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Definition 1. Compact Support
A function has compact support if it vanishes outside of some compact set.

Definition 2. Semi- Continous

f is upper semi-continuous if for all z and all € > 0, there exists a 6 > 0 such that
fly) < f(x)+eforall ly—z| <9
f is lower semi-continuous if for all z and all ¢ > 0, there exists a 6 > 0 such that

flz) < f(y)+eforall ly—z| <9

Lemma 1. Facts about USC and LSC

Immediately from the definitions:
® f is upper semi-continuous <= limsup,_,, f(y) < f(z) for all .

® fis lower semi-continuous <= f(z) < liminf, ,, f(y) for all z.

Theorem 1. Weierstrass Approximation Theorem
f is continuous and real valued on [a, b] a closed interval

f can be uniformly approximated by polynomials. (For all ¢ > 0 There exists
p(z) so |f(xz) — p(x)| < e for all z.)
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Lemma 2. Monotone Convergence of a Sequence
{a,}22, is a bounded sequence with a,, < a,1 for all n

lim a, = supa, and so namely, the limit exists.
n—00 n

Example 1. Understanding Limsups and Liminfs

oo o0

¥ Let {A,}°2, be sets. Then ligg g}f A, = U ﬂ Ay is the set where each element belongs
n=1k=n

to all but finitely many of the A,,.

¥ Let {A4,}52, be sets. Then limsup A, = (1) |J A is the set where each element
n—oo n=1k=n

belongs to infinitely many of the Ay (but could also not belong in infinitely many).

¥ Let {f,}°°, be functions. Then liminf f,(z) = lim inf fi(z).

¥ Let {f,}°°, be functions. Then limsup f,(z) = lim sup fr(x).

n—oo k>n

¥ Let f be a function. Then liminf f(y) =sup inf f(y).
y—a e>0 ly—z|<e

¥ Let f be a function. Then limsup f(y) = inf sup f(y).

y— e>0 ly—z|<e

Lemma 3. Facts from Topology

A union of open sets (countable or uncountable) is open

An intersection of closed sets (countable or uncountable) is closed

In C a set is compact <= it is closed and bounded

The Cantor set C' is compact and has the cardinality of R.
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Definition 3. Algebras and o-Algebras

® An algebra A C P(X) on a set X is a subset of the powerset of X which contains X
and is closed under compliments and finite unions and finite intersections.

® A g-algebra A C P(X) on a set X is a subset of the powerset of X which contains X
and is closed under compliments and countable unions and countable intersections.

Example 2.

¥ P(X) and {@, X} are always o-algebras (and algebras)
¥ Borel o-algebra By is the o-algebra generated by all open subsets of X.

¥ By is generated by sets of any of the following forms:

(a,b) (a,00)
la,b) [a,00)
(a,b] (—o00,b)
la,b] (—o0,]

¥ If X is infinite, A = {E C X | E is finite or E° is finite} is an algebra but not a
o-aglebra.

¥ If X is infinite, A = {E C X | F is countable or E° is countable} is a o-algebra.

Definition 4. Types of Sets in a o-Algebra

G-sets are intersections of open sets (N{open})

F,-sets are unions of closed sets (U{closed})

Gso-sets are unions of Gs-sets, (UN{open})

F,s-sets are intersections of F, sets (N U{closed})

Mnumonic: ¢ is sum, and F' is closed.
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Definition 5. Measure

p: A — [0, 00| from a g-algebra is a measure if

n(@) =0
® |, is countably additive: for all disjoint collections {E;}°, C A

(35)- £

Lemma 4. Facts about Measures

Immediately from the definitions:

® if £ C F then u(E) < p(F)

L (U EZ> < Zu ) for any collection {E;}°, C A

¥ continuity from below: if £; C Fy C --- then hm w(E <U E >

® continuity from above: if By D Ey D -+ and u(E;) < oo, then hm u(E <ﬂ E )

Example 3. Disjointification
Let {E;}°, C A. Then let

F=E
Fy, = E)\E)
Fy = E3\(E, U Ey)

o= (U )

Then U2, F; = U2, E; but the F; are disjoint.
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Example 4. Examples of Measures

¥ The counting measure on a set u(E) = |E|, often defined on the o-algebra N
¥ The durac or pointmass measure at some point x,

1 iroEE
T E) =
Han (B) {0 itz ¢ E

¥ The Lebesgue measure

Lemma 5. Facts about the Lebesque Measure

m is outer regular: m(F) = inf{m(U)| E C U open}.

2 1 is inner regular: m(E) = sup{m(K) | K compact C E}.
2 n(Q) = 0 for any countable set @), namely, m(Q) =0

2 1 (C) = 0 where C is the Cantor-set.

® (E+5s)=m(F) where E+s={z+s|z €L}

® n(rE) = |r|m(FE) where rE = {rz|z € E}

£ is the completion of Bg (the Borel o-algebra for R) and it is the domain of m. Namely,
m is complete measure.

Definition 6. Premeasure
o : A — [0, 00| from an algebra (not o-algebra) satisfies

® () =0

® (U EZ> Z w*(E;) for all disjoint collections {E;}22, where U E; C A (which does

not always happen in algebras).

Definition 7. Quter Measure
p P(X) — [0, 00] from the power set satisfies

® 5 (2)=0
® it A C B y(4) < o (B)
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- (U Ez) < Z“*(EZ) for all collections {F;}2,
i=1 =1

Sets A satisfying
pW(E)=p (ENA)+ p (EN A VE C X

are called p*-measurable.

Theorem 2. Claratheodory’s

p* is an outer measure

M, the set of all p*-measurable sets, is a o-algebra and p*|y is a complete

measure.

Definition 8. Other Types of Measures
p A — [0, 00]
2 Finite measure: pu(X) < oo
® ;- Finite measure: There exists a disjoint collection {E;}3°, C A such that X = | J E;

i=1
and p(E;) < oo for all i.

¥ Semi-finite: for all £ where pu(E) = oo, there exists FF C E'so 0 < u(F) < u(E) = oc.

Lemma 6. 1rick for Borel Measures

If: | E is measurable and u(E) < oo,

for every € > 0, there exists A which is a finite union of disjoint open intervals
such that u(FAA) < e.

Example 5. The Construction of a Measure

(1) Start with an algebra A and a premeasure p on that algebra.
(2) Let p* : P(X) — [0, 00] be defined by

p*(E) = inf {i,uo(Ai) |A; € AE C Ej Al} )

=1

Then p* defines an outer measure.
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(3) Apply Caratheodory to obtain p = p*|y the outer measure restricted to the o-algebra
of p*-measurable sets.

(4) p is now a complete measure.

A shortcut to this process: if f: X — [0oc], then defining

B) = X 1(0) = sup{ 5 ) | F e 5|

zel zelF

defines a measure.

Example 6. Construction of Measures from Functions
We utilize the outline the previous example to adapt functions into measures.

Let F : R — R be any increasing right continuous function. Let A be the algebra
generated by half-open invervals of the real line {(a,b]}. Then

o (Utew]) = X1F0) - Fla)
i=1 i=1
defines a premeasure on A.

Going through the process described in the previous example, we finally obtain a unique
regular Borel measure pur which is defined on By by

pr((a,b]) = F(b) — F(a)

% The function F'(x) = x defines the Lebesgue Measure.

Conversely, any finite Borel measure p can be used to define an increasing and right
continuous function by the formula

w((0, z]) ifx>0

F(z) =10 ifx=0
—u((z,0]) ifx<0
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Definition 9. Measurable Functions
A function f : (X, M) — (Y,N) is called (M, N)-measurable if f~'(E) € M for all
E e N.

***Continuous functions are Borel measurable by definition.

***To check if f: (X, M) — (R, Bg) is measurable, it suffices to check that f~}(F) € M
for £ = (a,00), [a,0), (—o0, b), (—00, b].

Example 7.

Borel measurable implies Lebesgue measurable, since if f : R — R, then f~1(E) € Bg C
L for all £ € Bg.

However, the converse is not true.

Take a null set N € £ such that N ¢ Bg. Then xxn be characteristic function of N.
Then {—1} € Bg C £ but x3'({1}) = N ¢ Bg. So x is not Borel measurable.

However, N € £ so xn ¢s Lebesgue measurable.

Lemma 7. Combining Measurable Functions

® [f f g are measurable, then f + g, f — g, fg, max{f, g}, min{f, g} are measurable.

® If {f;}5°, is a sequence of measurable functions, sup f;, inf f;, limsup f;, liminf f; are

all measurable.

2 If lim f;(x) exists for every x € X, then the limit is measurable.
11— 00

Definition 10. Stmple Functions

A simple function is a finite sum of characteristic functions

o) = ZXE ().
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Theorem 3. Approximating Measurable Functions

If:| fert

there exists a sequence of {p,}5%, approximating f pointwise from below,

namely,
0<p1<pp<--- < f

vn — [ pointwise and ¢,, — f uniformly from below on any set which f is
bounded.

EE f © X — C is measurable, then there exists {¢,}> so
0 < |e1] <ol < < S

with ¢, — f pointwise and ¢,, — f uniformly on any set where f is bounded.

Definition 11. Absolute Continuity
A function f is absolutely continuous on [a, b] if for all £ > 0, there exists a 6 > 0 such

that, for any finite collection {[a;, b;]}"; of subintervals of [a, b],

n

Yol —ail <d = E|f(bz’)—f(az’)|<5-

=1

Example 8.

¥ Uniform Continuity /= Absolute Continuity: Let f(x) be the Cantor-Lebesgue
function on [0,1]. Then f is continuous on a compact set so it is uniformly continuous.
Assume f is absolutely continuous, then by FTOLI,

=) =)~ fO) = [ f@dm=0 A

¥ Absolute Continuity /A= Lipschitz Continuity: Let f(z) = v/x on [0,1]. Then f is
discontinuous only at 0, so by the comparison theorem, f is Riemmann integrable, and
its Riemann and Lebesgue integerals coincide. Namely,

f@) = [ fwar [ 1@l =1<0

by techniques of Riemann integration, so f is absolutely continuous by FTOLI.

vz = Yl 1

o=yl Vit
Namely, there is no M so |f(z) — f(y)| < M|x — y| so f is not Lipschitz continuous.

which can grow arbitrarily large for x,y near 0.

However,
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Definition 12. Integral

For measurable, non-negative functions (f € LT),
/ fduzsup{/ @dp |0 < @ < f, ¢ simple }
X X

where

/ edp =Y a;p(E;).
X i=1
For measurable, functions,

[ gan= [ frdp— [ fdp

where f = f* — f~ its positive and negative parts (which are both non-negative measurable
functions).

A function f € L! if its measurable and

[1f1dn < 0.

Lemma 8. Facts about Integration

IfaeR,/afdu:a/fdu
f,geLl,/figduz/fdui/gdu

f < g, then [ fdp< [ gd

® fclT then/fdu:()if and only if f =0 a.e.

® fc[! then |f(z)] < oo a.e. and {z : f(z) # 0} is o-finite.
® | [ fdul < [|fldp

fo € L* for all n then 3 / Fodp = / S fudp
n=0 n=0

10
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Theorem 4. Monotone Convergence Theorem

B f,c Lt foralln
B f, < f,.1 forall n (and all z)

s e = Jim, | S

Theorem 5. Fatou’s Lemma

fn € LT for all n,

/lim inf f,dp < lim inf/fndu.

Theorem 6. Dominated Convergence Theorem

B f, measurable for all n

B lim fn(z) exists for a.e. = (pointwise convergence)
n—oo

B- there exists g € L' such that |f,(z)| < g(z) for all n and a.e. m.

the limit in in L' and

[ Y s = Jsn [ fde

Theorem 7. Integral Approximation Theorem

If:| fer!

for all € > 0, there exists a simple function such that / |f —pldp < e.

*HHIf f € L'(m) (where m is the Lebesgue measure) then there exists a continuous

function with compact support such that / lf — gldm < e.

11
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Lemma 9. Tricks for Integrating Functions

2 Show the result holds for a characteristic function. By linearity, it holds for all simple

functions. If f is measurable, it can be uniformly approximated by simple functions
(Theorem 3).

® [f fis L', the integral of f can be approximated by the integral of some simple function
(Theorem 7).

® If fis L'(m), the integral of f can be approximated by the integral of some continuous
function with compact support (Theorem 7).

Theorem 8. Comparing Riemann and Lebesque Integerals

"
[, f is bounded and real valued on a bounded interval [a, b]

if f is Riemann integrable, f is Lebesgue measurable (and hence integrable)
b
and the two integrals agree / f(z)dx = /[ ] fdm
a a,b

B f is bounded on [a, b]
f is Riemann integrable {z € [a,b] : f is discontinuous at z} is

Lebesgue null.

g f:(a,b] = [0,00) is a nonnegative continuous function (where lim f(a) = oo

a—a
which has a finite (although perhaps improper) Riemann integral

f € L'(a,b] and the Riemann and Lebesgue integrals agree.

***The last bullet is because on [a, b] for a > a, f is bounded and so by the first part
of this theorem,

/(a,b} f(z)dm(z) = lim f(z)dm(z) = lim/ f(z)dr < oco.

a—a [a,b} a—a o

12
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Theorem 9. Fundamental Theorem of (Riemann) Integerals

:| f is continuous on [a, b] and F'(x / f(t)dt

F is well defined and continuous for all « € [a, b], (so F' is uniformly continuous)
and F'(z) = f(x) for all x € (a,b).

ik Conversely, if f is Riemann integrable on [a, b] and has an antiderivative F' on [a, b],

then / " ba)de = F(b) — F(a).

Theorem 10. Fundamental Theorem of (Lebesque) Integerals
F :a,b] — C, TFAE:

B [ is absolutely continuous on [a, b]

B F(z) — Fla) = /;f(t)dt for some f € L([a, b],m).

B [ is differentiable a.e. on [a,b], F' € L'([a,b],m), and F(z) — F(a) = /x F'(t)dt.

Theorem 11. Tonelli

B If (X, M, x) and (Y, N, v) are o-finite
B fc LT(X xY) (positive and measurable)

/fdpxz/ //fdudy_//fdydu

Theorem 12. FUbZ’fLZ

B If (X, M, x) and (Y, N, v) are o-finite
B f c L'(u x v) (which can be checked by looking at | f| and using Tonelli)

/fdpxz/ //fdudy_//fdydu

13
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Definition 13. Modes of Convergence

® Convergence in Measure: u({z : |f.(z) — f(z)] > €}) - 0asn — oo

Convergence in L': / |fu(z) — f(z)|dp — 0 as n — oo.

=
® Almost Uniform (AU): If (X)) < oo, for every € > 0, there exists a set E. such that
w(E;) < e and f, — f uniformly on E¢.

Theorem 13. Implication Diagrams for Convergence

Represents implication (e.g. almost uniform convergence implies a.e. conver-

gence).

—————— »  Represents existence of subsequence which converges (e.g. convergence in L'
implies existence of a subsequence which converges a.e.).

General Case: Finite measure space:

AFE «—— AU AE —— AU

AT PN A~ x R ANIPN
| N s ] | N 7 |
N 7 N td

N7 | | ~ |
AN | | > |
PR
P AN | | il AN |
. N N

L' —— M L' — M

*#* Almost uniform convergence being equivalent to a.e. convergence in a finite measure
space is a result of Egoroff’s Theorem.

Example 9. Classic Counter Examples

(1) Uniform Convergence /= Convergence in L': Let f,(z) = 2x(0n(2). Then f, — 0
uniformly since f,, is clearly bounded everywhere. However,

1
[1fa=0l==m(©n) =1 ¥n
n
so this clealry does not converge to 0 in L.

14
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(2)

Convergence in L' /= Convergence a.e.: Let f,, be the moving box example. Namely,
for each n, there exists k so 2 < n < 281 let

falz) = X[&-1,22-1) ().

Namely,
J1(7) = X, 2'=1<1
fQ(I):X[Ol] 2! =2<2
fg(l') = X[%,l] 21 = 2 S 3
then

1
J 1l = 55 =0

but f,(z) doesn’t converge for any x since there are an infinite number of n where
fn(z) =1 and an infinite number of n where f,(z) = 0.

Convergence in Measure /= Convergence in L': Let f,(z) = nXp,1)(x). Then f, —0
in measure, since the measure of the set where f,, is large shrinks to nothing as n — oo.

However,

/|fn|:1 Vn

so fn /4 0in L.
Convergence a.e. /= Convergence in measure: Let f,(r) = . Then f,(r) — 0 for
all z € R, however,

m({z : |fu(2)] 2 e}) = m({z : x> ne}) = m([ne, 00)) = o0

for all n.

15
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Definition 14. Signed Measure

v:M — [—o0, x|

v(@) =0

v assumes at most one of the oo

v <U El> <> v(E;) for all disjoint collections { E;}52, C M (where the sum converges
i=1 i=1
absolutely if v (U EZ> < 0)
i=1

FRESigned measures are also continuous from above and below, just like positive measures.

Definition 15. Singular and Absolutely Continuous

® [f 1, and v are measures (signed or otherwise) on (X, M), then p and v are mutually
singular (write p L v) if there exists E, F' € M such that ENF =@, FUF = X,
w(E) =0 and v(F)=0.

® [f ;, and v are measures (where at most v is singed) on (X, M), then v is absolutely

continuous with respect to u (write v << p) if p(E) = 0 implies v(E) = 0 for all

EeM.

® y <<y if and only if v(F) = [ fdu for some f € L'(u) (write dv = fdpu).

Theorem 14. Hahn Decomposition
v is a signed measure on (X, M),

there exists a positive set P and neative set N for v such that PUU = X,
PNU = @, and these choices are unique up to null set.

Definition 16. Locally Integrable
feLl, if [|f(x)du < oo for all bounded measurable sets K.

16
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Definition 17. Shrinks Nicely
{E,};>0 C Bgn is said to shrink nicely to a point z if

® F C By(x) for all r

® there exists a constant a > 0 (independent of ) so m(E,) > am(B(r,z)) for all r.

Theorem 15. Lebesgue-Radon-Nikodym

B v is a signed and o-finite measure

B m is a o-finite measure (usually taken to be the Lebesgue measure)
there exists a measure A and function f € L'(m) such that A L m and
dv =d\ + fdm.

***Furthermore, when m is the Lebesgue measure, for m-a.e. x, and for every family
{E.}+>0 that shrinks nicely to z,

Theorem 16. Generalized Lebesque-Radon-Nikodym

B v is a complex measure

W- /. is a o-finite measure

there exists a measure A and function f € L'(m) such that A L p and
dv = d\ + fdp.

Theorem 17. Lebesque Differentiation Theorem

fe Ll

for a.e. z, and for every family {E, },>o that shrinks nicely to .

ti o [ )y = 1)

17



