Kayla Orlinsky
 Real Analysis Exam Fall 2017

Problem 1. Let (X, \mathcal{A}, μ) be a measure space and f, g, f_{n}, g_{n} measurable so that $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ in measure. Is it true that $f_{n}^{3}+g_{n} \rightarrow f^{3}+g$ in measure if
(a) $\mu(X)=1$
(b) $\mu(X)=\infty$

In both cases prove the statement or provide a counter example.

Solution.

(a) True. Since $\left|f_{n}^{3}+g_{n}-f^{3}-g\right| \leq\left|f_{n}^{3}-f\right|+\left|g_{n}-g\right|=\left|f_{n}-f\right|\left|f_{n}^{2}+f_{n} f+f^{2}\right|+\left|g_{n}-g\right|$, the finiteness of the measure guarentees that $\mu\left(\left\{x:\left|f_{n}^{2}+f_{n} f+f^{2}\right| \geq \varepsilon\right\}\right)$ is bounded and since the other two measures are shrinking to zero, we can guarentee that the entire set shrinks to a null set.
Specifically, for n large, $M>0$ large, and $\delta>0$ small,

$$
\begin{aligned}
& \mu\left(\left\{x:\left|f_{n}^{3}+g_{n}-f^{3}-g\right| \geq \varepsilon\right\}\right) \leq \mu\left(\left\{x:\left|f_{n}-f\right|\left|f_{n}^{2}+f_{n} f+f^{2}\right|+\left|g_{n}-g\right| \geq \varepsilon\right\}\right) \\
& \quad \leq \mu\left(\left\{x:\left|f_{n}-f\right|\left|f_{n}^{2}+f_{n} f+f^{2}\right| \geq \varepsilon\right\}\right)+\mu\left(\left\{x:\left|g_{n}-g\right| \geq \varepsilon\right\}\right. \\
& \leq \mu\left(\left\{x:\left|f_{n}-f\right| \geq \frac{\varepsilon}{M},\left|f_{n}^{2}+f_{n} f+f^{2}\right| \geq M\right\}\right) \\
& \quad+\mu\left(\left\{x:\left|f_{n}-f\right|\left|f_{n}^{2}+f_{n} f+f^{2}\right| \geq \varepsilon,\left|f_{n}^{2}+f_{n} f+f^{2}\right|<M\right\}\right) \\
& \quad+\mu\left(\left\{x:\left|g_{n}-g\right| \geq \varepsilon\right\}\right. \\
& = \\
& \quad \mu\left(\left\{x:\left|f_{n}-f\right| \geq \frac{\varepsilon}{M},\left|f_{n}^{2}+f_{n} f+f^{2}\right| \geq M\right\}\right) \\
& \quad+\mu\left(\left\{x:\left|f_{n}-f\right| \geq \frac{\varepsilon}{\delta}, \delta<\left|f_{n}^{2}+f_{n} f+f^{2}\right|<M\right\}\right) \\
& \quad \quad+\mu\left(\left\{x:\left|g_{n}-g\right| \geq \varepsilon\right\}\right.
\end{aligned} \quad \begin{aligned}
& \quad n \rightarrow \infty, M \rightarrow \infty, \delta \rightarrow 0
\end{aligned}
$$

(b) False. Let $X=\mathbb{R}$ and $\mu=m$ the Lebesgue measure. Let $f_{n}(x)=x+\frac{1}{n}$. Then $f_{n}^{3}(x)=x^{3}+\frac{3}{n} x^{2}+\frac{3}{n^{2}} x+\frac{1}{n^{3}}$. Let $g_{n}(x)=0$. Then $g(x)=0$ and $f(x)=x$.
Then

$$
\mu\left(\left\{x\left|\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\}\right)=\mu\left(\left\{\left.x| | \frac{1}{n} \right\rvert\, \geq \varepsilon\right\}\right)=0\right.
$$

for all $n \geq N$ where $\frac{1}{N}<\varepsilon$.

However,

$$
\mu\left(\left\{x\left|\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\}\right)=\mu\left(\left\{\left.x| | \frac{3}{n} x^{2}+\frac{3}{n^{2}} x+\frac{1}{n^{3}} \right\rvert\, \geq \varepsilon\right\}\right)=\infty\right.
$$

since for all n, on the interval $\left[\varepsilon \frac{n^{2}}{3}, \infty\right),\left|f_{n}-f\right| \geq \varepsilon$.

Problem 2. Let $f \in L^{1}(\mathbb{R})$. Show that the series

$$
\sum_{n=1}^{\infty} f(x+n)
$$

converges absolutely for Lebesgue almost every $x \in \mathbb{R}$.

Solution. Fix $k \in \mathbb{Z}$. Then,

$$
\begin{align*}
\int_{k}^{k+1} \sum_{n=1}^{\infty}|f(x+n)| d x & =\sum_{n=1}^{\infty} \int_{k}^{k+1}|f(x+n)| d x \tag{1}\\
& =\sum_{n=1}^{\infty} \int_{k+n}^{k+n+1}|f(u)| d u \quad u=x+n \tag{2}\\
& =\int_{k}^{\infty}|f(u)| d u<\infty
\end{align*}
$$

With (1) because $|f(x+n)| \in L^{+}$so the sum and integral can be swapped and (2) because linear u-sub preserves the Lebesgue integral thanks to the shifting and scaling properties of the Lebesgue measure.

Finally, since the integral is finite, the sum must be finite a.e. Namely, $\sum_{n=1}^{\infty}|f(x+n)| d x<$ ∞ for a.e. $x \in[k, \infty)$. Since $k \in \mathbb{Z}$ was arbitrary, we have that the sum is finite for a.e. $x \in \mathbb{R}$ and so the sum converges absolutely.

Problem 3. Assume that $E \subset \mathbb{R}$ is such that $m(E \cap(E+t))=0$ for all $t \neq 0$, where m is the Lebesgue measure on \mathbb{R}. Prove that $m(E)=0$.

Solution. First, since \mathbb{R} is σ-finite, E is σ-finite so there exists $\left\{E_{k}\right\}_{k=1}^{\infty}$ such that

$$
E=\bigcup_{k=1}^{\infty} E_{k} \quad m\left(E_{k}\right)<\infty .
$$

Furthermore,

$$
m\left(E_{k} \cap\left(E_{k}+t\right)\right) \leq m\left(E \cap\left(E_{k}+t\right)\right) \leq m(E \cap(E+t))=0
$$

so it suffices to check that $m\left(E_{k}\right)=0$ for all k.
If $m\left(E_{k}\right)<\infty$, then for all $\varepsilon>0$, there exists

$$
A=\bigcup_{i=1}^{n}\left(a_{i}, b_{i}\right)
$$

a finite union of disjoint open intervals such that $m\left(E_{k} \Delta A\right)<\varepsilon$.
Now, for all $t \neq 0$

$$
\begin{aligned}
m(A \cap(A+t))= & m(A \cap(A+t) \cap E)+m\left(A \cap(A+t) \cap E^{c}\right) \\
= & m(A \cap(A+t) \cap E \cap(E+t))+m\left(A \cap(A+t) \cap E^{c} \cap(E+t)\right) \\
& \quad+m\left(A \cap(A+t) \cap E \cap(E+t)^{c}\right)+m\left(A \cap(A+t) \cap E^{c} \cap(E+t)^{c}\right) \\
= & 0+m([A \backslash E] \cap(A+t) \cap(E+t))+m(A \cap E \cap[(A+t) \backslash(E+t)]) \\
& \quad+m\left([A \backslash E] \cap(A+t) \cap(E+t)^{c}\right) \\
< & 2 \varepsilon+m(A \cap E \cap[(A \backslash E)+t]) \\
\leq & 2 \varepsilon+m((A \backslash E)+t) \\
= & 2 \varepsilon+m(A \backslash E) \\
< & 3 \varepsilon
\end{aligned}
$$

Namely, $m(A \cap(A+t))<3 \varepsilon$ for all t. However, for $t>0$
$m(A \cap(A+t))=m\left(\bigcup_{i=1}^{n}\left(a_{i}, b_{i}\right) \cap \bigcup_{i=1}^{n}\left(a_{i}+t, b_{i}+t\right)\right)=\sum_{i=1}^{n} b_{i}-\left(a_{i}+t\right)=m(A)-n t$.
Letting $t=\frac{\varepsilon}{n}$ we see that

$$
m(A)<4 \varepsilon
$$

Therefore,

$$
m\left(E_{k}\right)=m\left(E_{k} \cap A\right)+m\left(E_{k} \cap A^{c}\right)<4 \varepsilon+\varepsilon=5 \varepsilon
$$

Since ε was arbitrary, $m\left(E_{k}\right)=0$ for all k.
Namely, $m(E)=0$.

Problem 4. Let (X, \mathcal{A}, μ) be a measure space and f_{n} a sequence of non-negative measurable functions. Prove that if $\sup _{n} f_{n}$ is integrable, then

$$
\limsup _{n} \int_{X} f_{n} d \mu \leq \int_{X} \limsup _{n} f_{n} d \mu .
$$

Also show that
(a) the inequality may be strict and
(b) that the inequality may fail unless $\sup _{n} f_{n} \in L^{1}$.

Solution. Let

$$
g_{k}(x)=\sup _{n \geq k} f_{n}(x)
$$

and $g(x)=\sup _{n} f_{n}(x)$.
Now, since for all $n, f_{n}(x) \leq \sup _{n} f_{n}(x)$, we have that

$$
\int_{X} f_{n} d \mu \leq \int_{X} \sup _{n} f_{n} d \mu
$$

Namely, $\int_{X} \sup _{n} f_{n} d \mu$ is an upper bound for $\int_{X} f_{n} d \mu$ and so

$$
\sup _{n} \int_{X} f_{n} d \mu \leq \int_{X} \sup _{n} f_{n} d \mu
$$

Now, we claim that

$$
\lim _{k \rightarrow \infty} \int_{X} g_{k}(x) d \mu=\int_{X} \lim _{k \rightarrow \infty} g_{k}(x) d \mu
$$

We will use DCT.

1. $g_{k}(x)$ is measurable for all k.
2.

$$
\lim _{k \rightarrow \infty} g_{k}(x)=\limsup _{n} f_{n}(x)
$$

so the limit exists a.e..
3. $g_{k}(x) \leq g(x) \in L^{1}$ for all k and for a.e. x.

Therefore, by DCT,

$$
\limsup \int_{X} f_{n} d \mu \leq \lim _{k \rightarrow \infty} \int_{X} \sup _{n \geq k} f_{n}(x) d \mu=\int_{X} \limsup _{n} f_{n}(x) d \mu
$$

(a) Let $X=[0,1] \mu=m$ the Lebesgue measure and $f_{n}(x)$ be the moving box, or typewriter sequence. Namely, for each n, there exists k so $2^{k} \leq n<2^{k+1}$, let

$$
f_{n}(x)=\chi_{\left[\frac{n}{2^{k}}-1, \frac{n+1}{2^{k}}-1\right]}(x)
$$

Namely,

$$
\begin{array}{ll}
f_{1}(x)=\chi_{[0,1]} & 2^{0}=1 \leq 1 \\
f_{2}(x)=\chi_{\left[0, \frac{1}{2}\right]} & 2^{1}=2 \leq 2 \\
f_{3}(x)=\chi_{\left[\frac{1}{2}, 1\right]} & 2^{1}=2 \leq 3
\end{array}
$$

Now, by nature of the moving box, for each $x \in[0,1]$ there exists an infinite number of n so that $f_{n}(x)=1$. Therefore,

$$
\limsup _{n} f_{n}(x)=1
$$

Namely,

$$
\int_{[0,1]} \limsup _{n} f_{n}(x) d x=\int_{[0,1]} 1 d x=1
$$

Now,

$$
\limsup _{n} \int_{[0,1]} f_{n}(x) d x=\limsup _{n} \frac{1}{2^{k}}=0
$$

since k grows with n,
Thus, the inequality may be strict.
(b) Let $X=(0,1] \mu=m$ the Lebesgue measure and $f_{n}(x)=n \chi_{\left(0, \frac{1}{n}\right]}(x)$. Then for all x, since for all $x \in(0,1]$, there exists N so $\frac{1}{N+1}<x \leq \frac{1}{N}$ so $\sup _{n} f_{n}(x)=N$.

$$
\lim \sup _{n} f_{n}(x)=\lim _{k \rightarrow \infty} \sup _{n \geq k} f_{n}(x)=0
$$

Thus,

$$
\int_{(0,1]} \limsup _{n} f_{n}(x) d x=0
$$

and

$$
\limsup _{n} \int_{(0,1]} f_{n}(x) d x=\underset{n}{\limsup } n m\left(\left(0, \frac{1}{n}\right]\right)=\underset{n}{\limsup } 1=1 .
$$

Namely, the inequality does not hold. Note that $\sup _{n} f_{n}(x) \notin L^{1}$ since it explodes near 0.

