Kayla Orlinsky Real Analysis Exam Cheat Sheet

Review Basic Review

Definition 1. Compact Support

A function has compact support if it vanishes outside of some compact set.

Definition 2. Semi-Continous

- f is upper semi-continuous if for all x and all $\varepsilon > 0$, there exists a $\delta > 0$ such that $f(y) < f(x) + \varepsilon$ for all $|y x| < \delta$
- **P** f is lower semi-continuous if for all x and all $\varepsilon > 0$, there exists a $\delta > 0$ such that $f(x) < f(y) + \varepsilon$ for all $|y x| < \delta$

Lemma 1. Facts about USC and LSC

Immediately from the definitions:

- $\blacksquare f$ is upper semi-continuous $\iff \limsup_{y \to x} f(y) \le f(x)$ for all x.
- $\blacksquare f$ is lower semi-continuous $\iff f(x) \leq \liminf_{y \to x} f(y)$ for all x.

Theorem 1. Weierstrass Approximation Theorem

If: f is continuous and real valued on [a, b] a closed interval

Then: f can be uniformly approximated by polynomials. (For all $\varepsilon > 0$ There exists p(x) so $|f(x) - p(x)| < \varepsilon$ for all x.)

Lemma 2. Monotone Convergence of a Sequence $\boxed{\text{If:}} \{a_n\}_{n=1}^{\infty} \text{ is a bounded sequence with } a_n \leq a_{n+1} \text{ for all } n$ $\boxed{\text{Then:}} \lim_{n \to \infty} a_n = \sup_n a_n \text{ and so namely, the limit exists.}$

Example 1. Understanding Limsups and Liminfs

- **\hat{\mathbf{x}}** Let $\{A_n\}_{n=1}^{\infty}$ be sets. Then $\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$ is the set where each element belongs to all but finitely many of the A_n .
- **\hat{\mathbf{x}}** Let $\{A_n\}_{n=1}^{\infty}$ be sets. Then $\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$ is the set where each element belongs to infinitely many of the A_k (but could also not belong in infinitely many).
- $\hat{\mathbf{x}}$ Let $\{f_n\}_{n=1}^{\infty}$ be functions. Then $\liminf_{n \to \infty} f_n(x) = \liminf_{n \to \infty} \inf_{k \ge n} f_k(x)$.
- **\hat{\mathbf{x}}** Let $\{f_n\}_{n=1}^{\infty}$ be functions. Then $\limsup_{n \to \infty} f_n(x) = \limsup_{n \to \infty} \sup_{k \ge n} f_k(x)$.
- **i** Let f be a function. Then $\liminf_{y \to x} f(y) = \sup_{\varepsilon > 0} \inf_{|y-x| < \varepsilon} f(y)$.
- $\widehat{\pmb{\pi}} \text{ Let } f \text{ be a function. Then } \limsup_{y \to x} f(y) = \inf_{\varepsilon > 0} \sup_{|y-x| < \varepsilon} f(y).$

Lemma 3. Facts from Topology

- A union of open sets (countable or uncountable) is open
- An intersection of closed sets (countable or uncountable) is closed
- \blacksquare In \mathbb{C} a set is compact \iff it is closed and bounded
- \blacksquare The Cantor set C is compact and has the cardinality of \mathbb{R} .

\hat{\mathbf{x}}:-Delta Algebras and \sigma-Algebras D:- $\hat{\mathbf{x}}$

Definition 3. Algebras and σ -Algebras

- An algebra $\mathcal{A} \subset \mathcal{P}(X)$ on a set X is a subset of the powerset of X which contains X and is closed under complements and *finite* unions and *finite* intersections.
- **P** A σ -algebra $\mathcal{A} \subset \mathcal{P}(X)$ on a set X is a subset of the powerset of X which contains X and is closed under complements and *countable* unions and *countable* intersections.

Example 2.

- $\mathbf{\hat{x}} \ \mathcal{P}(X)$ and $\{\emptyset, X\}$ are always σ -algebras (and algebras)
- **\hat{\mathbf{x}}** Borel σ -algebra \mathcal{B}_X is the σ -algebra generated by all open subsets of X.

 ${\bf \hat{\pi}}~{\cal B}_{\mathbb R}$ is generated by sets of any of the following forms:

$$\begin{array}{ll} (a,b) & (a,\infty) \\ [a,b) & [a,\infty) \\ (a,b] & (-\infty,b) \\ [a,b] & (-\infty,b] \end{array}$$

- **\hat{\mathbf{x}}** If X is infinite, $\mathcal{A} = \{E \subset X | E \text{ is finite or } E^c \text{ is finite}\}$ is an algebra but *not* a σ -aglebra.
- **\hat{\mathbf{x}}** If X is infinite, $\mathcal{A} = \{E \subset X \mid E \text{ is countable or } E^c \text{ is countable}\}$ is a σ -algebra.

Definition 4. Types of Sets in a σ -Algebra

- \blacksquare G_{δ} -sets are intersections of open sets (\bigcap {open})
- \blacksquare F_{σ} -sets are unions of closed sets (\bigcup {closed})
- \blacksquare $G_{\delta\sigma}$ -sets are unions of G_{δ} -sets, $(\bigcup \cap \{\text{open}\})$
- $\blacksquare F_{\sigma\delta}\text{-sets are intersections of } F_{\sigma} \text{ sets } (\bigcap \bigcup \{\text{closed}\})$

Mnumonic: σ is sum, and F is closed.

Řŕ-DMeasures **Dŕ-**Ř

Definition 5. Measure

 $\mu:\mathcal{A}\rightarrow [0,\infty]$ from a $\sigma\text{-algebra}$ is a measure if

 $\blacksquare \ \mu(\varnothing) = 0$

 \blacksquare μ is countably additive: for all disjoint collections $\{E_i\}_{i=1}^{\infty} \subset \mathcal{A}$

$$\mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mu(E_i)$$

Lemma 4. Facts about Measures

Immediately from the definitions:

$$\begin{array}{l} \blacksquare \quad \text{if } E \subset F \text{ then } \mu(E) \leq \mu(F) \\ \blacksquare \quad \mu\left(\bigcup_{i=1}^{\infty} E_i\right) \leq \sum_{i=1}^{\infty} \mu(E_i) \text{ for any collection } \{E_i\}_{i=1}^{\infty} \subset \mathcal{A} \\ \blacksquare \quad \text{continuity from below: if } E_1 \subset E_2 \subset \cdots \text{ then } \lim_{n \to \infty} \mu(E_n) = \mu\left(\bigcup_{n=1}^{\infty} E_n\right) \\ \blacksquare \quad \text{continuity from above: if } E_1 \supset E_2 \supset \cdots \text{ and } \mu(E_1) < \infty, \text{ then } \lim_{n \to \infty} \mu(E_n) = \mu\left(\bigcap_{n=1}^{\infty} E_n\right) \end{aligned}$$

Example 3. Disjointification

Let $\{E_i\}_{i=1}^{\infty} \subset \mathcal{A}$. Then let

$$F_1 = E_1$$

$$F_2 = E_2 \setminus E_1$$

$$F_2 = E_3 \setminus (E_2 \cup E_1)$$

$$\vdots$$

$$F_n = E_n \setminus \left(\bigcup_{i=1}^{n-1} E_i\right)$$

Then $\bigcup_{i=1}^{\infty} F_i = \bigcup_{i=1}^{\infty} E_i$ but the F_i are disjoint.

Example 4. Examples of Measures

\hat{\mathbf{x}} The counting measure on a set $\mu(E) = |E|$, often defined on the σ -algebra \mathbb{N} **\hat{\mathbf{x}}** The durac or pointmass measure at some point x_0 ,

$$\mu_{x_0}(E) = \begin{cases} 1 & \text{if } x_0 \in E \\ 0 & \text{if } x_0 \notin E \end{cases}$$

 ${\bf \hat{\pi}}$ The Lebesgue measure

Lemma 5. Facts about the Lebesgue Measure

 \blacksquare m is outer regular: $m(E) = \inf\{m(U) \mid E \subset U \text{ open}\}.$

- $\blacksquare m$ is inner regular: $m(E) = \sup\{m(K) \mid K \text{ compact } \subset E\}.$
- $\blacksquare m(Q) = 0$ for any countable set Q, namely, $m(\mathbb{Q}) = 0$

 \blacksquare m(C) = 0 where C is the Cantor-set.

- $\square m(E+s) = m(E) \text{ where } E+s = \{x+s \mid x \in E\}$
- $\square m(rE) = |r|m(E) \text{ where } rE = \{rx \mid x \in E\}$
- \blacksquare \mathcal{L} is the completion of $\mathcal{B}_{\mathbb{R}}$ (the Borel σ -algebra for \mathbb{R}) and it is the domain of m. Namely, m is complete measure.

Definition 6. Premeasure

 $\mu_0: \mathcal{A} \to [0, \infty]$ from an *algebra* (not σ -algebra) satisfies

$$\blacksquare \ \mu_0(\varnothing) = 0$$

 $\blacksquare \mu_0\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mu^*(E_i) \text{ for all disjoint collections } \{E_i\}_{i=1}^{\infty} \text{ where } \bigcup E_i \subset \mathcal{A} \text{ (which does not always happen in algebras).}$

Definition 7. Outer Measure

 $\mu^*: \mathfrak{P}(X) \to [0,\infty]$ from the power set satisfies

$$P \ \mu^*(\emptyset) = 0$$

$$P \ \text{if } A \subset B \ \mu^*(A) \le \mu^*(B)$$

$$\blacksquare \ \mu^*\left(\bigcup_{i=1}^{\infty} E_i\right) \le \sum_{i=1}^{\infty} \mu^*(E_i) \text{ for all collections } \{E_i\}_{i=1}^{\infty}$$

Sets A satisfying

 $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c) \qquad \forall E \subset X$

are called μ^* -measurable.

Theorem 2. Caratheodory's

If: μ^* is an outer measure

Then: \mathcal{M} , the set of all μ^* -measurable sets, is a σ -algebra and $\mu^*|_{\mathcal{M}}$ is a complete measure.

Definition 8. Other Types of Measures

 $\mu:\mathcal{A}\to [0,\infty]$

P Finite measure: $\mu(X) < \infty$

 \blacksquare σ -Finite measure: There exists a disjoint collection $\{E_i\}_{i=1}^{\infty} \subset \mathcal{A}$ such that $X = \bigcup_{i=1}^{\infty} E_i$ and $\mu(E_i) < \infty$ for all *i*.

P Semi-finite: for all E where $\mu(E) = \infty$, there exists $F \subset E$ so $0 < \mu(F) < \mu(E) = \infty$.

Lemma 6. Trick for Borel Measures

If: E is measurable and $\mu(E) < \infty$,

<u>Then</u>: for every $\varepsilon > 0$, there exists A which is a finite union of disjoint open intervals such that $\mu(E\Delta A) < \varepsilon$.

Example 5. The Construction of a Measure

- (1) Start with an algebra \mathcal{A} and a premeasure μ_0 on that algebra.
- (2) Let $\mu^* : \mathcal{P}(X) \to [0,\infty]$ be defined by

$$\mu^*(E) = \inf\left\{\sum_{i=1}^\infty \mu_0(A_i) \,|\, A_i \in \mathcal{A}, E \subset \bigcup_{i=1}^\infty A_i\right\}.$$

Then μ^* defines an outer measure.

- (3) Apply Caratheodory to obtain $\mu = \mu^*|_{\mathcal{M}}$ the outer measure restricted to the σ -algebra of μ^* -measurable sets.
- (4) μ is now a complete measure.

A shortcut to this process: if $f: X \to [0\infty]$, then defining

$$\mu(E) = \sum_{x \in E} f(x) = \sup\left\{\sum_{x \in F} f(x) \mid F \text{ finite } \subset E\right\}$$

defines a measure.

Example 6. Construction of Measures from Functions

We utilize the outline the previous example to adapt functions into measures.

Let $F : \mathbb{R} \to \mathbb{R}$ be any increasing right continuous function. Let \mathcal{A} be the algebra generated by half-open invervals of the real line $\{(a, b]\}$. Then

$$\mu_0\left(\bigcup_{i=1}^n (a_i, b_i]\right) = \sum_{i=1}^n [F(b_i) - F(a_i)]$$

defines a premeasure on \mathcal{A} .

Going through the process described in the previous example, we finally obtain a *unique* regular Borel measure μ_F which is defined on $\mathcal{B}_{\mathbb{R}}$ by

$$\mu_F((a,b]) = F(b) - F(a)$$

***The function F(x) = x defines the Lebesgue Measure.

Conversely, any finite Borel measure μ can be used to define an increasing and right continuous function by the formula

$$F(x) = \begin{cases} \mu((0, x]) & \text{if } x > 0\\ 0 & \text{if } x = 0\\ -\mu((x, 0]) & \text{if } x < 0 \end{cases}$$

Definition 9. Measurable Functions

A function $f : (X, \mathcal{M}) \to (Y, \mathcal{N})$ is called $(\mathcal{M}, \mathcal{N})$ -measurable if $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{N}$.

***Continuous functions are Borel measurable by definition.

***To check if $f: (X, \mathcal{M}) \to (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ is measurable, it suffices to check that $f^{-1}(E) \in \mathcal{M}$ for $E = (a, \infty), [a, \infty), (-\infty, b), (-\infty, b].$

Example 7.

Borel measurable implies Lebesgue measurable, since if $f : \mathbb{R} \to \mathbb{R}$, then $f^{-1}(E) \in \mathcal{B}_{\mathbb{R}} \subset \mathcal{L}$ for all $E \in \mathcal{B}_{\mathbb{R}}$.

However, the converse is not true.

Take a null set $N \in \mathcal{L}$ such that $N \notin \mathcal{B}_{\mathbb{R}}$. Then χ_N be characteristic function of N. Then $\{-1\} \in \mathcal{B}_{\mathbb{R}} \subset \mathcal{L}$ but $\chi_N^{-1}(\{1\}) = N \notin \mathcal{B}_{\mathbb{R}}$. So χ_N is not Borel measurable.

However, $N \in \mathcal{L}$ so χ_N is Lebesgue measurable.

Lemma 7. Combining Measurable Functions

- \blacksquare If f, g are measurable, then f + g, f g, fg, $\max\{f, g\}$, $\min\{f, g\}$ are measurable.
- \blacksquare If $\{f_i\}_{i=1}^{\infty}$ is a sequence of measurable functions, $\sup f_i$, $\inf f_i$, $\limsup f_i$, $\limsup f_i$, $\liminf f_i$ are all measurable.
- \blacksquare If $\lim f_i(x)$ exists for every $x \in X$, then the limit is measurable.

Definition 10. Simple Functions

A simple function is a finite sum of characteristic functions

$$\varphi(x) = \sum_{i=1}^{n} a_i \chi_{E_i}(x).$$

Theorem 3. Approximating Measurable Functions If: $f \in L^+$

Then: there exists a sequence of $\{\varphi_n\}_{n=1}^{\infty}$ approximating f pointwise from below, namely,

 $0 \le \varphi_1 \le \varphi_2 \le \dots \le f$

 $\varphi_n \to f$ pointwise and $\varphi_n \to f$ uniformly from below on any set which f is bounded.

***If $f: X \to \mathbb{C}$ is measurable, then there exists $\{\varphi_n\}_{n=1}^{\infty}$ so

$$0 \le |\varphi_1| \le |\varphi_2| \le \dots \le |f|$$

with $\varphi_n \to f$ pointwise and $\varphi_n \to f$ uniformly on any set where f is bounded.

Definition 11. Absolute Continuity

A function f is absolutely continuous on [a, b] if for all $\varepsilon > 0$, there exists a $\delta > 0$ such that, for any finite collection $\{[a_i, b_i]\}_{i=1}^n$ of subintervals of [a, b],

$$\sum_{i=1}^{n} |b_i - a_i| < \delta \implies \sum_{i=1}^{n} |f(b_i) - f(a_i)| < \varepsilon.$$

Example 8.

\hat{\mathbf{m}} Uniform Continuity \implies Absolute Continuity: Let f(x) be the Cantor-Lebesgue function on [0, 1]. Then f is continuous on a compact set so it is uniformly continuous. Assume f is absolutely continuous, then by **FTOLI**,

$$1 = f(1) = f(1) - f(0) = \int_0^1 f'(x)dm = 0 \qquad \text{(f)}$$

\hat{\mathbf{x}} Absolute Continuity $\not\Longrightarrow$ Lipschitz Continuity: Let $f(x) = \sqrt{x}$ on [0, 1]. Then f is discontinuous only at 0, so by the comparison theorem, f is Riemann integrable, and its Riemann and Lebesgue integerals coincide. Namely,

$$f(x) = \int_0^x f'(x) dx \qquad \int_0^1 |f'(x)| dx = 1 < \infty$$

by techniques of Riemann integration, so f is absolutely continuous by FTOLI.

However, $\frac{|\sqrt{x} - \sqrt{y}|}{|x - y|} = \frac{1}{\sqrt{x} + \sqrt{y}}$ which can grow arbitrarily large for x, y near 0. Namely, there is no M so $|f(x) - f(y)| \le M|x - y|$ so f is not Lipschitz continuous.

ħħ**.D**Integration **D**ħ.**ħ**

Definition 12. Integral

For measurable, non-negative functions $(f \in L^+)$,

$$\int_X f d\mu = \sup \left\{ \int_X \varphi d\mu \, | \, 0 \le \varphi \le f, \varphi \text{ simple } \right\}$$

where

$$\int_X \varphi d\mu = \sum_{i=1}^n a_i \mu(E_i).$$

For measurable, functions,

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu$$

where $f = f^+ - f^-$ its positive and negative parts (which are both non-negative measurable functions).

A function $f \in L^1$ if its measurable and

$$\int |f| d\mu < \infty.$$

Lemma 8. Facts about Integration

Theorem 4. Monotone Convergence Theorem

† $f_n \in L^+$ for all n**†** $f_n \leq f_{n+1}$ for all n (and all x)

Then:

$$\int \lim_{n \to \infty} f_n d\mu = \lim_{n \to \infty} \int f_n d\mu.$$

Theorem 5. Fatou's Lemma

If: $f_n \in L^+$ for all n, Then: $\int \liminf f_n d\mu \leq \liminf \int f_n d\mu.$

Theorem 6. Dominated Convergence Theorem

If:

- $\mathbf{\dot{f}}_n$ measurable for all n
- $\lim_{n \to \infty} f_n(x)$ exists for a.e. x (pointwise convergence)
- there exists $g \in L^1$ such that $|f_n(x)| \leq g(x)$ for all n and a.e. x.

Then: the limit in in L^1 and

$$\int \lim_{n \to \infty} f_n d\mu = \lim_{n \to \infty} \int f_n d\mu.$$

Theorem 7. Integral Approximation Theorem

If: $f \in L^1$ Then: for all $\varepsilon > 0$, there exists a simple function such that $\int |f - \varphi| d\mu < \varepsilon$.

***If $f \in L^1(m)$ (where *m* is the Lebesgue measure) then there exists a continuous function with compact support such that $\int |f - g| dm < \varepsilon$.

Lemma 9. Tricks for Integrating Functions

- \blacksquare Show the result holds for a characteristic function. By linearity, it holds for all simple functions. If f is measurable, it can be uniformly approximated by simple functions (Theorem 3).
- \blacksquare If f is L^1 , the integral of f can be approximated by the integral of some simple function (Theorem 7).
- **\square** If f is $L^1(m)$, the integral of f can be approximated by the integral of some continuous function with compact support (Theorem 7).

Theorem 8. Comparing Riemann and Lebesgue Integerals

ġ.

***** If: f is bounded and real valued on a bounded interval [a, b]

<u>Then</u>: if f is Riemann integrable, f is Lebesgue measurable (and hence integrable) and the two integrals agree $\int_{a}^{b} f(x)dx = \int_{[a,b]} fdm$

- $f: (a, b] \to [0, \infty) \text{ is a nonnegative continuous function (where <math>\lim_{\alpha \to a} f(\alpha) = \infty$ which has a finite (although perhaps improper) Riemann integral

Then: $f \in L^1(a, b]$ and the Riemann and Lebesgue integrals agree.

$$\int_{(a,b]} f(x)dm(x) = \lim_{\alpha \to a} \int_{[\alpha,b]} f(x)dm(x) = \lim_{\alpha \to a} \int_{\alpha}^{b} f(x)dx < \infty.$$

^{***}The last bullet is because on $[\alpha, b]$ for $\alpha > a$, f is bounded and so by the first part of this theorem,

Theorem 9. Fundamental Theorem of (Riemann) Integerals If: f is continuous on [a, b] and $F(x) = \int_a^x f(t)dt$

Then: F is well defined and continuous for all $x \in [a, b]$, (so F is uniformly continuous) and F'(x) = f(x) for all $x \in (a, b)$.

***Conversely, if f is Riemann integrable on [a, b] and has an antiderivative F on [a, b], then $\int_a^b f(x)dx = F(b) - F(a)$.

Theorem 10. Fundamental Theorem of (Lebesgue) Integerals $F : [a, b] \to \mathbb{C}$, TFAE:

 $\mathbf{\dot{f}}$ F is absolutely continuous on [a, b]

•
$$F(x) - F(a) = \int_a^x f(t)dt$$
 for some $f \in L^1([a, b], m)$.

***** F is differentiable a.e. on $[a, b], F' \in L^1([a, b], m)$, and $F(x) - F(a) = \int_a^x F'(t) dt$.

Theorem 11. Tonelli

† If (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ -finite

 $f \in L^+(X \times Y)$ (positive and measurable)

Then:

$$\int f d(\mu \times \nu) = \int \int f d\mu d\nu = \int \int f d\nu d\mu.$$

Theorem 12. Fubini

If:

in If (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ-finite in $f \in L^1(\mu \times \nu)$ (which can be checked by looking at |f| and using Tonelli)

Then:

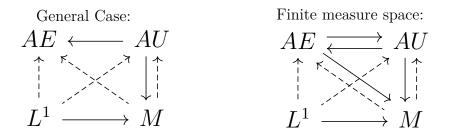
$$\int f d(\mu \times \nu) = \int \int f d\mu d\nu = \int \int f d\nu d\mu.$$

Definition 13. Modes of Convergence

- $\square Convergence in Measure: \mu(\{x: |f_n(x) f(x)| \ge \varepsilon\}) \to 0 \text{ as } n \to \infty$
- \blacksquare Convergence in L^1 : $\int |f_n(x) f(x)| d\mu \to 0$ as $n \to \infty$.
- Almost Uniform (AU): If $\mu(X) < \infty$, for every $\varepsilon > 0$, there exists a set E_{ε} such that $\mu(E_{\varepsilon}) < \varepsilon$ and $f_n \to f$ uniformly on E_{ε}^c .

Theorem 13. Implication Diagrams for Convergence

- \longrightarrow Represents implication (e.g. almost uniform convergence implies a.e. convergence).
- -----> Represents existence of subsequence which converges (e.g. convergence in L^1 implies existence of a subsequence which converges a.e.).



***Almost uniform convergence being equivalent to a.e. convergence in a finite measure space is a result of *Egoroff's Theorem*.

Example 9. Classic Counter Examples

(1) Uniform Convergence $\not\Longrightarrow$ Convergence in L^1 : Let $f_n(x) = \frac{1}{n}\chi_{(0,n)}(x)$. Then $f_n \to 0$ uniformly since f_n is clearly bounded everywhere. However,

$$\int |f_n - 0| = \frac{1}{n}m((0, n)) = 1 \qquad \forall n$$

so this clearly does not converge to 0 in L^1 .

(2) Convergence in $L^1 \not\Longrightarrow$ Convergence a.e.: Let f_n be the moving box example. Namely, for each n, there exists k so $2^k \le n < 2^{k+1}$, let

$$f_n(x) = \chi_{[\frac{n}{2^k} - 1, \frac{n+1}{2^k} - 1]}(x)$$

Namely,

$$f_1(x) = \chi_{[0,1]} \qquad 2^0 = 1 \le 1$$

$$f_2(x) = \chi_{[0,\frac{1}{2}]} \qquad 2^1 = 2 \le 2$$

$$f_3(x) = \chi_{[\frac{1}{2},1]} \qquad 2^1 = 2 \le 3$$

:

then

$$\int |f_n| = \frac{1}{2^k} \to 0$$

but $f_n(x)$ doesn't converge for any x since there are an infinite number of n where $f_n(x) = 1$ and an infinite number of n where $f_n(x) = 0$.

(3) Convergence in Measure $\not\Longrightarrow$ Convergence in L^1 : Let $f_n(x) = n\chi_{[0,\frac{1}{n}]}(x)$. Then $f_n \to 0$ in measure, since the measure of the set where f_n is large shrinks to nothing as $n \to \infty$. However,

$$\int |f_n| = 1 \qquad \forall n$$

so $f_n \not\to 0$ in L^1 .

(4) Convergence a.e. $\not\Longrightarrow$ Convergence in measure: Let $f_n(x) = \frac{x}{n}$. Then $f_n(x) \to 0$ for all $x \in \mathbb{R}$, however,

$$m(\{x : |f_n(x)| \ge \varepsilon\}) = m(\{x : x \ge n\varepsilon\}) = m([n\varepsilon, \infty)) = \infty$$

for all n.

Definition 14. Signed Measure

$$\nu: \mathcal{M} \to [-\infty,\infty]$$

 $\blacksquare \ \nu(\varnothing) = 0$

- \blacksquare ν assumes at most one of the $\pm \infty$
- $\square \nu\left(\bigcup_{i=1}^{\infty} E_i\right) \leq \sum_{i=1}^{\infty} \nu(E_i) \text{ for all disjoint collections } \{E_i\}_{i=1}^{\infty} \subset \mathcal{M} \text{ (where the sum converges absolutely if } \nu\left(\bigcup_{i=1}^{\infty} E_i\right) < \infty)$

***Signed measures are also continuous from above and below, just like positive measures.

Definition 15. Singular and Absolutely Continuous

- If μ and ν are measures (signed or otherwise) on (X, \mathcal{M}) , then μ and ν are mutually singular (write $\mu \perp \nu$) if there exists $E, F \in \mathcal{M}$ such that $E \cap F = \emptyset$, $E \cup F = X$, $\mu(E) = 0$ and $\nu(F) = 0$.
- If μ and ν are measures (where at most ν is singed) on (X, \mathcal{M}) , then ν is absolutely continuous with respect to μ (write $\nu \ll \mu$) if $\mu(E) = 0$ implies $\nu(E) = 0$ for all $E \in \mathcal{M}$.

 \blacksquare $\nu \ll \mu$ if and only if $\nu(E) = \int_E f d\mu$ for some $f \in L^1(\mu)$ (write $d\nu = f d\mu$).

Theorem 14. Hahn Decomposition

If: ν is a signed measure on (X, \mathcal{M}) ,

Then: there exists a positive set P and neative set N for ν such that $P \cup U = X$, $P \cap U = \emptyset$, and these choices are unique up to null set.

Definition 16. Locally Integrable

 $f \in L^1_{loc}$ if $\int_K |f(x)| d\mu < \infty$ for all bounded measurable sets K.

Definition 17. Shrinks Nicely

 $\{E_r\}_{r\geq 0} \subset \mathcal{B}_{\mathbb{R}^n}$ is said to shrink nicely to a point x if

 \blacksquare $E_r \subset B_r(x)$ for all r

 \blacksquare there exists a constant $\alpha > 0$ (independent of r) so $m(E_r) > \alpha m(B(r, x))$ for all r.

Theorem 15. Lebesgue-Radon-Nikodym

If:

\dot{\mathbf{r}} ν is a signed and σ -finite measure

 $\mathbf{\dot{r}}$ m is a σ -finite measure (usually taken to be the Lebesgue measure)

<u>Then</u>: there exists a measure λ and function $f \in L^1(m)$ such that $\lambda \perp m$ and $d\nu = d\lambda + f dm$.

***Furthermore, when m is the Lebesgue measure, for m-a.e. x, and for every family $\{E_r\}_{r\geq 0}$ that shrinks nicely to x,

$$\lim_{r \to 0} \frac{\nu(E_r)}{m(E_r)} = f(x).$$

Theorem 16. Generalized Lebesgue-Radon-Nikodym

If:

\dot{\mathbf{h}} ν is a complex measure

 $\dot{\mathbf{r}}$, μ is a σ -finite measure

<u>Then</u>: there exists a measure λ and function $f \in L^1(m)$ such that $\lambda \perp \mu$ and $d\nu = d\lambda + f d\mu$.

Theorem 17. Lebesgue Differentiation Theorem

If: $f \in L^1_{loc}$, Then: for a.e. x, and for every family $\{E_r\}_{r\geq 0}$ that shrinks nicely to x.

$$\lim_{r \to 0} \frac{1}{m(E_r)} \int_{E_r} f(y) dy = f(x).$$