel’s therem if we can prove that fn is

2. Prove or find a counterexample: Let D be a coutable dense subset of (0, 1) and let G be an open subset
of R such that G ⊃ D, then G ⊃ (0, 1).

Proof. We shall find a counterexample. Let D be the rational numbers in (0, 1), which is dense and

countable in (0, 1). Now let G = (0,
√
2
2 )∪ (

√
2
2 , 1). It’s clear that G ⊃ D, and that G is open. However,

G doesn’t contain (0, 1), thus giving us our counterexample.

3. Let f be a non-constant meromorphic function with is doubly periodic (i.e. has two periods linearly
independent over the reals). Prove that f has at least one singularity.
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Proof. Since the reals is one dimensional vector space, I assume they mean ”has two periods linearly

independent over the complex numbers”. Let the periods be a, b ∈ C. Then every point in the

complex plane can be expressed as z = xa + yb for some x, y ∈ R. Since f is periodic, we have

f(xa + yb) = f((x ± 1)a, y(±1)b). Thus, we have f(z) = f(z′) for some z′ within the parallelogram

with vertices 0, a, a+b, b. If there is no singularity, since this is a compact set f will reach its maximum

on this parallelogram, and thus f will have a global maximum. However, by the maximum principles,

f , being a complex valued function, cannot attain a maximum on an open set. Thus f has at least one

singularity.

4. How many roots of the equation f(z) = 0 lie in the right half-plane, where

f(z) = z4 +
√

2z3 + 2z2 − 5z + 2 (2.1)

Proof. We let our contour be the curve from iR to −iR, and around the semicircle of radius R in the

right half plane. If we set g(z) = z4 + 2 then |g(z)| ≥ R4 − 2 when |z| = R On the other hand, when z

is on the imaginary axis, we have:

f(it) = t4 − i
√

2t3 − 2t2 − 5it+ 2 (2.2)

for t ∈ R. We let our o|f(it)| =
√

(t4 − 2t2 + 2)2 + (
√

2t3 + 5t)2. Let g(z) = z4 − 5z Let g(z) =

z4 + 2

5. Show that a function f : (a, b) → R which is absolutely continuous is both uniformly continuous and
of bounded variation.

Proof. Since f is absolutely continuous, for all ε > 0, there exists δ > 0 such that if a sequence of

pairwise disjoint subintervals (xk, yk) of (a, b) satisfy
∑
k(yk − xk) < δ, then

∑
k |f(yk) − f(xk)| < ε.

Letting k = 1 proves that f is uniformly continuous.

Now we prove that f has bounded variation. Let define var(a,b)f to be the variation of f on the interval

(a, b). By hypothesis, there is a δ > 0 such that
∑
k |f(yk) − f(xk)| < 1 for all disjoint subintervals

(xi, yi) and
∑
k |yk−xk| < δ. Let N be an integer greater than b−a

δ , and partition (a, b) into N evenly

space intervals
(
a+ j(b−a)

N , a+ (j+1)(b−a)
N

)
. Thus, var(a,b)f =

∑N
j=1 var(a+ j(b−a)

N ,a+
(j+1)(b−a)

N ) <
∑N
j=1 1 =

N .

6. Show that sin x
x ∈ L2(R+) and evaluate its L2 norm.

Proof. We first show
(∫∞

0

(
sin x
x

)2
dx
) 1

2

<∞. By Lhopital’s rule, limx→0
sin x
x = 1 so by continuity of

sin x
x , it follows that

(∫ 1

0

(
sin x
x

)2
dx
) 1

2

< ∞. Now we just have to show that
(∫∞

1

(
sin x
x

)2
dx
)2

< ∞.
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This follows from (∫ ∞
1

(
sinx

x

)2

dx

) 1
2

<

(∫ ∞
1

1

x2
dx

) 1
2

<∞ = 1 <∞ (2.3)

Now to evaluate this integral, we can use calculus of residues. Since this function is even we can

Evaluated it from −∞ to ∞ and divide the result by 2.

7. Suppose f is a non-negative function which is Lebesgue integrable on [0, 1], and {rn : n = 1, 2, ...} is
an enumeration of the rational numbers in [0, 1]. Show that the infinite series

∞∑
n=1

1

2n
f(|x− rn|) (2.4)

converges for a.e. x ∈ [0, 1].

Proof. We will set g(x) =
∑∞
n=1

1
2n f(|x − rn|), and prove that

∫ 1

0
g(x)dx < ∞. From this it will

immediately follow that g(x) <∞ a.e. First, we note that
∫ 1

0
f(|x− rn|) ≤

∫ 1

−1 f(|x− rn|) = 2
∫ 1

0
f(x).

Thus: ∫ 1

0

g(x)dx =

∞∑
n=1

∫ 1

0

1

2n
f(|x− rn|) (2.5)

≤ 2

∫ 1

0

f(x)dx

∞∑
n=1

1

2n
(2.6)

= 2

∫ 1

0

f(x) <∞ (2.7)

as desired.

3 Spring 1994

1. Evaluate
∫∞
0

log x
1+x2 dx.

Proof. Let us integrate this in the complex plane with respect to complex variable z, consider the path

γ from −R to R, then moving along Reit for t ∈ [0, π] back to −R. Let us consider the contribution

of the integral around the path z = Reit for t ∈ [0, π]. Changing the variable of integration from z to

t yields:

∣∣∣∣∫ ∞
0

log x

1 + x2
dx

∣∣∣∣ < M

∫ 2π

0

logR

|1 +R2|
dt (3.1)

≤M logR

R
(3.2)
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for some constant M and sufficiently large R. Thus, the integral around γ reduces to the portion of

the integral on the real number line as R → ∞. We can use the calculus of residues to evaluate this

integral. There is only 1 reside at z = i evaluated as follows:

Res(f(z); z = i) = lim
z→i

(z − i) log z

(z − i)(z + i)
(3.3)

= (3.4)

2. Show that [0, 1] cannot be written as the countably infinite union of disjoint nonempty closed intervals.

Proof. We prove this statement by contradiction. Suppose [0, 1] was the union of countably many

closed intervals. Then removing the endpoints of each interval we get that there is a sequence of

disjoint open intervals In such that

[0, 1] = ∪∞n=1In (3.5)

Letting In = [xn, yn] we consider the union of the endpoints;

U = ∪∞n=1{xn, bn} (3.6)

U is clearly closed, and we can see that U is also perfect since every point in U is a limit point. We can

now apply the Baire category theorem which shows that a perfect subset of a complete metric space

can’t be countable infinite. The result follows.

3. Let f : D → C be analytic such that Rf(z) > 0 for all z. Prove

|f(z)| ≤ |f(0)|1 + |z|
1− |z|

(3.7)

Proof. We note the map g(z) = f(0)−z
f(0)+z maps the right half complex plane conformally onto the unit

disk such that g(f(0)) = 0. Thus, we can apply Schwarz’s lemma to the function g(f(z)) to obtain

|g(f(z))| ≤ |z|. We also have

g−1(z) = f(0)
1− z
1 + z

(3.8)

Thus, |f(z)| ≤ g−1(|z|) = f(0) 1−|z|
1+|z| as desired.

4. Let f : [1,+∞)→ [0,+∞) be Lebesgue measurable. Prove:∫ ∞
1

f(x)2

x2
< +∞⇒

∫ ∞
1

f(x)

x2
dx < +∞ (3.9)
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Proof. Define S0 = {x : f(x) < 1}, and S1 = {x : f(x) ≥ 1}. It’s clear that
∫∞
1

f(x)
x2 dx =

∫
S0

f(x)
x2 dx+∫

S1

f(x)
x2 , so if we can bound each of the integrals then we are done.

First, we have
∫
S0

f(x)
x2 dx ≤

∫
S0

1
x2 dx <

∫∞
1

1
x2 dx <∞.

On the other hand, we have
∫
S1

f(x)
x2 <

∫
S1

f(x)2

x2 <
∫∞
1

f(x)2

x2 < ∞ by hypothesis. Putting everything

together yields our desired result.

5.

6. Let ([0, 1],A, µ) denote the Lebesgue space on f : [0, 1]→ R the condition ”f is continuous a.e.” neither
implies, nor is implied by, the condition ”there exists a continuous function g : [0, 1] → R such that
f = g a.e.”

Proof. Let g(x) = 0 and define f(x) as follows:

f(x) =

1 if x ∈ Q

0 if x /∈ Q
(3.10)

Then because Q has Lebesgue measure 0, it follows that g(x) = f(x) a.e. However, f(x) is nowhere

continuous.

Conversely, let

f(x) =

0 if x ≤ 1
2

1 if x > 1
2

(3.11)

which will always differ from a continuous function g around an interval centered at x = 1
2 , and thus

not equal to g a.e.

7. An entire function is said to have finite order if there exists c > 0 such that |f(z)| ≤ exp(|z|c) for all
|z| sufficiently large; the order of f is the infimum of all such c > 0. Prove that the following function
is entire and has order 1

2 .

f(z) =

∞∏
k=1

(
1 +

z

k2

)
(3.12)

Proof.

8. Let {fn} be a sequence of measurable functions on some measure space (X,A, µ) with µ(X) <∞. We
say the sequence is uniformly integrable if

lim
n→∞

∑
n

∫
|fn|>R

|fn|dµ = 0 (3.13)

(a) Show that if there exists g ∈ L1(X) such that |fn(x)| ≤ |g(x)| for all x, n then the {fn} are
uniformly integrable.
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Proof. Since µ(X) < ∞, and g ∈ L1(X), it follows that ess supx∈X g(x) < ∞. Thus, whenever

R > ess supx∈X g(x),
∫
|fn|>R |fn|dµ = 0 for all n, and thus limn→∞

∑
n

∫
|fn|>R |fn|dµ = 0 as

desired.

(b) Prove that if fn → f pointwise and the {fn} are uniformly integrable then f ∈ L1(R) and

lim
n

∫
fndµ =

∫
fdµ (3.14)

Proof. We have the following inequality:∫
X

|f |dµ =

∫
|f |≤R

|f |+
∫
|f |>R

|f |dµ <
∫
|f |≤R

|f |+
∑
n

∫
|fn|>R

|fn|dµ <∞ (3.15)

where in the last inequality follows we assume R is sufficiently large such that
∑
n

∫
|fn|>R |fn| <

∞. Thus f ∈ L1(X) and by the Lebesgue dominated convergence theorem, it follows that

limn

∫
fndµ =

∫
fdµ as desired.
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