Kayla Orlinsky
 Real Analysis Exam Spring 2016

Problem 1. Let

$$
f(y)=\sum_{n} \frac{x}{x^{2}+y n^{2}} .
$$

Show that $g(y)=\lim _{x \rightarrow \infty} f(x, y)$ exists for all $y>0$. Find $g(y)$.

Solution. Let (\mathbb{N}, ν) be the counting measure space. Fix $y>0$ and since we care to examine $x \rightarrow \infty$, we may take $x>0$ as well.

We would like to use Dominated Convergence Theorem. Let $f_{n}(x, y)=\frac{x}{x^{2}+y n^{2}}$.

1. $\left\{f_{n}\right\}$ measurable for all n.
2. $\lim _{x \rightarrow \infty} f_{n}(x, y)=0$ for all $y>0$.
3. Now, using calculus,

$$
\frac{\partial}{\partial x} f_{n}(x, y)=\frac{x^{2}+y n^{2}-x(2 x)}{\left(x^{2}+y n^{2}\right)^{2}}=\frac{y n^{2}-x^{2}}{\left(x^{2}+y n^{2}\right)^{2}}=0 \Longrightarrow x=\sqrt{y n^{2}}=\sqrt{y} n
$$

Clearly this is a maximum for $f_{n}(x, y)$, and so we see that

$$
f_{n}(x, y) \leq \frac{\sqrt{y} n}{y n^{2}+y n^{2}}=\frac{1}{2 \sqrt{y} n}
$$

Now, for every fixed $y>0$, let

$$
h(n)= \begin{cases}\frac{1}{2 y^{1 / 3} n^{4 / 3}} & \text { if } y n^{2} \geq 1 \\ \frac{1}{2 \sqrt{y} n} & \text { if } y n^{2}<1\end{cases}
$$

Note that since we are working over the counting measure on \mathbb{N}, our variable of integration is n and so h must be a function of n independent of x (the variable over which we are taking the limit).
Then, for all y,

$$
\sum_{n} h(n)=\sum_{n<1 / \sqrt{y}} \frac{1}{2 \sqrt{y} n}+\sum_{n \geq 1 / \sqrt{y}} \frac{1}{2 y^{1 / 3} n^{4 / 3}}<\infty
$$

since $4 / 3>1$ and the first sum is over finitely many n.

Furthermore, for $y n^{2} \geq 1,1 / \sqrt{y} n \leq 1$ and so

$$
f_{n}(x, y) \leq \frac{1}{2 \sqrt{y} n} \leq\left(\frac{1}{2 \sqrt{y} n}\right)^{2 / 3}=h(n)
$$

When $y n^{2}<1, h(n)$ is exactly the upper bound for $f_{n}(x, y)$ calculated previously. Thus, $f_{n}(x, y) \leq h(n) \in L^{1}(\nu)$ for all $x>0$ and all $y>0$.

Finally, by DCT,

$$
\lim _{x \rightarrow \infty} \sum_{n} f_{n}(x, y)=\sum_{n} \lim _{x \rightarrow \infty} f_{n}(x, y)=\sum_{n} 0=0
$$

for all $x, y>0$.

Problem 2. Let $A \subset \mathbb{R}$ be Lebesgue measurable. Show that $n\left(\chi_{A} * \chi_{\left[0, \frac{1}{n}\right]}\right) \rightarrow \chi_{A}$ pointwise a.e. as $n \rightarrow \infty$. (Recall that $(f * g)(x)=\int f(x-y) g(y) d y$ for $\left.x \in \mathbb{R}\right)$.

Solution. First,
$n\left(\chi_{A} * \chi_{\left[0, \frac{1}{n}\right]}\right)=n \int_{\mathbb{R}} \chi_{A}(x-y) \chi_{[0,1 / n]}(y) d y=n \int_{[0,1 / n]} \chi_{A}(x-y) d y=\frac{1}{m([0,1 / n])} \int_{[0,1 / n]} \chi_{A}(x-y) d y$
Now, we do the following changes, letting $r=\frac{1}{n}$ and noticing that if $x-y \in A$, then $x-y=a \in A$ and so $y=x-a \in x-A=\{x-a \mid a \in A\}$. Finally, since $0 \leq y \leq 1 / n$, $x-1 / n \leq x-y \leq x$.

Now, we would like to apply the Lebesgue Differntiation Theorem.

1. $\chi_{A} \in L_{\text {loc }}^{1}$
2. $[x-r, x]$ shrinks nicely to x

Thus,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{m([0,1 / n])} \int_{[0,1 / n]} \chi_{A}(x-y) d y & =\lim _{r \rightarrow 0} \frac{1}{m([0, r])} \int_{[0, r]} \chi_{A}(x-y) d y \\
& =\lim _{r \rightarrow 0} \frac{1}{m([x-r, x])} \int_{[x-r, x]} \chi_{x-A}(y) d y \\
& =\lim _{r \rightarrow 0} \frac{1}{m([x-r, x])} \int_{[x-r, x]} \chi_{A}(y) d y \quad m(A)=m(x-A) \\
& =\chi_{A}(x) \quad \text { a.e. by LDT. }
\end{aligned}
$$

Problem 3.

(a) Prove that if a sequence of integrable functions f_{n} on $[0,1]$ satisfies $\int_{0}^{1}\left|f_{n}(x)\right| d x \leq \frac{1}{n^{2}}$ for $n \in \mathbb{N}$, then $f_{n} \rightarrow 0$ a.e. on $[0,1]$ as $n \rightarrow \infty$.
(b) Show that the above fact is not true if $1 / n^{2}$ is replaced by $1 / \sqrt{n}$.

Solution.

(a) First, let (\mathbb{N}, ν) be the counting measure space. We would like to use Tonelli.
(a) Both (\mathbb{N}, ν) and $([0,1], m)$ are σ-finite.
(b) Since any function is measurable with respect to the counting measure, and $\left|f_{n}\right| \in L^{+}([0,1])$, so $\left|f_{n}\right| \in L^{+}(\mathbb{N} \times[0,1])$.

Thus,

$$
\sum_{n}^{\infty} \int_{0}^{1}\left|f_{n}(x)\right| d x=\int_{0}^{1} \sum_{n}^{\infty}\left|f_{n}(x)\right| d x \leq \sum_{n}^{\infty} \frac{1}{n^{2}}<\infty
$$

Therefore, $\sum_{n}^{\infty}\left|f_{n}(x)\right|<\infty$-a.e. which implies $\left|f_{n}(x)\right| \rightarrow 0$ a.e. and so $f_{n} \rightarrow 0$ a.e. as $n \rightarrow \infty$.

Note that Dominated Convergence would be difficult in this case since we do not know that the f_{n} are bounded.
(b) Let $f_{n}(x)$ be the moving box on $[0,1]$. Then, $f_{n}(x)=\chi_{\left[\frac{j-1}{2^{k}}, \frac{j}{2^{k}}\right]}$ with $n=2^{k}+j$ and $0 \leq j<2^{k}$.
Then,

$$
\int_{0}^{1}\left|f_{n}(x)\right| d x=\frac{1}{2^{k}} \leq \frac{1}{\sqrt{2^{k+1}}}=\frac{1}{\sqrt{2^{k}+2^{k}}} \leq \frac{1}{\sqrt{n}}
$$

for all n since $j<2^{k}$ and so $n=2^{k}+j \leq 2^{k}+2^{k}$.
However, the moving box does not converge to anything a.e.. In fact, it does not converge for any x.

Problem 4 (Folland, 2.3.25, p.59). Let

$$
f(x)= \begin{cases}\frac{1}{\sqrt{x}} & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Also, let $\left\{r_{n}\right\}_{n=1}^{\infty}$ be an enumeration of the rationals. Define

$$
g_{n}(x)=\frac{1}{2^{n}} f\left(x-r_{n}\right), \quad x \in \mathbb{R}
$$

and let

$$
g(x)=\sum_{n=1}^{\infty} g_{n}(x) \quad x \in \mathbb{R}
$$

(a) Prove that g is integrable on \mathbb{R}
(b) Prove that g is discontinuous at every point in \mathbb{R}.

Solution.

(a) Let (\mathbb{N}, ν) be the counting measure space.

Then
(i) Both (\mathbb{N}, ν) and (\mathbb{R}, m) are σ-finite.
(ii) f is continuous everywhere and so $g_{n}(x)$ is continuous everywhere, thus because the σ-algebra for ν is defined as the $\mathcal{P}(\mathbb{N}),{ }_{n}$ is measurable and positive so $g_{n} \in$ $L^{+}(\nu \times m)$.

Thus, by Tonelli,

$$
\begin{aligned}
\int_{\mathbb{R}} \sum_{n} g_{n}(x) d x & =\sum_{n} \int_{\mathbb{R}} g_{n}(x) d x \\
& =\sum_{n} \int_{\left(r_{n}, 1+r_{n}\right)} \frac{1}{2^{n} \sqrt{x-r_{n}}} d x \\
& =\left.\sum_{n} \frac{1}{2^{n}} 2 \sqrt{x-r_{n}}\right|_{r_{n}} ^{1+r_{n}} \\
& =\sum_{n} \frac{1}{2^{n-1}}<\infty
\end{aligned}
$$

Thus, $g \in L^{1}(\mathbb{R})$.
(b) For any $M>0$ and $x \in \mathbb{R}$, there exists some $N \in \mathbb{N}$ such that $1>x-r_{N} \geq \frac{1}{2^{2 N} M^{2}}>0$. Then

$$
g(x) \geq \frac{1}{2^{N}} f\left(x-r_{N}\right) \geq \frac{1}{2^{N}} 2^{N} M=M .
$$

Thus, on any interval containing $x, g(x)$ can be made arbitrarily large on that interval and so it cannot be continuous.

