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Spring 1992
. Let (X, X, 1) be a measure space and {f,} a sequence in L!(du) which converges a.e. to f € L' (X, u1)
Prove: f, = fin LY(X,p) iff [|fn|dp — [|f|dp.

Proof. Let us first suppose that [ |f,|du — [|f|dp in L'(X,u). We consider the function |f| +
|frl = |f — fn] is non-negative due to the triangle inequality and measurable because f,, f are both

measurable. Thus, we can apply Fatou’s lemma to obtain:
[t |1+ 14l =17 = fuld < Hmint [17] 41720 = 1 = ol (1.1)

The RHS of the above equation is 2 [ | f|du + liminf,, o — [ | f — fu|dp while the LHS of the above is
2 ['|f|dp. Thus, we have

liminf—/|f—fn|du:—limsup/|f—fn|du20 (1.2)
n—00 n—o00

proving that lim,, . [ |f — fu|dp = 0 as desired.

Conversely, suppose that f,, — fin L*(X, ). It’s easy to prove that ove the reals, || f.| = |f|| < |f— fnl-
Thus if [ |fn — f]

nldp — dp| < n— fld 1.3
e [ 151 < [ 15, = sian (1.3
proving that [|f,|du — [|f|du as desired. O

. Let {f} be a sequence of Lebesgue-measurable real-valued functions on [0, 1] such that

1
hm/o | fr(x)|dz =0 (1.4)

n—oo

Prove there exists a subsequence of {f,,} such that {f,,(x)} converges to 0 for a.e. x.

Proof. Suppose the opposite was true and there was a set S C [0, 1] with nonzero measure such that

there is no subsequence f,, (x) that converges to 0. Then there is an € > 0 such that Va € S there is

Letting u be the standard euclidean measure on [0, 1], we know that Ve > 0, it is true that fol | fr(2)|dx >
il fal@)] > ehe > u(S)e. O

. Prove that Lebesgue measure A on R is translation-invariant: if A is Lebesgue-measurable subset of R
then for each u € R, u + A is also Lebesgue-measurable and A(u + A) = A(A).

Proof. Suppose we had an open cover of intervals U; which cover A, then U; 4+ u is an open cover of
intervals which cover u + A. Conversely, any cover V; of u + A gives rise to a cover V; — u of A. This
bijection of covers proves that A being measurable implies u + A is measurable and that they have the

same measure. O



4. A function f: R — R is said to be lower semi-continuous provided

f(x) <liminf f(x,) (1.5)

n—oo

whenever lim,, z,, = . Show that every lower semi-continuous function is Borel measurable.

Proof. O

5. Show that the function ¢ defined by
o= [ s (=0 (16)
0
is well-defined and differentiable on (0, 00).

Proof. Proving ¢ is well defined is same as proving the integral is bounded. We can evaluate this

integral by integrating by parts |p| times to obtain:

0o oo IP*LPJ ®
/ e dr =pp—1)---(p— |p] —|—1)/ dz < / —dz =1 (1.7)
1 o € o €

We can now prove differentiability by differentiating under the integral sign and proving the result is

well defined. Doing so yields:
¢'(p) = / prP~le " dx (1.8)
0

which we can apply the reasoning from before to prove that this is bounded and thus well defined. [

Fall 1993

1. Define D, = {z € C: |z| < r}, the open r-disk. Let M > 0 and f,, : D; — Dy for n = 1,2,... be a
sequence of analytic functions. Prove there is a subsequence which converges uniformly on D, 5.

Proof. Since f, analytic on the complex space, it is also holomorphic. It’s also clear that D, is

uniformly bounded Since D, /5 is compact, can apply Montel’s therem if we can prove that f, is [

2. Prove or find a counterexample: Let D be a coutable dense subset of (0, 1) and let G be an open subset
of R such that G D D, then G D (0,1).

Proof. We shall find a counterexample. Let D be the rational numbers in (0,1), which is dense and
countable in (0,1). Now let G = (0, @) U (@, 1). It’s clear that G D D, and that G is open. However,

G doesn’t contain (0, 1), thus giving us our counterexample. O

3. Let f be a non-constant meromorphic function with is doubly periodic (i.e. has two periods linearly
independent over the reals). Prove that f has at least one singularity.



Proof. Since the reals is one dimensional vector space, I assume they mean ”has two periods linearly
independent over the complex numbers”. Let the periods be a,b € C. Then every point in the
complex plane can be expressed as z = wa + yb for some z,y € R. Since f is periodic, we have
f(za+ yb) = f((z £ 1)a,y(£1)b). Thus, we have f(z) = f(z') for some 2’ within the parallelogram
with vertices 0, a,a~+b, b. If there is no singularity, since this is a compact set f will reach its maximum
on this parallelogram, and thus f will have a global maximum. However, by the maximum principles,
f, being a complex valued function, cannot attain a maximum on an open set. Thus f has at least one

singularity. O
. How many roots of the equation f(z) = 0 lie in the right half-plane, where

f(2) = 2* + V22 + 222 — 5242 (2.1)

Proof. We let our contour be the curve from iR to —iR, and around the semicircle of radius R in the
right half plane. If we set g(z) = 2* + 2 then |g(z)| > R* — 2 when |z| = R On the other hand, when z

is on the imaginary axis, we have:

f(it) = t* —iv2t3 — 26> — 5it +2 (2.2)

for t € R. We let our o|f(it)| = \/(t4 — 212 4+ 2)2 4 (/213 4+ 5t)2. Let g(z) = 2* — 52 Let g(z) =
zt+2 O

. Show that a function f : (a,b) — R which is absolutely continuous is both uniformly continuous and
of bounded variation.

Proof. Since f is absolutely continuous, for all € > 0, there exists § > 0 such that if a sequence of
pairwise disjoint subintervals (zx,yx) of (a,b) satisfy Y, (yx — xx) < 0, then >°, [f(yx) — f(ar)| < e

Letting £ = 1 proves that f is uniformly continuous.

Now we prove that f has bounded variation. Let define var, p) f to be the variation of f on the interval
(a,b). By hypothesis, there is a 6 > 0 such that >, [f(yx) — f(zx)] < 1 for all disjoint subintervals

(wi,y;) and Y, |yx — x| < 6. Let N be an integer greater than Z’TT“, and partition (a,b) into N evenly

(b];a) ,a+ (j+13\(7b_a)). Thus, varq ) f = Zjvzl Uar(a+j(b]\7a) at G- < Ejvzl 1=

N. O

space intervals (a + 1

. Show that S22 € L*(R™) and evaluate its L? norm.

N|=

x

Proof. We first show (fooo (%)2 dx) < o00. By Lhopital’s rule, lim,_,o 22 = 1 so by continuity of

Nl

Si%, it follows that (fl (M)Q dx)

. 2
o (5% < 00. Now we just have to show that (foo (%)2 dw) < 00.

1



This follows from

([ () w) < ([ ) oo

Now to evaluate this integral, we can use calculus of residues. Since this function is even we can

Evaluated it from —oo to oo and divide the result by 2. O

. Suppose f is a non-negative function which is Lebesgue integrable on [0,1], and {r, : n = 1,2,...} is
an enumeration of the rational numbers in [0, 1]. Show that the infinite series

> zi f(lz =) (2.4)

n=1

converges for a.e. z € [0,1].

Proof. We will set g(z) = Y07, 5= f(|]x — 74]), and prove that fo x)dx < oo. From this it will
immediately follow that g(z) < co a.e. First, we note that fo (|lx—rpn]) < f fllz—ra]) =2 fo
Thus:

[ st = i_oj AR 2.5)

< 2/01 f(x)dmnil 2% (2.6)

- 2/01f(x) < oo (2.7)

as desired. O

Spring 1994

. Evaluate fo i(f;; dz.

Proof. Let us integrate this in the complex plane with respect to complex variable z, consider the path
v from —R to R, then moving along Re® for t € [0,7] back to —R. Let us consider the contribution
of the integral around the path z = Re‘® for ¢ € [0, 7]. Changing the variable of integration from z to
t yields:

> logx ™ logR
d M ————dt 3.1
|t x‘< [ wim 31)

log R

<M

(3.2)



for some constant M and sufficiently large R. Thus, the integral around - reduces to the portion of
the integral on the real number line as R — oco. We can use the calculus of residues to evaluate this

integral. There is only 1 reside at z = ¢ evaluated as follows:

Res(f(2):2 = i) = lim(z — i) = (33)
= (3.4)
O

2. Show that [0, 1] cannot be written as the countably infinite union of disjoint nonempty closed intervals.

Proof. We prove this statement by contradiction. Suppose [0,1] was the union of countably many
closed intervals. Then removing the endpoints of each interval we get that there is a sequence of
disjoint open intervals I,, such that

[07 1] = UZo:Jn (3.5)

Letting I,, = [z, yn] We consider the union of the endpoints;

U=U;2 {xn,bn} (3.6)

U is clearly closed, and we can see that U is also perfect since every point in U is a limit point. We can
now apply the Baire category theorem which shows that a perfect subset of a complete metric space

can’t be countable infinite. The result follows. O

3. Let f: D — C be analytic such that SRf(z) > 0 for all z. Prove

1+ |z]
1— 7|

[f(2)| < [£(0)] (3.7)

Proof. We note the map g(z) = J;Eg;;z maps the right half complex plane conformally onto the unit

disk such that g(f(0)) = 0. Thus, we can apply Schwarz’s lemma to the function g(f(z)) to obtain
lg(f(2))] < |z]. We also have

1-=2
-1 _

g7 ) = FO) 1 (3.9
Thus, |f(2)| < g7(]z]) = f(O)L_r—{;l as desired. O

4. Let f:[1,+00) = [0,400) be Lebesgue measurable. Prove:

oS} 2 o]

/ 1@ o ;»/ 1@ gy < oo (3.9)

1 z? P



Proof. Define So = {z : f(z) < 1}, and S1 = {z : f(z) > 1}. It’s clear that [ D) gg = fs(, 1) gy +

z2 z2

fSl fg), so if we can bound each of the integrals then we are done.

First, we have fSo fa(:a;) dr < fSo #daz < floo %dz < 00.

On the other hand, we have [q o) o s, f@? I %2)2 < oo by hypothesis. Putting everything

z2 T 1

together yields our desired result. O

. Let ([0, 1], A, ) denote the Lebesgue space on f : [0,1] — R the condition ” f is continuous a.e.” neither
implies, nor is implied by, the condition ”there exists a continuous function g : [0,1] — R such that

f=gae”
Proof. Let g(z) = 0 and define f(z) as follows:

1 ifze@Q
f(z) = (3.10)
0 ifz¢Q

Then because Q has Lebesgue measure 0, it follows that g(x) = f(x) a.e. However, f(z) is nowhere

continuous.

Conversely, let

0 ifz<
flz) = (3.11)
1 ifx>

N

SIS

which will always differ from a continuous function g around an interval centered at = = %, and thus
not equal to g a.e. O
. An entire function is said to have finite order if there exists ¢ > 0 such that |f(z)| < exp(|z|°) for all

|z| sufficiently large; the order of f is the infimum of all such ¢ > 0. Prove that the following function
is entire and has order %

f(z) = ﬁ (1 + %) (3.12)
k=1

Proof. O

. Let {f.} be a sequence of measurable functions on some measure space (X, A, u) with p(X) < co. We
say the sequence is uniformly integrable if

lim / fuldp = 0 (3.13)
n—)oo; |fn|>R

(a) Show that if there exists g € L}(X) such that |f,(z)| < |g(z)| for all z,n then the {f,} are
uniformly integrable.



Proof. Since u(X) < oo, and g € L'(X), it follows that esssup,cy g(z) < oo. Thus, whenever

R > esssup,cx 9(7), [; jsplfuldn = 0 for all n, and thus lim, 00 3, [/ s g |falde = 0 as
desired. O

Prove that if f,, — f pointwise and the {f,} are uniformly integrable then f € L*(R) and
lim/fndu = /fdp (3.14)

Proof. We have the following inequality:

du = d nld .
/lel " /|f|§R|f|+/f|>R|f| u</|f|§R|f|+zn:/nl>R|f ldjs < o0 (3.15)

where in the last inequality follows we assume R is sufficiently large such that ) f‘ fa>R |fnl <
oo. Thus f € L'(X) and by the Lebesgue dominated convergence theorem, it follows that
lim,, [ fodp = [ fdp as desired. O
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