Kayla Orlinsky
 Real Analysis Exam Spring 2017

Problem 1. Assume that f is a positive absolutely continuous function on $[0,1]$. Prove that $1 / f$ is also absolutely continuous on $[0,1]$.

Solution. Since f is absolutely continuous and strictly positive, it has a minimum $f\left(x_{0}\right)=$ $\delta>0$ for some $x_{0} \in[0,1]$. Namely, for all $x \in[0,1]$,

$$
f(x) \geq \alpha \Longrightarrow \frac{1}{f(x)} \leq \frac{1}{\alpha}
$$

Now, let $\varepsilon>0$ and $\delta>0$ such that for all $\left\{\left(a_{i}, b_{i}\right)\right\}_{i=1}^{n}$ finite collections of disjoint subintervals of $[0,1]$,

$$
\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)<\delta \Longrightarrow \sum_{i=1}^{n}\left|f\left(b_{i}\right)-f\left(a_{i}\right)\right|<\alpha^{2} \varepsilon
$$

Then,

$$
\begin{aligned}
\sum_{i=1}^{n}\left|\frac{1}{f\left(b_{i}\right)}-\frac{1}{f\left(a_{i}\right)}\right| & =\sum_{i=1}^{n}\left|\frac{f\left(a_{i}\right)-f\left(b_{i}\right)}{f\left(b_{i}\right) f\left(a_{i}\right)}\right| \\
& \leq \sum_{i=1}^{n} \frac{\left|f\left(b_{i}\right)-f\left(a_{i}\right)\right|}{\alpha^{2}} \\
& <\frac{1}{\alpha^{2}} \alpha^{2} \varepsilon=\varepsilon
\end{aligned}
$$

so $\frac{1}{f}$ is absolutely continuous on $[0,1]$.

Problem 2. Assume that E is Lebesgue measurable.
(a) Suppose $m(E)<\infty$, where m is the Lebesgue measure. Show that

$$
f(x)=\int \chi_{E}(y) \chi_{E}(y-x) d m(y)
$$

is continuous. (Here, χ_{A} denotes the characteristic function of a set $A \subset \mathbb{R}$).
(b) Suppose $0<m(E) \leq \infty$. Show that $S=E-E=\{x-y: x, y \in E\}$ contains an open interval $(-\varepsilon, \varepsilon)$ for some $\varepsilon>0$.

Solution.

(a) Suppose $m(E)<\infty$. First, we note that $y-x \in E$ if and only if $y \in E+x$. Therefore,

$$
\begin{aligned}
f(x) & =\int \chi_{E}(y) \chi_{E}(y-x) d m(y) \\
& =\int \chi_{E}(y) \chi_{E+x}(y) d m(y) \\
& =m(E \cap(E+x)) .
\end{aligned}
$$

Now, since $m(E)<\infty$, then for all $\varepsilon>0$, there exists

$$
A=\bigcup_{i=1}^{n}\left(a_{i}, b_{i}\right)
$$

a finite union of disjoint open intervals such that $m(E \Delta A)<\varepsilon$.
Thus, if $g(x)=m(A \cap(A+x))$ is continuous, then because

$$
\begin{aligned}
&|g(x)-f(x)|=|m(A \cap(A+x))-m(E \cap(E+x))| \\
&= \mid m(A \cap(A+x) \cap E)+m\left(A \cap(A+x) \cap E^{c}\right) \\
& \quad-m(E \cap(E+x) \cap A)-m\left(E \cap(E+x) \cap A^{c}\right) \mid \\
&<|m(A \cap(A+x) \cap E)-m(E \cap(E+x) \cap A)|+\varepsilon \\
&= \mid m(A \cap(A+x) \cap E \cap(E+x))+m\left(A \cap(A+x) \cap E \cap(E+x)^{c}\right) \\
& \quad-m(E \cap(E+x) \cap A \cap(A+x))-m\left(E \cap(E+x) \cap A \cap(A+t)^{c}\right) \mid+\varepsilon \\
&<4 \varepsilon \quad
\end{aligned}
$$

so $f(x)$ must also be continuous.
Now, g is clearly continuous since A is a finite union of intervals so

$$
\lim _{x \rightarrow y} g(x)=g(y)
$$

for all $x, y \in \mathbb{R}$ since we can make the difference $|g(x)-g(y)|$ as small as we like by making $|x-y|$ small.
Namely, f is continuous.
(b) Suppose $0<m(E) \leq \infty$.

If $m(E)<\infty$ then $g(x)=m(E \cap(E+x))$ is continuous by (a).
Now, $g(0)=m(E)>0$ by assumption. Therefore, by continuity, there exists $\varepsilon>0$ small enough that $g(z)>0$ for all $z \in(-\varepsilon, \varepsilon)$.
Let $z \in(-\varepsilon, \varepsilon)$ and $z \notin E-E$. Then there does not exist $x, y \in E$ such that $z=x-y$. Namely, for all $y \in E, x=z+y \notin E$. Therefore, $E \cap(E+z)=\varnothing$ so $m(E \cap(E+z))=0$. This is a contradiction of $g(z)>0$ so no such z can exist. Namely, $(-\varepsilon, \varepsilon) \in E-E$.
Now, if $m(E)=\infty$, because \mathbb{R} is σ-finite, $E \subset \mathbb{R}$ is also σ-finite. Namely, there exists $\left\{E_{k}\right\}_{k=1}^{\infty}$ where E_{k} are disjoint and $m\left(E_{k}\right)<\infty$ for all k and

$$
E=\bigcup_{k=1}^{\infty} E_{k}
$$

Therefore,

$$
(-\varepsilon, \varepsilon) \in E_{k}-E_{k} \subset E-E .
$$

Problem 3. Assume that f is a continuous function on $[0,1]$. Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} n x^{n-1} f(x) d x=f(1)
$$

Solution. Since f is continuous on a closed interval, it is bounded and so the Lebesgue integral and Riemann integrals are the same.

Therefore, letting $u=x^{n}$, we get that $d u=n x^{n-1} d x$ and so

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} n x^{n-1} f(x) d x=\lim _{n \rightarrow \infty} \int_{0}^{1} f\left(u^{1 / n}\right) d u
$$

Now, we apply DCT.

1. $f\left(u^{1 / n}\right)$ is measurable.
2.

$$
\lim _{n \rightarrow \infty} f\left(u^{1 / n}\right)=f\left(\lim _{n \rightarrow \infty} u^{1 / n}\right)=f(1)
$$

for a.e. $u \in[0,1]$ since f is continuous.
3. $f\left(u^{1 / n}\right) \leq M \in L^{1}([0,1])$ where $M=\max |f(x)|$ for a.e. $u \in[0,1]$.

Therefore,

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} n x^{n-1} f(x) d x=\lim _{n \rightarrow \infty} \int_{0}^{1} f\left(u^{1 / n}\right) d u=\int_{0}^{1} \lim _{n \rightarrow \infty} f\left(u^{1 / n}\right) d u=\int_{0}^{1} f(1) d u=f(1) .
$$

Problem 4. Let $(\Omega, \mathcal{F}, \mu)$ be a σ-finite measure space. Let f, g be measurable real valued functions. Show that

$$
\int|f-g| d \mu=\int_{-\infty}^{\infty} \int\left|\chi_{(t, \infty)}(f(x))-\chi_{(t, \infty)}(g(x))\right| d \mu(x) d t
$$

Solution. Note that for fixed t,

$$
f(x)>t, g(x) \leq t \Longrightarrow \chi_{(t, \infty)}(f(x))-\chi_{(t, \infty)}(g(x))=1
$$

and

$$
f(x) \leq t, g(x)>t \Longrightarrow \chi_{(t, \infty)}(f(x))-\chi_{(t, \infty)}(g(x))=-1
$$

all other cases make the integrand 0 .
Let

$$
E=\{x \mid f(x)>t \geq g(x)\}
$$

Therefore, by linearity of the integral we get that

$$
\begin{aligned}
\int_{-\infty}^{\infty} \int \mid & \left|\chi_{(t, \infty)}(f(x))-\chi_{(t, \infty)}(g(x))\right| d \mu(x) d t \\
& =\int_{-\infty}^{\infty} \int_{E} \chi_{(t, \infty)}(f(x))-\chi_{(t, \infty)}(g(x)) d \mu(x) d t \\
& \quad-\int_{-\infty}^{\infty} \int_{E^{c}} \chi_{(t, \infty)}(f(x))-\chi_{(t, \infty)}(g(x)) d \mu(x) d t \\
& =\int_{-\infty}^{\infty} \int_{E} 1 d \mu(x) d t+\int_{-\infty}^{\infty} \int_{E^{c}} 1 d \mu(x) d t \\
& =\int_{-\infty}^{\infty} \int_{E} \chi_{(g(x), f(x))}(x) d \mu(x) d t+\int_{-\infty}^{\infty} \int_{E^{c}} \chi_{(f(x), g(x))}(x) d \mu(x) d t \\
& =\int_{E} \int_{-\infty}^{\infty} \chi_{(g(x), f(x))}(x) d t d \mu(x)+\int_{E^{c}} \int_{-\infty}^{\infty} \chi_{(f(x), g(x))}(x) d t d \mu(x) \\
& =\int_{E} \int_{g(x)}^{f(x)} d t d \mu(x)+\int_{E^{c}} \int_{f(x)}^{g(x)} d t d \mu(x) \\
& =\int_{E} f(x)-g(x) d \mu(x)+\int_{E^{c}} g(x)-f(x) d \mu(x) \\
& =\int_{X}|f(x)-g(x)| \mu(x)
\end{aligned}
$$

with (1) since Ω is σ-finite and the integrand is clearly in $L^{+}(\mu \times m)$ so the integrals can be swapped.

