Kayla Orlinsky
 Real Analysis Exam Spring 2018

Problem 1. Let $-\infty<a<b<\infty$ and suppose \mathcal{B} is a countable collection of closed subintervals of (a, b). Give the proof that there is a countable pairwise-disjoint subcollection $\mathcal{B}^{\prime} \subset \mathcal{B}$ such that

$$
\bigcup_{I \in \mathcal{B}} I \subset \bigcup_{I \in \mathcal{B}^{\prime}} \tilde{I},
$$

where \tilde{I} denotes the 5 -times enlargement of I; thus if $I=[x-\rho, x+\rho]$ then $\tilde{I}=$ $[x-5 \rho, x+5 \rho]$.

Solution. Let each $I \in \mathcal{B}$ be written as $I=[x-r, x+r]$ some $x \in(a, b)$ some $r<b-a$. Let $R=\sup _{r}[x-r, x+r]$. Then $m(I)<2 R<\infty$ for all $I \in \mathcal{B}$, where m is the Lebesgue measure.

Now, let $F_{n} \subset \mathcal{B}$ be the collection of I such that

$$
\text { Radius of } I=\frac{m(I)}{2} \in\left(\frac{R}{2^{n+1}}, \frac{R}{2^{n}}\right] .
$$

Now, we define G_{n} as follows, let $H_{0}=F_{0}$ and G_{0} be a maximal disjoint subcollection of H_{0}.

Now, for each n define

$$
H_{n+1}=\left\{I \in F_{n+1} \mid I \cap J=\varnothing, \forall J \in G_{0} \cup G_{1} \cup \cdots \cup G_{n}\right\} .
$$

Let G_{n+1} be a maximal disjoint subcollection of H_{n+1}.
Let

$$
\mathcal{B}^{\prime}=\bigcup_{n=1}^{\infty} G_{n} .
$$

First, \mathcal{B}^{\prime} is pairwise disjoint by construction. This is because if $I, J \in \mathcal{B}^{\prime}$, then there exists n, m so $I \in G_{n}$ and $J \in G_{m}$, namely, $I \in H_{n}$ and $J \in H_{m}$. If $n=m$ then $I, J \in G_{n}$ which is a disjoint collection, so $I \cap J=\varnothing$. If, WLOG, $n>m$, I cannot intersect J since $J \in G_{0} \cup G_{1} \cup \cdots \cup G_{m} \cup \cdots \cup G_{n-1}$ and $I \in H_{n}$ implies it cannot intersect any elements of this set by definition.

Second, \mathcal{B}^{\prime} is countable since it comes from \mathcal{B} which is countable.
Finally, let $I \in \mathcal{B}$. Then there exists n so $I \in F_{n}$.
Now, if $I \notin H_{n}$, then $n>0$ since $H_{0}=F_{0}$. Also, I must intersect some $J \in G_{0} \cup \cdots \cup G_{n-1}$.

In this case, the radius of I is in $\left(\frac{R}{2^{n+1}}, \frac{R}{2^{n}}\right]$ and since $J \in G_{0} \cup \cdots \cup G_{n-1}$, the radius of J is in $\left(\frac{R}{2^{n}}, R\right]$. Since I intersects J, the worst possible case is that $I=\left[x-\frac{R}{2^{n}}, x+\frac{R}{2^{n}}\right]$ intersects J at an end point, I has maximal length of $2 \frac{R}{2^{n}}=\frac{R}{2^{n-1}}$ and J has minimal length of $2 \frac{R}{2^{n}}=\frac{R}{n^{n-1}}$. However, even in this case, $I \subset \tilde{J}$. To see this, WLOG, take

$$
J=\left[\left(x+\frac{2 R}{2^{n}}\right)-\frac{R}{2^{n}},\left(x+\frac{2 R}{2^{n}}\right)+\frac{R}{2^{n}}\right]
$$

so J intersects I at its right endpoint.
Then

$$
\tilde{J}=\left[\left(x+\frac{2 R}{2^{n}}\right)-\frac{5 R}{2^{n}},\left(x+\frac{2 R}{2^{n}}\right)+\frac{5 R}{2^{n}}\right]=\left[x-\frac{3 R}{2^{n}}, x+\frac{7 R}{2^{n}}\right]
$$

and since $x-\frac{3 R}{2^{n}}<x-\frac{R}{2^{n}}$ and $x+\frac{7 R}{2^{n}}>x+\frac{R}{2^{n}}$, we have that $I \subset \tilde{J}$, and similarly for J intersecting I at the right end point.

Now, if $I \in H_{n}$, then by maximality of G_{n}, we have that I intersects some J in G_{n}. Again, $I \in F_{n}$ so the radius of I is in $\left(\frac{R}{2^{n+1}}, \frac{R}{2^{n}}\right]$ and similarly for J.

As in the previous case, even if $I \cap J$ is a single endpoint, so (in the case of the right end point of I being the intersection point)

$$
I=\left[x-\frac{R}{2^{n}}, x+\frac{R}{2^{n}}\right], J=\left[\left(x+\frac{3 R}{2^{n+1}}\right)-\frac{R}{2^{n+1}},\left(x+\frac{3 R}{2^{n+1}}\right)+\frac{R}{2^{n}}\right]
$$

then

$$
\tilde{J}=\left[\left(x+\frac{3 R}{2^{n+1}}\right)-\frac{5 R}{2^{n+1}},\left(x+\frac{3 R}{2^{n+1}}\right)+\frac{5 R}{2^{n}}\right]=\left[x-\frac{R}{2^{n}}, x+\frac{4 R}{2^{n}}\right]
$$

so $I \subset \tilde{J}$, and similarly for intersection at a left endpoint of I.
Therefore, we have that \mathcal{B}^{\prime} is indeed a pair-wise disjoint countable subcollection of \mathcal{B}, with

$$
\bigcup_{I \in \mathcal{B}} I \subset \bigcup_{I \in \mathcal{B}^{\prime}} \tilde{I}
$$

Problem 2. Assume that f is absolutely continuous on $[0,1]$, and assume that $f^{\prime}=g$ a.e., where g is a continuous function. Prove that f is continuously differentiable on $[0,1]$.

Solution. Because f is absolutely continuous, by Fundamental Theorem of Lebesgue Integration

$$
f(x)=f(0)+\int_{0}^{x} f^{\prime}(t) d t=f(0)+\int_{0}^{x} g(t) d t \quad \text { since } f^{\prime}=g \text { a.e.. }
$$

Since g is continuous on $[0,1]$, by the Fundamental Theorem of Calculus part (II), $\int_{0}^{x} g(t) d t$ is differentiable on $[0,1]$ and $\frac{d}{d x} \int_{0}^{x} g(t) d t=g(x)$ is continuous. Therefore, since

$$
f(x)-f(0)=\int_{0}^{x} g(t) d t
$$

and

$$
\frac{d}{d x} \int_{0}^{x} g(t) d t=\frac{d}{d x}(f(x)-f(0))=f^{\prime}(x)
$$

we have that f is continuously differntiable.

Problem 3. Let (X, \mathcal{M}, μ) be a measure space such that $\mu(X)=1$. Let $A_{1}, A_{2}, \ldots, A_{50} \in$ \mathcal{M}. Assume that almost every point in X belongs to at least 10 of these sets. Prove that at least one of the sets has measure greater than or equal to $1 / 5$.

Solution. Let

$$
f(x)=\sum_{i=1}^{50} \chi_{A_{i}}(x)
$$

Then $f(x)$ counts the number of A_{i} that x is in.
Let

$$
B=\{x \mid f(x)<10\} .
$$

Since $\mu\left(B^{c}\right)=1$,

$$
\sum_{i=1}^{n} \mu\left(A_{i}\right)=\int_{X} f(x) d \mu=\int_{B^{c}} f(x) d \mu \geq \int_{B^{c}} 10 d \mu=10
$$

Let i be such that $\mu\left(A_{i}\right)$ is maximal (possible since $\mu\left(A_{i}\right) \leq 1$ for $i=1, \ldots, 50$).
Then

$$
50 \mu\left(A_{i}\right) \geq \sum_{i=1}^{n} \mu\left(A_{i}\right) \geq 10 \Longrightarrow \mu\left(A_{i}\right) \geq \frac{1}{5}
$$

Problem 4. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be absolutely continuous on every closed subinterval of $[0, \infty)$ and

$$
f(x)=f(0)-\int_{0}^{x} g(t) d t, \quad \text { for } x \geq 0
$$

where $g \in \mathcal{L}^{1}([0, \infty))$. Show that

$$
\int_{0}^{\infty} \frac{f(2 x)-f(x)}{x} d x=(\log 2) \int_{0}^{\infty} g(t) d t
$$

Solution. Because f is absolutely continuous on ever closed subinterval, it is also integrable on every closed subinterval.

Thus, (because scaling does not affect Lebesgue integration) we may write

$$
\begin{align*}
\int_{0}^{\infty} \frac{f(2 x)-f(x)}{x} d x & =\lim _{\varepsilon \rightarrow 0} \lim _{R \rightarrow \infty}\left[\int_{\varepsilon}^{R} \frac{f(2 x)}{x} d x-\int_{\varepsilon}^{R} \frac{f(x)}{x} d x\right] \\
& =\lim _{\varepsilon \rightarrow 0} \lim _{R \rightarrow \infty}\left[\int_{2 \varepsilon}^{2 R} \frac{f(u)}{2 u / 2} d u-\int_{\varepsilon}^{R} \frac{f(u)}{u} d u\right] \quad u=2 x \\
& =\lim _{\varepsilon \rightarrow 0} \lim _{R \rightarrow \infty}\left[\int_{2 \varepsilon}^{R} \frac{f(u)}{u} d u+\int_{R}^{2 R} \frac{f(u)}{u} d u-\int_{\varepsilon}^{2 \varepsilon} \frac{f(u)}{u} d u-\int_{2 \varepsilon}^{R} \frac{f(u)}{u} d u\right] \\
& =\lim _{\varepsilon \rightarrow 0} \lim _{R \rightarrow \infty}\left[\int_{R}^{2 R} \frac{f(u)}{u} d u-\int_{\varepsilon}^{2 \varepsilon} \frac{f(u)}{u} d u\right] \\
& =\lim _{\varepsilon \rightarrow 0} \lim _{R \rightarrow \infty}\left[\int_{1}^{2} \frac{R f(R x)}{R x} d x-\int_{1}^{2} \frac{\varepsilon f(\varepsilon x)}{\varepsilon x} d x\right] \quad x=\frac{u}{R}, \frac{u}{\varepsilon} \\
& =\lim _{\varepsilon \rightarrow 0} \lim _{R \rightarrow \infty}\left[\int_{1}^{2} \frac{f(R x)-f(\varepsilon x)}{x} d x\right] \\
& =\lim _{\varepsilon \rightarrow 0} \lim _{R \rightarrow \infty}\left[\int_{1}^{2} \frac{\int_{\varepsilon x}^{R x} g(t) d t}{x} d x\right] \\
& =\int_{1}^{2}\left(\int_{0}^{\infty} g(t) d t\right) \frac{1}{x} d x \tag{1}\\
& =\log _{1}(2) \int_{0}^{\infty} g(t) d t
\end{align*}
$$

Now, we note that (1) follows by the dominated convergence theorem.
Namely, g is in L^{1} so $\int_{\varepsilon x}^{R x} g(t) d t<M \in L^{1}([1,2])$ with $M<\infty$ and real. Since both limits converge almost everywhere, by dominated convergence we may bring the limits in one at a time.

