
Kayla Orlinsky
Real Analysis

Kayla Orlinsky
Real Analysis Exam Cheat Sheet

á1Basic Review 1á

Definition 1. Compact Support
A function has compact support if it vanishes outside of some compact set.

Definition 2. Semi-Continous

1 f is upper semi-continuous if for all x and all ε > 0, there exists a δ > 0 such that
f(y) < f(x) + ε for all |y − x| < δ

1 f is lower semi-continuous if for all x and all ε > 0, there exists a δ > 0 such that
f(x) < f(y) + ε for all |y − x| < δ

Lemma 1. Facts about USC and LSC
Immediately from the definitions:

1 f is upper semi-continuous ⇐⇒ lim supy→x f(y) ≤ f(x) for all x.

1 f is lower semi-continuous ⇐⇒ f(x) ≤ lim infy→x f(y) for all x.

Theorem 1. Weierstrass Approximation Theorem
If: f is continuous and real valued on [a, b] a closed interval

Then: f can be uniformly approximated by polynomials. (For all ε > 0 There exists
p(x) so |f(x)− p(x)| < ε for all x.)
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Lemma 2. Monotone Convergence of a Sequence
If: {an}∞n=1 is a bounded sequence with an ≤ an+1 for all n

Then: lim
n→∞

an = sup
n
an and so namely, the limit exists.

Example 1. Understanding Limsups and Liminfs

 Let {An}∞n=1 be sets. Then lim inf
n→∞

An =
∞⋃
n=1

∞⋂
k=n

Ak is the set where each element belongs

to all but finitely many of the An.

 Let {An}∞n=1 be sets. Then lim sup
n→∞

An =
∞⋂
n=1

∞⋃
k=n

Ak is the set where each element

belongs to infinitely many of the Ak (but could also not belong in infinitely many).

 Let {fn}∞n=1 be functions. Then lim inf
n→∞

fn(x) = lim
n→∞

inf
k≥n

fk(x).

 Let {fn}∞n=1 be functions. Then lim sup
n→∞

fn(x) = lim
n→∞

sup
k≥n

fk(x).

 Let f be a function. Then lim inf
y→x

f(y) = sup
ε>0

inf
|y−x|<ε

f(y).

 Let f be a function. Then lim sup
y→x

f(y) = inf
ε>0

sup
|y−x|<ε

f(y).

Lemma 3. Facts from Topology

1 A union of open sets (countable or uncountable) is open

1 An intersection of closed sets (countable or uncountable) is closed

1 In C a set is compact ⇐⇒ it is closed and bounded

1 The Cantor set C is compact and has the cardinality of R.
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á1Algebras and σ-Algebras 1á

Definition 3. Algebras and σ-Algebras

1 An algebra A ⊂ P(X) on a set X is a subset of the powerset of X which contains X
and is closed under compliments and finite unions and finite intersections.

1 A σ-algebra A ⊂ P(X) on a set X is a subset of the powerset of X which contains X
and is closed under compliments and countable unions and countable intersections.

Example 2.

 P(X) and {∅, X} are always σ-algebras (and algebras)

 Borel σ-algebra BX is the σ-algebra generated by all open subsets of X.

 BR is generated by sets of any of the following forms:

(a, b) (a,∞)
[a, b) [a,∞)
(a, b] (−∞, b)
[a, b] (−∞, b]

 If X is infinite, A = {E ⊂ X |E is finite or Ec is finite} is an algebra but not a
σ-aglebra.

 If X is infinite, A = {E ⊂ X |E is countable or Ec is countable} is a σ-algebra.

Definition 4. Types of Sets in a σ-Algebra

1 Gδ-sets are intersections of open sets (⋂{open})
1 Fσ-sets are unions of closed sets (⋃{closed})
1 Gδσ-sets are unions of Gδ-sets, (

⋃⋂{open})
1 Fσδ-sets are intersections of Fσ sets (⋂⋃{closed})

Mnumonic: σ is sum, and F is closed.
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á1Measures 1á

Definition 5. Measure
µ : A→ [0,∞] from a σ-algebra is a measure if

1 µ(∅) = 0

1 µ is countably additive: for all disjoint collections {Ei}∞i=1 ⊂ A

µ

( ∞⋃
i=1

Ei

)
=
∞∑
i=1

µ(Ei)

Lemma 4. Facts about Measures
Immediately from the definitions:

1 if E ⊂ F then µ(E) ≤ µ(F )

1 µ

( ∞⋃
i=1

Ei

)
≤
∞∑
i=1

µ(Ei) for any collection {Ei}∞i=1 ⊂ A

1 continuity from below: if E1 ⊂ E2 ⊂ · · · then lim
n→∞

µ(En) = µ

( ∞⋃
n=1

En

)
1 continuity from above: if E1 ⊃ E2 ⊃ · · · and µ(E1) <∞, then lim

n→∞
µ(En) = µ

( ∞⋂
n=1

En

)

Example 3. Disjointification
Let {Ei}∞i=1 ⊂ A. Then let

F1 = E1

F2 = E2\E1

F2 = E3\(E2 ∪ E1)
...

Fn = En\
(
n−1⋃
i=1

Ei

)

Then ⋃∞i=1 Fi = ⋃∞
i=1 Ei but the Fi are disjoint.
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Example 4. Examples of Measures

 The counting measure on a set µ(E) = |E|, often defined on the σ-algebra N

 The durac or pointmass measure at some point x0,

µx0(E) =

1 if x0 ∈ E
0 if x0 /∈ E

 The Lebesgue measure

Lemma 5. Facts about the Lebesgue Measure

1 m is outer regular: m(E) = inf{m(U) |E ⊂ U open}.

1 m is inner regular: m(E) = sup{m(K) |K compact ⊂ E}.

1 m(Q) = 0 for any countable set Q, namely, m(Q) = 0

1 m(C) = 0 where C is the Cantor-set.

1 m(E + s) = m(E) where E + s = {x+ s |x ∈ E}

1 m(rE) = |r|m(E) where rE = {rx |x ∈ E}

1 L is the completion of BR (the Borel σ-algebra for R) and it is the domain of m. Namely,
m is complete measure.

Definition 6. Premeasure
µ0 : A→ [0,∞] from an algebra (not σ-algebra) satisfies

1 µ0(∅) = 0

1 µ0

( ∞⋃
i=1

Ei

)
=
∞∑
i=1

µ∗(Ei) for all disjoint collections {Ei}∞i=1 where ⋃Ei ⊂ A (which does

not always happen in algebras).

Definition 7. Outer Measure
µ∗ : P(X)→ [0,∞] from the power set satisfies

1 µ∗(∅) = 0
1 if A ⊂ B µ∗(A) ≤ µ∗(B)
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1 µ∗
( ∞⋃
i=1

Ei

)
≤
∞∑
i=1

µ∗(Ei) for all collections {Ei}∞i=1

Sets A satisfying

µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac) ∀E ⊂ X

are called µ∗-measurable.

Theorem 2. Caratheodory’s
If: µ∗ is an outer measure

Then: M, the set of all µ∗-measurable sets, is a σ-algebra and µ∗|M is a complete
measure.

Definition 8. Other Types of Measures
µ : A→ [0,∞]

1 Finite measure: µ(X) <∞

1 σ-Finite measure: There exists a disjoint collection {Ei}∞i=1 ⊂ A such that X =
∞⋃
i=1

Ei

and µ(Ei) <∞ for all i.
1 Semi-finite: for all E where µ(E) =∞, there exists F ⊂ E so 0 < µ(F ) < µ(E) =∞.

Lemma 6. Trick for Borel Measures
If: E is measurable and µ(E) <∞,

Then: for every ε > 0, there exists A which is a finite union of disjoint open intervals
such that µ(E∆A) < ε.

Example 5. The Construction of a Measure

(1) Start with an algebra A and a premeasure µ0 on that algebra.
(2) Let µ∗ : P(X)→ [0,∞] be defined by

µ∗(E) = inf
{ ∞∑
i=1

µ0(Ai) |Ai ∈ A, E ⊂
∞⋃
i=1

Ai

}
.

Then µ∗ defines an outer measure.
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(3) Apply Caratheodory to obtain µ = µ∗|M the outer measure restricted to the σ-algebra
of µ∗-measurable sets.

(4) µ is now a complete measure.

A shortcut to this process: if f : X → [0∞], then defining

µ(E) =
∑
x∈E

f(x) = sup
{∑
x∈F

f(x) |F finite ⊂ E

}

defines a measure.

Example 6. Construction of Measures from Functions
We utilize the outline the previous example to adapt functions into measures.
Let F : R → R be any increasing right continuous function. Let A be the algebra

generated by half-open invervals of the real line {(a, b]}. Then

µ0

(
n⋃
i=1

(ai, bi]
)

=
n∑
i=1

[F (bi)− F (ai)]

defines a premeasure on A.
Going through the process described in the previous example, we finally obtain a unique

regular Borel measure µF which is defined on BR by

µF ((a, b]) = F (b)− F (a)

***The function F (x) = x defines the Lebesgue Measure.
Conversely, any finite Borel measure µ can be used to define an increasing and right

continuous function by the formula

F (x) =


µ((0, x]) if x > 0
0 if x = 0
−µ((x, 0]) if x < 0
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á1Measurable Functions 1á

Definition 9. Measurable Functions
A function f : (X,M) → (Y,N) is called (M,N)-measurable if f−1(E) ∈ M for all

E ∈ N.

***Continuous functions are Borel measurable by definition.
***To check if f : (X,M)→ (R,BR) is measurable, it suffices to check that f−1(E) ∈M

for E = (a,∞), [a,∞), (−∞, b), (−∞, b].

Example 7.
Borel measurable implies Lebesgue measurable, since if f : R→ R, then f−1(E) ∈ BR ⊂

L for all E ∈ BR.

However, the converse is not true.
Take a null set N ∈ L such that N /∈ BR. Then χN be characteristic function of N .

Then {−1} ∈ BR ⊂ L but χ−1
N ({1}) = N /∈ BR. So χN is not Borel measurable.

However, N ∈ L so χN is Lebesgue measurable.

Lemma 7. Combining Measurable Functions

1 If f, g are measurable, then f + g, f − g, fg, max{f, g}, min{f, g} are measurable.
1 If {fi}∞i=1 is a sequence of measurable functions, sup fi, inf fi, lim sup fi, lim inf fi are

all measurable.
1 If lim

i→∞
fi(x) exists for every x ∈ X, then the limit is measurable.

Definition 10. Simple Functions
A simple function is a finite sum of characteristic functions

ϕ(x) =
n∑
i=1

aiχEi
(x).
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Theorem 3. Approximating Measurable Functions
If: f ∈ L+

Then: there exists a sequence of {ϕn}∞n=1 approximating f pointwise from below,
namely,

0 ≤ ϕ1 ≤ ϕ2 ≤ · · · ≤ f

ϕn → f pointwise and ϕn → f uniformly from below on any set which f is
bounded.

***If f : X → C is measurable, then there exists {ϕn}∞n=1 so

0 ≤ |ϕ1| ≤ |ϕ2| ≤ · · · ≤ |f |

with ϕn → f pointwise and ϕn → f uniformly on any set where f is bounded.

Definition 11. Absolute Continuity
A function f is absolutely continuous on [a, b] if for all ε > 0, there exists a δ > 0 such

that, for any finite collection {[ai, bi]}ni=1 of subintervals of [a, b],
n∑
i=1
|bi − ai| < δ =⇒

n∑
i=1
|f(bi)− f(ai)| < ε.

Example 8.

 Uniform Continuity 6 =⇒ Absolute Continuity: Let f(x) be the Cantor-Lebesgue
function on [0, 1]. Then f is continuous on a compact set so it is uniformly continuous.
Assume f is absolutely continuous, then by FTOLI,

1 = f(1) = f(1)− f(0) =
∫ 1

0
f ′(x)dm = 0

 Absolute Continuity 6 =⇒ Lipschitz Continuity: Let f(x) =
√
x on [0, 1]. Then f is

discontinuous only at 0, so by the comparison theorem, f is Riemmann integrable, and
its Riemann and Lebesgue integerals coincide. Namely,

f(x) =
∫ x

0
f ′(x)dx

∫ 1

0
|f ′(x)|dx = 1 <∞

by techniques of Riemann integration, so f is absolutely continuous by FTOLI.

However,
|
√
x−√y|
|x− y|

= 1√
x+√y which can grow arbitrarily large for x, y near 0.

Namely, there is no M so |f(x)− f(y)| ≤M |x− y| so f is not Lipschitz continuous.
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á1Integration 1á

Definition 12. Integral
For measurable, non-negative functions (f ∈ L+),∫

X
fdµ = sup

{∫
X
ϕdµ | 0 ≤ ϕ ≤ f, ϕ simple

}

where ∫
X
ϕdµ =

n∑
i=1

aiµ(Ei).

For measurable, functions,∫
X
fdµ =

∫
X
f+dµ−

∫
X
f−dµ

where f = f+ − f− its positive and negative parts (which are both non-negative measurable
functions).

A function f ∈ L1 if its measurable and∫
|f |dµ <∞.

Lemma 8. Facts about Integration

1 If a ∈ R,
∫
afdµ = a

∫
fdµ

1 f, g ∈ L1,
∫
f ± gdµ =

∫
fdµ±

∫
gdµ

1 f ≤ g, then
∫
fdµ ≤

∫
gdµ

1 f ∈ L+, then
∫
fdµ = 0 if and only if f = 0 a.e.

1 f ∈ L1, then |f(x)| <∞ a.e. and {x : f(x) 6= 0} is σ-finite.
1 |

∫
fdµ| ≤

∫
|f |dµ

1 fn ∈ L+ for all n then
∞∑
n=0

∫
fndµ =

∫ ∞∑
n=0

fndµ
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Theorem 4. Monotone Convergence Theorem
If:

á fn ∈ L+ for all n
á fn ≤ fn+1 for all n (and all x)

Then: ∫
lim
n→∞

fndµ = lim
n→∞

∫
fndµ.

Theorem 5. Fatou’s Lemma
If: fn ∈ L+ for all n,

Then: ∫
lim inf fndµ ≤ lim inf

∫
fndµ.

Theorem 6. Dominated Convergence Theorem
If:

á fn measurable for all n
á lim

n→∞
fn(x) exists for a.e. x (pointwise convergence)

á there exists g ∈ L1 such that |fn(x)| ≤ g(x) for all n and a.e. x.

Then: the limit in in L1 and∫
lim
n→∞

fndµ = lim
n→∞

∫
fndµ.

Theorem 7. Integral Approximation Theorem
If: f ∈ L1

Then: for all ε > 0, there exists a simple function such that
∫
|f − ϕ|dµ < ε.

***If f ∈ L1(m) (where m is the Lebesgue measure) then there exists a continuous
function with compact support such that

∫
|f − g|dm < ε.
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Lemma 9. Tricks for Integrating Functions

1 Show the result holds for a characteristic function. By linearity, it holds for all simple
functions. If f is measurable, it can be uniformly approximated by simple functions
(Theorem 3).

1 If f is L1, the integral of f can be approximated by the integral of some simple function
(Theorem 7).

1 If f is L1(m), the integral of f can be approximated by the integral of some continuous
function with compact support (Theorem 7).

Theorem 8. Comparing Riemann and Lebesgue Integerals

á

á If: f is bounded and real valued on a bounded interval [a, b]

Then: if f is Riemann integrable, f is Lebesgue measurable (and hence integrable)
and the two integrals agree

∫ b

a
f(x)dx =

∫
[a,b]

fdm

á If: f is bounded on [a, b]

Then: f is Riemann integrable ⇐⇒ {x ∈ [a, b] : f is discontinuous at x} is
Lebesgue null.

á If: f : (a, b]→ [0,∞) is a nonnegative continuous function (where lim
α→a

f(α) =∞
which has a finite (although perhaps improper) Riemann integral

Then: f ∈ L1(a, b] and the Riemann and Lebesgue integrals agree.

***The last bullet is because on [α, b] for α > a, f is bounded and so by the first part
of this theorem,∫

(a,b]
f(x)dm(x) = lim

α→a

∫
[α,b]

f(x)dm(x) = lim
α→a

∫ b

α
f(x)dx <∞.
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Theorem 9. Fundamental Theorem of (Riemann) Integerals
If: f is continuous on [a, b] and F (x) =

∫ x

a
f(t)dt

Then: F is well defined and continuous for all x ∈ [a, b], (so F is uniformly continuous)
and F ′(x) = f(x) for all x ∈ (a, b).

***Conversely, if f is Riemann integrable on [a, b] and has an antiderivative F on [a, b],
then

∫ b

a
f(x)dx = F (b)− F (a).

Theorem 10. Fundamental Theorem of (Lebesgue) Integerals
F : [a, b]→ C, TFAE:

á F is absolutely continuous on [a, b]

á F (x)− F (a) =
∫ x

a
f(t)dt for some f ∈ L1([a, b],m).

á F is differentiable a.e. on [a, b], F ′ ∈ L1([a, b],m), and F (x)− F (a) =
∫ x

a
F ′(t)dt.

Theorem 11. Tonelli
If:

á If (X,M, µ) and (Y,N, ν) are σ-finite

á f ∈ L+(X × Y ) (positive and measurable)

Then: ∫
fd(µ× ν) =

∫ ∫
fdµdν =

∫ ∫
fdνdµ.

Theorem 12. Fubini
If:

á If (X,M, µ) and (Y,N, ν) are σ-finite
á f ∈ L1(µ× ν) (which can be checked by looking at |f | and using Tonelli)

Then: ∫
fd(µ× ν) =

∫ ∫
fdµdν =

∫ ∫
fdνdµ.
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á1Modes of Convergence 1á

Definition 13. Modes of Convergence
1 Convergence in Measure: µ({x : |fn(x)− f(x)| ≥ ε})→ 0 as n→∞

1 Convergence in L1:
∫
|fn(x)− f(x)|dµ→ 0 as n→∞.

1 Almost Uniform (AU): If µ(X) <∞, for every ε > 0, there exists a set Eε such that
µ(Eε) < ε and fn → f uniformly on Ec

ε.

Theorem 13. Implication Diagrams for Convergence

Represents implication (e.g. almost uniform convergence implies a.e. conver-
gence).

Represents existence of subsequence which converges (e.g. convergence in L1

implies existence of a subsequence which converges a.e.).

General Case:
AE AU

L1 M

Finite measure space:

AE AU

L1 M

***Almost uniform convergence being equivalent to a.e. convergence in a finite measure
space is a result of Egoroff’s Theorem.

Example 9. Classic Counter Examples
(1) Uniform Convergence 6 =⇒ Convergence in L1: Let fn(x) = 1

n
χ(0,n)(x). Then fn → 0

uniformly since fn is clearly bounded everywhere. However,∫
|fn − 0| = 1

n
m((0, n)) = 1 ∀n

so this clealry does not converge to 0 in L1.
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(2) Convergence in L1 6 =⇒ Convergence a.e.: Let fn be the moving box example. Namely,
for each n, there exists k so 2k ≤ n < 2k+1, let

fn(x) = χ[ n

2k−1,n+1
2k −1](x).

Namely,

f1(x) = χ[0,1] 20 = 1 ≤ 1
f2(x) = χ[0, 1

2 ] 21 = 2 ≤ 2
f3(x) = χ[ 1

2 ,1] 21 = 2 ≤ 3
...

then ∫
|fn| =

1
2k → 0

but fn(x) doesn’t converge for any x since there are an infinite number of n where
fn(x) = 1 and an infinite number of n where fn(x) = 0.

(3) Convergence in Measure 6 =⇒ Convergence in L1: Let fn(x) = nχ[0, 1
n

](x). Then fn → 0
in measure, since the measure of the set where fn is large shrinks to nothing as n→∞.
However, ∫

|fn| = 1 ∀n

so fn 6→ 0 in L1.

(4) Convergence a.e. 6 =⇒ Convergence in measure: Let fn(x) = x
n
. Then fn(x)→ 0 for

all x ∈ R, however,

m({x : |fn(x)| ≥ ε}) = m({x : x ≥ nε}) = m([nε,∞)) =∞

for all n.
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á1Signed Measures 1á

Definition 14. Signed Measure
ν : M→ [−∞,∞]

1 ν(∅) = 0
1 ν assumes at most one of the ±∞

1 ν

( ∞⋃
i=1

Ei

)
≤
∞∑
i=1

ν(Ei) for all disjoint collections {Ei}∞i=1 ⊂M (where the sum converges

absolutely if ν
( ∞⋃
i=1

Ei

)
<∞)

***Signed measures are also continuous from above and below, just like positive measures.

Definition 15. Singular and Absolutely Continuous

1 If µ and ν are measures (signed or otherwise) on (X,M), then µ and ν are mutually
singular (write µ ⊥ ν) if there exists E,F ∈ M such that E ∩ F = ∅, E ∪ F = X,
µ(E) = 0 and ν(F ) = 0.

1 If µ and ν are measures (where at most ν is singed) on (X,M), then ν is absolutely
continuous with respect to µ (write ν << µ) if µ(E) = 0 implies ν(E) = 0 for all
E ∈M.

1 ν << µ if and only if ν(E) =
∫
E fdµ for some f ∈ L1(µ) (write dν = fdµ).

Theorem 14. Hahn Decomposition
If: ν is a signed measure on (X,M),

Then: there exists a positive set P and neative set N for ν such that P ∪ U = X,
P ∩ U = ∅, and these choices are unique up to null set.

Definition 16. Locally Integrable
f ∈ L1

loc if
∫
K |f(x)|dµ <∞ for all bounded measurable sets K.
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Definition 17. Shrinks Nicely
{Er}r≥0 ⊂ BRn is said to shrink nicely to a point x if

1 Er ⊂ Br(x) for all r
1 there exists a constant α > 0 (independent of r) so m(Er) > αm(B(r, x)) for all r.

Theorem 15. Lebesgue-Radon-Nikodym
If:

á ν is a signed and σ-finite measure
á m is a σ-finite measure (usually taken to be the Lebesgue measure)

Then: there exists a measure λ and function f ∈ L1(m) such that λ ⊥ m and
dν = dλ+ fdm.

***Furthermore, when m is the Lebesgue measure, for m-a.e. x, and for every family
{Er}r≥0 that shrinks nicely to x,

lim
r→0

ν(Er)
m(Er)

= f(x).

Theorem 16. Generalized Lebesgue-Radon-Nikodym
If:

á ν is a complex measure
á µ is a σ-finite measure

Then: there exists a measure λ and function f ∈ L1(m) such that λ ⊥ µ and
dν = dλ+ fdµ.

Theorem 17. Lebesgue Differentiation Theorem
If: f ∈ L1

loc,

Then: for a.e. x, and for every family {Er}r≥0 that shrinks nicely to x.

lim
r→0

1
m(Er)

∫
Er

f(y)dy = f(x).
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