Kayla Orlinsky Real Analysis Exam Cheat Sheet

Definition 1. Compact Support
A function has compact support if it vanishes outside of some compact set.

Definition 2. Semi-Continous

트 f is upper semi-continuous if for all x and all $\varepsilon>0$, there exists a $\delta>0$ such that $f(y)<f(x)+\varepsilon$ for all $|y-x|<\delta$

트 f is lower semi-continuous if for all x and all $\varepsilon>0$, there exists a $\delta>0$ such that $f(x)<f(y)+\varepsilon$ for all $|y-x|<\delta$

Lemma 1. Facts about $U S C$ and $L S C$
Immediately from the definitions:
트 f is upper semi-continuous $\Longleftrightarrow \lim \sup _{y \rightarrow x} f(y) \leq f(x)$ for all x.
트 f is lower semi-continuous $\Longleftrightarrow f(x) \leq \liminf _{y \rightarrow x} f(y)$ for all x.

Theorem 1. Weierstrass Approximation Theorem
If: f is continuous and real valued on $[a, b]$ a closed interval
Then: f can be uniformly approximated by polynomials. (For all $\varepsilon>0$ There exists $p(x)$ so $|f(x)-p(x)|<\varepsilon$ for all x.)

Lemma 2. Monotone Convergence of a Sequence

$$
\text { If: }\left\{a_{n}\right\}_{n=1}^{\infty} \text { is a bounded sequence with } a_{n} \leq a_{n+1} \text { for all } n
$$

Then: $\lim _{n \rightarrow \infty} a_{n}=\sup _{n} a_{n}$ and so namely, the limit exists.

Example 1. Understanding Limsups and Liminfs
*) Let $\left\{A_{n}\right\}_{n=1}^{\infty}$ be sets. Then $\liminf _{n \rightarrow \infty} A_{n}=\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k}$ is the set where each element belongs to all but finitely many of the A_{n}.
() Let $\left\{A_{n}\right\}_{n=1}^{\infty}$ be sets. Then $\limsup _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}$ is the set where each element belongs to infinitely many of the A_{k} (but could also not belong in infinitely many).

ไ) Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be functions. Then $\liminf _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \inf _{k \geq n} f_{k}(x)$.
ไ차 Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be functions. Then $\limsup _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \sup _{k \geq n} f_{k}(x)$.
난 Let f be a function. Then $\liminf _{y \rightarrow x} f(y)=\sup _{\varepsilon>0} \inf _{|y-x|<\varepsilon} f(y)$.
خ. Let f be a function. Then $\limsup _{y \rightarrow x} f(y)=\inf _{\varepsilon>0} \sup _{|y-x|<\varepsilon} f(y)$.

Lemma 3. Facts from Topology

. A union of open sets (countable or uncountable) is open
EP An intersection of closed sets (countable or uncountable) is closed
르 In \mathbb{C} a set is compact \Longleftrightarrow it is closed and bounded
E The Cantor set C is compact and has the cardinality of \mathbb{R}.

Definition 3．Algebras and σ－Algebras

E An algebra $\mathcal{A} \subset \mathcal{P}(X)$ on a set X is a subset of the powerset of X which contains X and is closed under compliments and finite unions and finite intersections．

E A σ－algebra $\mathcal{A} \subset \mathcal{P}(X)$ on a set X is a subset of the powerset of X which contains X and is closed under compliments and countable unions and countable intersections．

Example 2.

（i） $\mathcal{P}(X)$ and $\{\varnothing, X\}$ are always σ－algebras（and algebras）
部 Borel σ－algebra \mathcal{B}_{X} is the σ－algebra generated by all open subsets of X ．
产 $\mathcal{B}_{\mathbb{R}}$ is generated by sets of any of the following forms：

$$
\begin{array}{lc}
(a, b) & (a, \infty) \\
{[a, b)} & {[a, \infty)} \\
(a, b] & (-\infty, b) \\
{[a, b]} & (-\infty, b]
\end{array}
$$

y．If X is infinite， $\mathcal{A}=\left\{E \subset X \mid E\right.$ is finite or E^{c} is finite $\}$ is an algebra but not a σ－aglebra．

〕．If X is infinite， $\mathcal{A}=\left\{E \subset X \mid E\right.$ is countable or E^{c} is countable $\}$ is a σ－algebra．

Definition 4．Types of Sets in a σ－Algebra
트 G_{δ}－sets are intersections of open sets（ $\cap\{o p e n\}$ ）
트 F_{σ}－sets are unions of closed sets（ $\cup\{$ closed $\}$ ）
트 $G_{\delta \sigma}$－sets are unions of G_{δ}－sets，$(\mathrm{U} \cap\{$ open $\})$
ㅌ．$F_{\sigma \delta}$－sets are intersections of F_{σ} sets（ $\cap \cup\{$ closed $\left.\}\right)$

Mnumonic：σ is sum，and F is closed．

Definition 5. Measure
$\mu: \mathcal{A} \rightarrow[0, \infty]$ from a σ-algebra is a measure if
트 $\mu(\varnothing)=0$
르 μ is countably additive: for all disjoint collections $\left\{E_{i}\right\}_{i=1}^{\infty} \subset \mathcal{A}$

$$
\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} \mu\left(E_{i}\right)
$$

Lemma 4. Facts about Measures
Immediately from the definitions:
ㄹ if $E \subset F$ then $\mu(E) \leq \mu(F)$
ㄹ $\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right) \leq \sum_{i=1}^{\infty} \mu\left(E_{i}\right)$ for any collection $\left\{E_{i}\right\}_{i=1}^{\infty} \subset \mathcal{A}$
continuity from below: if $E_{1} \subset E_{2} \subset \cdots$ then $\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)$
E continuity from above: if $E_{1} \supset E_{2} \supset \cdots$ and $\mu\left(E_{1}\right)<\infty$, then $\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=\mu\left(\bigcap_{n=1}^{\infty} E_{n}\right)$

Example 3. Disjointification

Let $\left\{E_{i}\right\}_{i=1}^{\infty} \subset \mathcal{A}$. Then let

$$
\begin{aligned}
& F_{1}=E_{1} \\
& F_{2}=E_{2} \backslash E_{1} \\
& F_{2}=E_{3} \backslash\left(E_{2} \cup E_{1}\right) \\
& \vdots \\
& F_{n}=E_{n} \backslash\left(\bigcup_{i=1}^{n-1} E_{i}\right)
\end{aligned}
$$

Then $\bigcup_{i=1}^{\infty} F_{i}=\bigcup_{i=1}^{\infty} E_{i}$ but the F_{i} are disjoint.

Example 4. Examples of Measures

(if The counting measure on a set $\mu(E)=|E|$, often defined on the σ-algebra \mathbb{N}
(1) The durac or pointmass measure at some point x_{0},

$$
\mu_{x_{0}}(E)= \begin{cases}1 & \text { if } x_{0} \in E \\ 0 & \text { if } x_{0} \notin E\end{cases}
$$

* The Lebesgue measure

Lemma 5. Facts about the Lebesgue Measure

ㄹ m is outer regular: $m(E)=\inf \{m(U) \mid E \subset U$ open $\}$.

- m is inner regular: $m(E)=\sup \{m(K) \mid K$ compact $\subset E\}$.

■ $m(Q)=0$ for any countable set Q, namely, $m(\mathbb{Q})=0$
트 $m(C)=0$ where C is the Cantor-set.
트 $m(E+s)=m(E)$ where $E+s=\{x+s \mid x \in E\}$
ㄹ $m(r E)=|r| m(E)$ where $r E=\{r x \mid x \in E\}$

- \mathcal{L} is the completion of $\mathcal{B}_{\mathbb{R}}$ (the Borel σ-algebra for \mathbb{R}) and it is the domain of m. Namely, m is complete measure.

Definition 6. Premeasure
$\mu_{0}: \mathcal{A} \rightarrow[0, \infty]$ from an algebra (not σ-algebra) satisfies
트 $\mu_{0}(\varnothing)=0$
르 $\mu_{0}\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} \mu^{*}\left(E_{i}\right)$ for all disjoint collections $\left\{E_{i}\right\}_{i=1}^{\infty}$ where $\cup E_{i} \subset \mathcal{A}$ (which does not always happen in algebras).

Definition 7. Outer Measure
$\mu^{*}: \mathcal{P}(X) \rightarrow[0, \infty]$ from the power set satisfies

- $\mu^{*}(\varnothing)=0$

므 if $A \subset B \mu^{*}(A) \leq \mu^{*}(B)$

- $\mu^{*}\left(\bigcup_{i=1}^{\infty} E_{i}\right) \leq \sum_{i=1}^{\infty} \mu^{*}\left(E_{i}\right)$ for all collections $\left\{E_{i}\right\}_{i=1}^{\infty}$

Sets A satisfying

$$
\mu^{*}(E)=\mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right) \quad \forall E \subset X
$$

are called μ^{*}-measurable.

Theorem 2. Caratheodory's
If: μ^{*} is an outer measure
Then: \mathcal{M}, the set of all μ^{*}-measurable sets, is a σ-algebra and $\left.\mu^{*}\right|_{\mathcal{M}}$ is a complete measure.

Definition 8. Other Types of Measures
$\mu: \mathcal{A} \rightarrow[0, \infty]$
트 Finite measure: $\mu(X)<\infty$
ㅌ σ-Finite measure: There exists a disjoint collection $\left\{E_{i}\right\}_{i=1}^{\infty} \subset \mathcal{A}$ such that $X=\bigcup_{i=1}^{\infty} E_{i}$ and $\mu\left(E_{i}\right)<\infty$ for all i.
E Semi-finite: for all E where $\mu(E)=\infty$, there exists $F \subset E$ so $0<\mu(F)<\mu(E)=\infty$.

Lemma 6. Trick for Borel Measures
If: E is measurable and $\mu(E)<\infty$,
Then: for every $\varepsilon>0$, there exists A which is a finite union of disjoint open intervals such that $\mu(E \Delta A)<\varepsilon$.

Example 5. The Construction of a Measure
(1) Start with an algebra \mathcal{A} and a premeasure μ_{0} on that algebra.
(2) Let $\mu^{*}: \mathcal{P}(X) \rightarrow[0, \infty]$ be defined by

$$
\mu^{*}(E)=\inf \left\{\sum_{i=1}^{\infty} \mu_{0}\left(A_{i}\right) \mid A_{i} \in \mathcal{A}, E \subset \bigcup_{i=1}^{\infty} A_{i}\right\}
$$

Then μ^{*} defines an outer measure.
(3) Apply Caratheodory to obtain $\mu=\left.\mu^{*}\right|_{\mathcal{M}}$ the outer measure restricted to the σ-algebra of μ^{*}-measurable sets.
(4) μ is now a complete measure.

A shortcut to this process: if $f: X \rightarrow[0 \infty]$, then defining

$$
\mu(E)=\sum_{x \in E} f(x)=\sup \left\{\sum_{x \in F} f(x) \mid F \text { finite } \subset E\right\}
$$

defines a measure.

Example 6. Construction of Measures from Functions
We utilize the outline the previous example to adapt functions into measures.
Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be any increasing right continuous function. Let \mathcal{A} be the algebra generated by half-open invervals of the real line $\{(a, b]\}$. Then

$$
\mu_{0}\left(\bigcup_{i=1}^{n}\left(a_{i}, b_{i}\right]\right)=\sum_{i=1}^{n}\left[F\left(b_{i}\right)-F\left(a_{i}\right)\right]
$$

defines a premeasure on \mathcal{A}.
Going through the process described in the previous example, we finally obtain a unique regular Borel measure μ_{F} which is defined on $\mathcal{B}_{\mathbb{R}}$ by

$$
\mu_{F}((a, b])=F(b)-F(a)
$$

*** The function $F(x)=x$ defines the Lebesgue Measure.
Conversely, any finite Borel measure μ can be used to define an increasing and right continuous function by the formula

$$
F(x)= \begin{cases}\mu((0, x]) & \text { if } x>0 \\ 0 & \text { if } x=0 \\ -\mu((x, 0]) & \text { if } x<0\end{cases}
$$

Definition 9. Measurable Functions

A function $f:(X, \mathcal{M}) \rightarrow(Y, \mathcal{N})$ is called $(\mathcal{M}, \mathcal{N})$-measurable if $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{N}$.
*** Continuous functions are Borel measurable by definition.
${ }^{* * *}$ To check if $f:(X, \mathcal{M}) \rightarrow\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$ is measurable, it suffices to check that $f^{-1}(E) \in \mathcal{M}$ for $E=(a, \infty),[a, \infty),(-\infty, b),(-\infty, b]$.

Example 7.

Borel measurable implies Lebesgue measurable, since if $f: \mathbb{R} \rightarrow \mathbb{R}$, then $f^{-1}(E) \in \mathcal{B}_{\mathbb{R}} \subset$ \mathcal{L} for all $E \in \mathcal{B}_{\mathbb{R}}$.

However, the converse is not true.
Take a null set $N \in \mathcal{L}$ such that $N \notin \mathcal{B}_{\mathbb{R}}$. Then χ_{N} be characteristic function of N. Then $\{-1\} \in \mathcal{B}_{\mathbb{R}} \subset \mathcal{L}$ but $\chi_{N}^{-1}(\{1\})=N \notin \mathcal{B}_{\mathbb{R}}$. So χ_{N} is not Borel measurable.

However, $N \in \mathcal{L}$ so χ_{N} is Lebesgue measurable.

Lemma 7. Combining Measurable Functions
E If f, g are measurable, then $f+g, f-g, f g, \max \{f, g\}, \min \{f, g\}$ are measurable.
트 If $\left\{f_{i}\right\}_{i=1}^{\infty}$ is a sequence of measurable functions, $\sup f_{i}, \inf f_{i}, \lim \sup f_{i}, \lim \inf f_{i}$ are all measurable.

- If $\lim _{i \rightarrow \infty} f_{i}(x)$ exists for every $x \in X$, then the limit is measurable.

Definition 10. Simple Functions

A simple function is a finite sum of characteristic functions

$$
\varphi(x)=\sum_{i=1}^{n} a_{i} \chi_{E_{i}}(x)
$$

Theorem 3. Approximating Measurable Functions

$$
\text { If: } f \in L^{+}
$$

Then: there exists a sequence of $\left\{\varphi_{n}\right\}_{n=1}^{\infty}$ approximating f pointwise from below, namely,

$$
0 \leq \varphi_{1} \leq \varphi_{2} \leq \cdots \leq f
$$

$\varphi_{n} \rightarrow f$ pointwise and $\varphi_{n} \rightarrow f$ uniformly from below on any set which f is bounded.
${ }^{* * *}$ If $f: X \rightarrow \mathbb{C}$ is measurable, then there exists $\left\{\varphi_{n}\right\}_{n=1}^{\infty}$ so

$$
0 \leq\left|\varphi_{1}\right| \leq\left|\varphi_{2}\right| \leq \cdots \leq|f|
$$

with $\varphi_{n} \rightarrow f$ pointwise and $\varphi_{n} \rightarrow f$ uniformly on any set where f is bounded.

Definition 11. Absolute Continuity

A function f is absolutely continuous on $[a, b]$ if for all $\varepsilon>0$, there exists a $\delta>0$ such that, for any finite collection $\left\{\left[a_{i}, b_{i}\right]\right\}_{i=1}^{n}$ of subintervals of $[a, b]$,

$$
\sum_{i=1}^{n}\left|b_{i}-a_{i}\right|<\delta \Longrightarrow \sum_{i=1}^{n}\left|f\left(b_{i}\right)-f\left(a_{i}\right)\right|<\varepsilon .
$$

Example 8.

鲑 Uniform Continuity \Longrightarrow Absolute Continuity: Let $f(x)$ be the Cantor-Lebesgue function on $[0,1]$. Then f is continuous on a compact set so it is uniformly continuous. Assume f is absolutely continuous, then by FTOLI,

$$
1=f(1)=f(1)-f(0)=\int_{0}^{1} f^{\prime}(x) d m=0
$$

() Absolute Continuity \Longrightarrow Lipschitz Continuity: Let $f(x)=\sqrt{x}$ on $[0,1]$. Then f is discontinuous only at 0 , so by the comparison theorem, f is Riemmann integrable, and its Riemann and Lebesgue integerals coincide. Namely,

$$
f(x)=\int_{0}^{x} f^{\prime}(x) d x \quad \int_{0}^{1}\left|f^{\prime}(x)\right| d x=1<\infty
$$

by techniques of Riemann integration, so f is absolutely continuous by FTOLI.
However, $\frac{|\sqrt{x}-\sqrt{y}|}{|x-y|}=\frac{1}{\sqrt{x}+\sqrt{y}}$ which can grow arbitrarily large for x, y near 0 . Namely, there is no M so $|f(x)-f(y)| \leq M|x-y|$ so f is not Lipschitz continuous.

Definition 12. Integral
For measurable, non-negative functions $\left(f \in L^{+}\right)$,

$$
\int_{X} f d \mu=\sup \left\{\int_{X} \varphi d \mu \mid 0 \leq \varphi \leq f, \varphi \text { simple }\right\}
$$

where

$$
\int_{X} \varphi d \mu=\sum_{i=1}^{n} a_{i} \mu\left(E_{i}\right)
$$

For measurable, functions,

$$
\int_{X} f d \mu=\int_{X} f^{+} d \mu-\int_{X} f^{-} d \mu
$$

where $f=f^{+}-f^{-}$its positive and negative parts (which are both non-negative measurable functions).

A function $f \in L^{1}$ if its measurable and

$$
\int|f| d \mu<\infty
$$

Lemma 8. Facts about Integration
르 If $a \in \mathbb{R}, \int a f d \mu=a \int f d \mu$

- $f, g \in L^{1}, \int f \pm g d \mu=\int f d \mu \pm \int g d \mu$
- $f \leq g$, then $\int f d \mu \leq \int g d \mu$
- $f \in L^{+}$, then $\int f d \mu=0$ if and only if $f=0$ a.e.

巨 $f \in L^{1}$, then $|f(x)|<\infty$ a.e. and $\{x: f(x) \neq 0\}$ is σ-finite.
트 $\left|\int f d \mu\right| \leq \int|f| d \mu$

- $f_{n} \in L^{+}$for all n then $\sum_{n=0}^{\infty} \int f_{n} d \mu=\int \sum_{n=0}^{\infty} f_{n} d \mu$

Theorem 4. Monotone Convergence Theorem

If:
1- $f_{n} \in L^{+}$for all n
\&. $f_{n} \leq f_{n+1}$ for all n (and all x)

Then:

$$
\int \lim _{n \rightarrow \infty} f_{n} d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu
$$

Theorem 5. Fatou's Lemma
If: $f_{n} \in L^{+}$for all n, Then:

$$
\int \lim \inf f_{n} d \mu \leq \lim \inf \int f_{n} d \mu .
$$

Theorem 6. Dominated Convergence Theorem
If:
1- f_{n} measurable for all n

1. $\lim _{n \rightarrow \infty} f_{n}(x)$ exists for a.e. x (pointwise convergence)

- there exists $g \in L^{1}$ such that $\left|f_{n}(x)\right| \leq g(x)$ for all n and a.e. x.

Then: the limit in in L^{1} and

$$
\int \lim _{n \rightarrow \infty} f_{n} d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu
$$

Theorem 7. Integral Approximation Theorem
If: $f \in L^{1}$
Then: for all $\varepsilon>0$, there exists a simple function such that $\int|f-\varphi| d \mu<\varepsilon$.
${ }^{* * *}$ If $f \in L^{1}(m)$ (where m is the Lebesgue measure) then there exists a continuous function with compact support such that $\int|f-g| d m<\varepsilon$.

Lemma 9. Tricks for Integrating Functions

E Show the result holds for a characteristic function. By linearity, it holds for all simple functions. If f is measurable, it can be uniformly approximated by simple functions (Theorem 3).
E If f is L^{1}, the integral of f can be approximated by the integral of some simple function (Theorem 7).
E If f is $L^{1}(m)$, the integral of f can be approximated by the integral of some continuous function with compact support (Theorem 7).

Theorem 8. Comparing Riemann and Lebesgue Integerals

-

\&. If: f is bounded and real valued on a bounded interval $[a, b]$

Then: if f is Riemann integrable, f is Lebesgue measurable (and hence integrable) and the two integrals agree $\int_{a}^{b} f(x) d x=\int_{[a, b]} f d m$

1. If: f is bounded on $[a, b]$

Then: f is Riemann integrable $\quad \Longleftrightarrow \begin{aligned} & \{x \in[a, b]: f \text { is discontinuous at } x\} \text { is } \\ & \text { Lebesgue null. }\end{aligned}$

1. If: $f:(a, b] \rightarrow[0, \infty)$ is a nonnegative continuous function (where $\lim _{\alpha \rightarrow a} f(\alpha)=\infty$ which has a finite (although perhaps improper) Riemann integral

Then: $f \in L^{1}(a, b]$ and the Riemann and Lebesgue integrals agree.
${ }^{* * *}$ The last bullet is because on $[\alpha, b]$ for $\alpha>a, f$ is bounded and so by the first part of this theorem,

$$
\int_{(a, b]} f(x) d m(x)=\lim _{\alpha \rightarrow a} \int_{[\alpha, b]} f(x) d m(x)=\lim _{\alpha \rightarrow a} \int_{\alpha}^{b} f(x) d x<\infty .
$$

Theorem 9. Fundamental Theorem of (Riemann) Integerals

If: f is continuous on $[a, b]$ and $F(x)=\int_{a}^{x} f(t) d t$
Then: F is well defined and continuous for all $x \in[a, b]$, (so F is uniformly continuous) and $F^{\prime}(x)=f(x)$ for all $x \in(a, b)$.
${ }^{* * *}$ Conversely, if f is Riemann integrable on $[a, b]$ and has an antiderivative F on $[a, b]$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.

Theorem 10. Fundamental Theorem of (Lebesgue) Integerals
$F:[a, b] \rightarrow \mathbb{C}$, TFAE:
\&. F is absolutely continuous on $[a, b]$
\& $F(x)-F(a)=\int_{a}^{x} f(t) d t$ for some $f \in L^{1}([a, b], m)$.
\&. F is differentiable a.e. on $[a, b], F^{\prime} \in L^{1}([a, b], m)$, and $F(x)-F(a)=\int_{a}^{x} F^{\prime}(t) d t$.

Theorem 11. Tonelli
If:
\&. If (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ-finite
\&. $f \in L^{+}(X \times Y)$ (positive and measurable)

Then:

$$
\int f d(\mu \times \nu)=\iint f d \mu d \nu=\iint f d \nu d \mu
$$

Theorem 12. Fubini

If:
ㄴ. If (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ-finite
\& $f \in L^{1}(\mu \times \nu)$ (which can be checked by looking at $|f|$ and using Tonelli)
Then:

$$
\int f d(\mu \times \nu)=\iint f d \mu d \nu=\iint f d \nu d \mu
$$

Definition 13. Modes of Convergence
트 Convergence in Measure: $\mu\left(\left\{x:\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\}\right) \rightarrow 0$ as $n \rightarrow \infty$
E Convergence in $L^{1}: \int\left|f_{n}(x)-f(x)\right| d \mu \rightarrow 0$ as $n \rightarrow \infty$.
트 Almost Uniform (AU): If $\mu(X)<\infty$, for every $\varepsilon>0$, there exists a set E_{ε} such that $\mu\left(E_{\varepsilon}\right)<\varepsilon$ and $f_{n} \rightarrow f$ uniformly on E_{ε}^{c}.

Theorem 13. Implication Diagrams for Convergence
\longrightarrow Represents implication (e.g. almost uniform convergence implies a.e. convergence).
-----> Represents existence of subsequence which converges (e.g. convergence in L^{1} implies existence of a subsequence which converges a.e.).

General Case:

Finite measure space:

***Almost uniform convergence being equivalent to a.e. convergence in a finite measure space is a result of Egoroff's Theorem.

Example 9. Classic Counter Examples

(1) Uniform Convergence \Longleftrightarrow Convergence in L^{1} : Let $f_{n}(x)=\frac{1}{n} \chi_{(0, n)}(x)$. Then $f_{n} \rightarrow 0$ uniformly since f_{n} is clearly bounded everywhere. However,

$$
\int\left|f_{n}-0\right|=\frac{1}{n} m((0, n))=1 \quad \forall n
$$

so this clealry does not converge to 0 in L^{1}.
(2) Convergence in $L^{1} \Longleftrightarrow$ Convergence a.e.: Let f_{n} be the moving box example. Namely, for each n, there exists k so $2^{k} \leq n<2^{k+1}$, let

$$
f_{n}(x)=\chi_{\left[\frac{n}{2^{k}}-1, \frac{n+1}{2^{k}}-1\right]}(x)
$$

Namely,

$$
\begin{aligned}
f_{1}(x) & =\chi_{[0,1]} & & 2^{0}=1 \leq 1 \\
f_{2}(x) & =\chi_{\left[0, \frac{1}{2}\right]} & & 2^{1}=2 \leq 2 \\
f_{3}(x) & =\chi_{\left[\frac{1}{2}, 1\right]} & & 2^{1}=2 \leq 3 \\
& \vdots & &
\end{aligned}
$$

then

$$
\int\left|f_{n}\right|=\frac{1}{2^{k}} \rightarrow 0
$$

but $f_{n}(x)$ doesn't converge for any x since there are an infinite number of n where $f_{n}(x)=1$ and an infinite number of n where $f_{n}(x)=0$.
(3) Convergence in Measure \Longleftrightarrow Convergence in L^{1} : Let $f_{n}(x)=n \chi_{\left[0, \frac{1}{n}\right]}(x)$. Then $f_{n} \rightarrow 0$ in measure, since the measure of the set where f_{n} is large shrinks to nothing as $n \rightarrow \infty$.
However,

$$
\int\left|f_{n}\right|=1 \quad \forall n
$$

so $f_{n} \nrightarrow 0$ in L^{1}.
(4) Convergence a.e. \Longleftrightarrow Convergence in measure: Let $f_{n}(x)=\frac{x}{n}$. Then $f_{n}(x) \rightarrow 0$ for all $x \in \mathbb{R}$, however,

$$
m\left(\left\{x:\left|f_{n}(x)\right| \geq \varepsilon\right\}\right)=m(\{x: x \geq n \varepsilon\})=m([n \varepsilon, \infty))=\infty
$$

for all n.

Definition 14. Signed Measure
$\nu: \mathcal{M} \rightarrow[-\infty, \infty]$

- $\nu(\varnothing)=0$

E ν assumes at most one of the $\pm \infty$
트 $\nu\left(\bigcup_{i=1}^{\infty} E_{i}\right) \leq \sum_{i=1}^{\infty} \nu\left(E_{i}\right)$ for all disjoint collections $\left\{E_{i}\right\}_{i=1}^{\infty} \subset \mathcal{M}$ (where the sum converges absolutely if $\left.\nu\left(\bigcup_{i=1}^{\infty} E_{i}\right)<\infty\right)$
***Signed measures are also continuous from above and below, just like positive measures.

Definition 15. Singular and Absolutely Continuous

E If μ and ν are measures (signed or otherwise) on (X, \mathcal{M}), then μ and ν are mutually singular (write $\mu \perp \nu$) if there exists $E, F \in \mathcal{M}$ such that $E \cap F=\varnothing, E \cup F=X$, $\mu(E)=0$ and $\nu(F)=0$.
E If μ and ν are measures (where at most ν is singed) on (X, \mathcal{M}), then ν is absolutely continuous with respect to μ (write $\nu \ll \mu$) if $\mu(E)=0$ implies $\nu(E)=0$ for all $E \in \mathcal{M}$.
E $\nu \ll \mu$ if and only if $\nu(E)=\int_{E} f d \mu$ for some $f \in L^{1}(\mu)($ write $d \nu=f d \mu)$.

Theorem 14. Hahn Decomposition

If: ν is a signed measure on (X, \mathcal{M}),
Then: there exists a positive set P and neative set N for ν such that $P \cup U=X$, $P \cap U=\varnothing$, and these choices are unique up to null set.

Definition 16. Locally Integrable

$f \in L_{l o c}^{1}$ if $\int_{K}|f(x)| d \mu<\infty$ for all bounded measurable sets K.

Definition 17. Shrinks Nicely

$\left\{E_{r}\right\}_{r \geq 0} \subset \mathcal{B}_{\mathbb{R}^{n}}$ is said to shrink nicely to a point x if

- $E_{r} \subset B_{r}(x)$ for all r

르 there exists a constant $\alpha>0$ (independent of r) so $m\left(E_{r}\right)>\alpha m(B(r, x))$ for all r.

Theorem 15. Lebesgue-Radon-Nikodym

If:
\&. ν is a signed and σ-finite measure

1. m is a σ-finite measure (usually taken to be the Lebesgue measure)

Then: there exists a measure λ and function $f \in L^{1}(m)$ such that $\lambda \perp m$ and $d \nu=d \lambda+f d m$.
***Furthermore, when m is the Lebesgue measure, for m-a.e. x, and for every family $\left\{E_{r}\right\}_{r \geq 0}$ that shrinks nicely to x,

$$
\lim _{r \rightarrow 0} \frac{\nu\left(E_{r}\right)}{m\left(E_{r}\right)}=f(x)
$$

Theorem 16. Generalized Lebesgue-Radon-Nikodym
If:

1. ν is a complex measure
\& μ is a σ-finite measure

Then: there exists a measure λ and function $f \in L^{1}(m)$ such that $\lambda \perp \mu$ and $d \nu=d \lambda+f d \mu$.

Theorem 17. Lebesgue Differentiation Theorem
If: $f \in L_{l o c}^{1}$,
Then: for a.e. x, and for every family $\left\{E_{r}\right\}_{r \geq 0}$ that shrinks nicely to x.

$$
\lim _{r \rightarrow 0} \frac{1}{m\left(E_{r}\right)} \int_{E_{r}} f(y) d y=f(x)
$$

