
Kayla Orlinsky
Fall 2017

Kayla Orlinsky
Real Analysis Exam Fall 2017

Problem 1. Let (X,A, µ) be a measure space and f, g, fn, gn measurable so that fn → f
and gn → g in measure. Is it true that f 3

n + gn → f 3 + g in measure if

(a) µ(X) = 1

(b) µ(X) =∞

In both cases prove the statement or provide a counter example.

Solution.

(a) True. Since |f 3
n + gn− f 3− g| ≤ |f 3

n − f |+ |gn− g| = |fn− f ||f 2
n + fnf + f 2|+ |gn− g|,

the finiteness of the measure guarentees that µ({x : |f 2
n + fnf + f 2| ≥ ε}) is bounded

and since the other two measures are shrinking to zero, we can guarentee that the entire
set shrinks to a null set.
Specifically, for n large, M > 0 large, and δ > 0 small,

µ({x : |f 3
n + gn − f 3 − g| ≥ ε}) ≤ µ({x : |fn − f ||f 2

n + fnf + f 2|+ |gn − g| ≥ ε})
≤ µ({x : |fn − f ||f 2

n + fnf + f 2| ≥ ε}) + µ({x : |gn − g| ≥ ε}

≤ µ({x : |fn − f | ≥
ε

M
, |f 2

n + fnf + f 2| ≥M})

+ µ({x : |fn − f ||f 2
n + fnf + f 2| ≥ ε, |f 2

n + fnf + f 2| < M})
+ µ({x : |gn − g| ≥ ε}

= µ({x : |fn − f | ≥
ε

M
, |f 2

n + fnf + f 2| ≥M})

+ µ({x : |fn − f | ≥
ε

δ
, δ < |f 2

n + fnf + f 2| < M})

+ µ({x : |gn − g| ≥ ε}
→ 0 n→∞,M →∞, δ → 0

(b) False. Let X = R and µ = m the Lebesgue measure. Let fn(x) = x + 1
n
. Then

f 3
n(x) = x3 + 3

n
x2 + 3

n2x+ 1
n3 . Let gn(x) = 0. Then g(x) = 0 and f(x) = x.

Then
µ({x | |fn(x)− f(x)| ≥ ε}) = µ({x | | 1

n
| ≥ ε}) = 0

for all n ≥ N where 1
N
< ε.
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However,

µ({x | |fn(x)− f(x)| ≥ ε}) = µ({x | | 3
n
x2 + 3

n2x+ 1
n3 | ≥ ε}) =∞

since for all n, on the interval [εn2

3 ,∞), |fn − f | ≥ ε.

�
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Problem 2. Let f ∈ L1(R). Show that the series
∞∑

n=1
f(x+ n)

converges absolutely for Lebesgue almost every x ∈ R.

Solution. Fix k ∈ Z. Then,
∫ k+1

k

∞∑
n=1
|f(x+ n)|dx =

∞∑
n=1

∫ k+1

k
|f(x+ n)|dx (1)

=
∞∑

n=1

∫ k+n+1

k+n
|f(u)|du u = x+ n (2)

=
∫ ∞

k
|f(u)|du <∞

With (1) because |f(x+ n)| ∈ L+ so the sum and integral can be swapped and (2) because
linear u-sub preserves the Lebesgue integral thanks to the shifting and scaling properties of
the Lebesgue measure.

Finally, since the integral is finite, the sum must be finite a.e. Namely,
∞∑

n=1
|f(x+n)|dx <

∞ for a.e. x ∈ [k,∞). Since k ∈ Z was arbitrary, we have that the sum is finite for a.e.
x ∈ R and so the sum converges absolutely. �

3



Kayla Orlinsky
Fall 2017

Problem 3. Assume that E ⊂ R is such that m(E ∩ (E + t)) = 0 for all t 6= 0, where
m is the Lebesgue measure on R. Prove that m(E) = 0.

Solution. First, since R is σ-finite, E is σ-finite so there exists {Ek}∞k=1 such that

E =
∞⋃

k=1
Ek m(Ek) <∞.

Furthermore,

m(Ek ∩ (Ek + t)) ≤ m(E ∩ (Ek + t)) ≤ m(E ∩ (E + t)) = 0

so it suffices to check that m(Ek) = 0 for all k.
If m(Ek) <∞, then for all ε > 0, there exists

A =
n⋃

i=1
(ai, bi)

a finite union of disjoint open intervals such that m(Ek∆A) < ε.

Now, for all t 6= 0

m(A ∩ (A+ t)) = m(A ∩ (A+ t) ∩ E) +m(A ∩ (A+ t) ∩ Ec)
= m(A ∩ (A+ t) ∩ E ∩ (E + t)) +m(A ∩ (A+ t) ∩ Ec ∩ (E + t))

+m(A ∩ (A+ t) ∩ E ∩ (E + t)c) +m(A ∩ (A+ t) ∩ Ec ∩ (E + t)c)
= 0 +m([A\E] ∩ (A+ t) ∩ (E + t)) +m(A ∩ E ∩ [(A+ t)\(E + t)])

+m([A\E] ∩ (A+ t) ∩ (E + t)c)
< 2ε+m(A ∩ E ∩ [(A\E) + t])
≤ 2ε+m((A\E) + t)
= 2ε+m(A\E)
< 3ε

Namely, m(A ∩ (A+ t)) < 3ε for all t. However, for t > 0

m(A ∩ (A+ t)) = m

(
n⋃

i=1
(ai, bi) ∩

n⋃
i=1

(ai + t, bi + t)
)

=
n∑

i=1
bi − (ai + t) = m(A)− nt.

Letting t = ε
n
we see that

m(A) < 4ε.

Therefore,
m(Ek) = m(Ek ∩ A) +m(Ek ∩ Ac) < 4ε+ ε = 5ε.

Since ε was arbitrary, m(Ek) = 0 for all k.
Namely, m(E) = 0. �
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Problem 4. Let (X,A, µ) be a measure space and fn a sequence of non-negative
measurable functions. Prove that if supn fn is integrable, then

lim sup
n

∫
X
fndµ ≤

∫
X

lim sup
n

fndµ.

Also show that

(a) the inequality may be strict and

(b) that the inequality may fail unless supn fn ∈ L1.

Solution. Let
gk(x) = sup

n≥k
fn(x)

and g(x) = supn fn(x).
Now, since for all n, fn(x) ≤ supn fn(x), we have that∫

X
fndµ ≤

∫
X

sup
n
fndµ.

Namely,
∫

X
sup

n
fndµ is an upper bound for

∫
X
fndµ and so

sup
n

∫
X
fndµ ≤

∫
X

sup
n
fndµ.

Now, we claim that

lim
k→∞

∫
X
gk(x)dµ =

∫
X

lim
k→∞

gk(x)dµ.

We will use DCT.

1. gk(x) is measurable for all k.

2.
lim

k→∞
gk(x) = lim sup

n
fn(x)

so the limit exists a.e..

3. gk(x) ≤ g(x) ∈ L1 for all k and for a.e. x.

Therefore, by DCT,

lim sup
n

∫
X
fndµ ≤ lim

k→∞

∫
X

sup
n≥k

fn(x)dµ =
∫

X
lim sup

n
fn(x)dµ.
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(a) LetX = [0, 1] µ = m the Lebesgue measure and fn(x) be the moving box, or typewriter
sequence. Namely, for each n, there exists k so 2k ≤ n < 2k+1, let

fn(x) = χ[ n

2k−1, n+1
2k −1](x).

Namely,

f1(x) = χ[0,1] 20 = 1 ≤ 1
f2(x) = χ[0, 1

2 ] 21 = 2 ≤ 2
f3(x) = χ[ 1

2 ,1] 21 = 2 ≤ 3
...

Now, by nature of the moving box, for each x ∈ [0, 1] there exists an infinite number of
n so that fn(x) = 1. Therefore,

lim sup
n

fn(x) = 1.

Namely, ∫
[0,1]

lim sup
n

fn(x)dx =
∫

[0,1]
1dx = 1.

Now,
lim sup

n

∫
[0,1]

fn(x)dx = lim sup
n

1
2k

= 0

since k grows with n,
Thus, the inequality may be strict.

(b) Let X = (0, 1] µ = m the Lebesgue measure and fn(x) = nχ(0, 1
n

](x). Then for all x,
since for all x ∈ (0, 1], there exists N so 1

N+1 < x ≤ 1
N

so supn fn(x) = N.

lim sup
n
fn(x) = lim

k→∞
sup
n≥k

fn(x) = 0.

Thus, ∫
(0,1]

lim sup
n

fn(x)dx = 0

and
lim sup

n

∫
(0,1]

fn(x)dx = lim sup
n

nm
((

0, 1
n

])
= lim sup

n
1 = 1.

Namely, the inequality does not hold. Note that supn fn(x) /∈ L1 since it explodes near
0.

�
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