Kayla Orlinsky Real Analysis Exam Spring 2018

Problem 1. Let $-\infty < a < b < \infty$ and suppose \mathcal{B} is a countable collection of closed subintervals of (a, b). Give the proof that there is a countable pairwise-disjoint subcollection $\mathcal{B}' \subset \mathcal{B}$ such that

$$\bigcup_{I\in\mathcal{B}}I\subset\bigcup_{I\in\mathcal{B}'}\tilde{I},$$

where \tilde{I} denotes the 5-times enlargement of I; thus if $I = [x - \rho, x + \rho]$ then $\tilde{I} = [x - 5\rho, x + 5\rho]$.

Solution. Let each $I \in \mathcal{B}$ be written as I = [x - r, x + r] some $x \in (a, b)$ some r < b - a. Let $R = \sup_r [x - r, x + r]$. Then $m(I) < 2R < \infty$ for all $I \in \mathcal{B}$, where m is the Lebesgue measure.

Now, let $F_n \subset \mathcal{B}$ be the collection of I such that

Radius of
$$I = \frac{m(I)}{2} \in \left(\frac{R}{2^{n+1}}, \frac{R}{2^n}\right].$$

Now, we define G_n as follows, let $H_0 = F_0$ and G_0 be a maximal disjoint subcollection of H_0 .

Now, for each n define

$$H_{n+1} = \{ I \in F_{n+1} \mid I \cap J = \emptyset, \forall J \in G_0 \cup G_1 \cup \dots \cup G_n \}.$$

Let G_{n+1} be a maximal disjoint subcollection of H_{n+1} .

Let

$$\mathcal{B}' = \bigcup_{n=1}^{\infty} G_n.$$

First, \mathcal{B}' is pairwise disjoint by construction. This is because if $I, J \in \mathcal{B}'$, then there exists n, m so $I \in G_n$ and $J \in G_m$, namely, $I \in H_n$ and $J \in H_m$. If n = m then $I, J \in G_n$ which is a disjoint collection, so $I \cap J = \emptyset$. If, WLOG, n > m, I cannot intersect J since $J \in G_0 \cup G_1 \cup \cdots \cup G_m \cup \cdots \cup G_{n-1}$ and $I \in H_n$ implies it cannot intersect any elements of this set by definition.

Second, \mathcal{B}' is countable since it comes from \mathcal{B} which is countable.

Finally, let $I \in \mathcal{B}$. Then there exists n so $I \in F_n$.

Now, if $I \notin H_n$, then n > 0 since $H_0 = F_0$. Also, I must intersect some $J \in G_0 \cup \cdots \cup G_{n-1}$.

In this case, the radius of I is in $\left(\frac{R}{2^{n+1}}, \frac{R}{2^n}\right)$ and since $J \in G_0 \cup \cdots \cup G_{n-1}$, the radius of J is in $\left(\frac{R}{2^n}, R\right]$. Since I intersects J, the worst possible case is that $I = \left[x - \frac{R}{2^n}, x + \frac{R}{2^n}\right]$ intersects J at an end point, I has maximal length of $2\frac{R}{2^n} = \frac{R}{2^{n-1}}$ and J has minimal length of $2\frac{R}{2^n} = \frac{R}{n^{n-1}}$. However, even in this case, $I \subset \tilde{J}$. To see this, WLOG, take

$$J = \left[\left(x + \frac{2R}{2^n} \right) - \frac{R}{2^n}, \left(x + \frac{2R}{2^n} \right) + \frac{R}{2^n} \right]$$

so J intersects I at its right endpoint.

Then

$$\tilde{J} = \left[\left(x + \frac{2R}{2^n} \right) - \frac{5R}{2^n}, \left(x + \frac{2R}{2^n} \right) + \frac{5R}{2^n} \right] = \left[x - \frac{3R}{2^n}, x + \frac{7R}{2^n} \right]$$

and since $x - \frac{3R}{2^n} < x - \frac{R}{2^n}$ and $x + \frac{7R}{2^n} > x + \frac{R}{2^n}$, we have that $I \subset \tilde{J}$, and similarly for J intersecting I at the right end point.

Now, if $I \in H_n$, then by maximality of G_n , we have that I intersects some J in G_n . Again, $I \in F_n$ so the radius of I is in $\left(\frac{R}{2^{n+1}}, \frac{R}{2^n}\right)$ and similarly for J.

As in the previous case, even if $I \cap J$ is a single endpoint, so (in the case of the right end point of I being the intersection point)

$$I = \left[x - \frac{R}{2^n}, x + \frac{R}{2^n}\right], J = \left[\left(x + \frac{3R}{2^{n+1}}\right) - \frac{R}{2^{n+1}}, \left(x + \frac{3R}{2^{n+1}}\right) + \frac{R}{2^n}\right]$$

then

$$\tilde{J} = \left[\left(x + \frac{3R}{2^{n+1}} \right) - \frac{5R}{2^{n+1}}, \left(x + \frac{3R}{2^{n+1}} \right) + \frac{5R}{2^n} \right] = \left[x - \frac{R}{2^n}, x + \frac{4R^2}{2^n} \right]$$

so $I \subset \tilde{J}$, and similarly for intersection at a left endpoint of I.

Therefore, we have that \mathcal{B}' is indeed a pair-wise disjoint countable subcollection of \mathcal{B} , with

$$\bigcup_{I\in\mathcal{B}}I\subset\bigcup_{I\in\mathcal{B}'}\tilde{I}.$$

H

Problem 2. Assume that f is absolutely continuous on [0, 1], and assume that f' = g a.e., where g is a continuous function. Prove that f is continuously differentiable on [0, 1].

Solution. Because f is absolutely continuous, by Fundamental Theorem of Lebesgue Integration

$$f(x) = f(0) + \int_0^x f'(t)dt = f(0) + \int_0^x g(t)dt$$
 since $f' = g$ a.e.

Since g is continuous on [0,1], by the Fundamental Theorem of Calculus part (II), $\int_0^x g(t)dt$ is differentiable on [0,1] and $\frac{d}{dx}\int_0^x g(t)dt = g(x)$ is continuous. Therefore, since

$$f(x) - f(0) = \int_0^x g(t)dt$$

and

$$\frac{d}{dx}\int_0^x g(t)dt = \frac{d}{dx}(f(x) - f(0)) = f'(x)$$

we have that f is continuously differntiable.

H

Problem 3. Let (X, \mathcal{M}, μ) be a measure space such that $\mu(X) = 1$. Let $A_1, A_2, ..., A_{50} \in \mathcal{M}$. Assume that almost every point in X belongs to at least 10 of these sets. Prove that at least one of the sets has measure greater than or equal to 1/5.

Solution. Let

$$f(x) = \sum_{i=1}^{50} \chi_{A_i}(x).$$

Then f(x) counts the number of A_i that x is in.

Let

$$B = \{ x \, | \, f(x) < 10 \}.$$

Since $\mu(B^c) = 1$,

$$\sum_{i=1}^{n} \mu(A_i) = \int_X f(x) d\mu = \int_{B^c} f(x) d\mu \ge \int_{B^c} 10 d\mu = 10.$$

Let *i* be such that $\mu(A_i)$ is maximal (possible since $\mu(A_i) \leq 1$ for i = 1, ..., 50).

Then

$$50\mu(A_i) \ge \sum_{i=1}^n \mu(A_i) \ge 10 \implies \mu(A_i) \ge \frac{1}{5}.$$

<u>م</u>	
W	
~	
60	

Problem 4. Let $f:[0,\infty) \to \mathbb{R}$ be absolutely continuous on every closed subinterval of $[0,\infty)$ and

$$f(x) = f(0) - \int_0^x g(t)dt,$$
 for $x \ge 0$,

where $g \in \mathcal{L}^1([0,\infty))$. Show that

$$\int_0^\infty \frac{f(2x) - f(x)}{x} dx = (\log 2) \int_0^\infty g(t) dt.$$

Solution. Because f is absolutely continuous on ever closed subinterval, it is also integrable on every closed subinterval.

Thus, (because scaling does not affect Lebesgue integration) we may write

$$\int_{0}^{\infty} \frac{f(2x) - f(x)}{x} dx = \lim_{\varepsilon \to 0} \lim_{R \to \infty} \left[\int_{\varepsilon}^{R} \frac{f(2x)}{x} dx - \int_{\varepsilon}^{R} \frac{f(x)}{x} dx \right]$$

$$= \lim_{\varepsilon \to 0} \lim_{R \to \infty} \left[\int_{2\varepsilon}^{2R} \frac{f(u)}{2u/2} du - \int_{\varepsilon}^{R} \frac{f(u)}{u} du \right] \quad u = 2x$$

$$= \lim_{\varepsilon \to 0} \lim_{R \to \infty} \left[\int_{2\varepsilon}^{R} \frac{f(u)}{u} du + \int_{R}^{2R} \frac{f(u)}{u} du - \int_{\varepsilon}^{2\varepsilon} \frac{f(u)}{u} du - \int_{2\varepsilon}^{R} \frac{f(u)}{u} du \right]$$

$$= \lim_{\varepsilon \to 0} \lim_{R \to \infty} \left[\int_{1}^{2R} \frac{f(u)}{u} du - \int_{\varepsilon}^{2\varepsilon} \frac{f(u)}{u} du \right]$$

$$= \lim_{\varepsilon \to 0} \lim_{R \to \infty} \left[\int_{1}^{2} \frac{Rf(Rx)}{Rx} dx - \int_{1}^{2} \frac{\varepsilon f(\varepsilon x)}{\varepsilon x} dx \right] \quad x = \frac{u}{R}, \frac{u}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} \lim_{R \to \infty} \left[\int_{1}^{2} \frac{f(Rx) - f(\varepsilon x)}{x} dx \right]$$

$$= \lim_{\varepsilon \to 0} \lim_{R \to \infty} \left[\int_{1}^{2} \frac{f(x)}{x} \frac{dx}{x} dx \right]$$

$$= \lim_{\varepsilon \to 0} \lim_{R \to \infty} \left[\int_{1}^{2} \frac{f(x)}{\varepsilon x} \frac{dx}{x} dx \right]$$

$$= \lim_{\varepsilon \to 0} \lim_{R \to \infty} \left[\int_{1}^{2} \frac{f(x)}{\varepsilon x} \frac{dx}{x} dx \right]$$

$$= \lim_{\varepsilon \to 0} \lim_{R \to \infty} \left[\int_{1}^{2} \frac{f(x)}{\varepsilon x} \frac{dx}{x} dx \right]$$

$$= \lim_{\varepsilon \to 0} \lim_{R \to \infty} \left[\int_{1}^{2} \frac{f(x)}{\varepsilon x} \frac{dx}{x} dx \right]$$

$$= \lim_{\varepsilon \to 0} \lim_{R \to \infty} \left[\int_{1}^{2} \frac{f(x)}{\varepsilon x} \frac{dx}{x} dx \right]$$

$$= \lim_{\varepsilon \to 0} \lim_{R \to \infty} \left[\int_{1}^{2} \frac{f(x)}{\varepsilon x} \frac{dx}{x} dx \right]$$

$$= \lim_{\varepsilon \to 0} \lim_{R \to \infty} \left[\int_{1}^{2} \frac{f(x)}{\varepsilon x} \frac{dx}{x} dx \right]$$

$$= \lim_{\varepsilon \to 0} \lim_{R \to \infty} \left[\int_{1}^{2} \frac{f(x)}{\varepsilon x} \frac{dx}{x} dx \right]$$

$$= \lim_{\varepsilon \to 0} \lim_{R \to \infty} \left[\int_{1}^{2} \frac{f(x)}{\varepsilon x} \frac{dx}{x} dx \right]$$

$$= \lim_{\varepsilon \to 0} \lim_{R \to \infty} \left[\int_{1}^{2} \frac{f(x)}{\varepsilon x} \frac{dx}{x} dx \right]$$

Now, we note that (1) follows by the dominated convergence theorem.

Namely, g is in L^1 so $\int_{\varepsilon_x}^{R_x} g(t)dt < M \in L^1([1,2])$ with $M < \infty$ and real. Since both limits converge almost everywhere, by dominated convergence we may bring the limits in one at a time.