Kayla Orlinsky Real Analysis Exam Spring 2016

Problem 1. Let

$$f(y) = \sum_{n} \frac{x}{x^2 + yn^2}$$

Show that $g(y) = \lim_{x\to\infty} f(x, y)$ exists for all y > 0. Find g(y).

Solution. Let (\mathbb{N}, ν) be the counting measure space. Fix y > 0 and since we care to examine $x \to \infty$, we may take x > 0 as well.

We would like to use **Dominated Convergence Theorem**. Let $f_n(x, y) = \frac{x}{x^2 + un^2}$.

- 1. $\{f_n\}$ measurable for all n.
- 2. $\lim_{x\to\infty} f_n(x,y) = 0$ for all y > 0.
- 3. Now, using calculus,

$$\frac{\partial}{\partial x}f_n(x,y) = \frac{x^2 + yn^2 - x(2x)}{(x^2 + yn^2)^2} = \frac{yn^2 - x^2}{(x^2 + yn^2)^2} = 0 \implies x = \sqrt{yn^2} = \sqrt{yn}.$$

Clearly this is a maximum for $f_n(x, y)$, and so we see that

$$f_n(x,y) \le \frac{\sqrt{y}n}{yn^2 + yn^2} = \frac{1}{2\sqrt{y}n}$$

Now, for every fixed y > 0, let

$$h(n) = \begin{cases} \frac{1}{2y^{1/3}n^{4/3}} & \text{ if } yn^2 \ge 1\\ \frac{1}{2\sqrt{yn}} & \text{ if } yn^2 < 1 \end{cases}$$

Note that since we are working over the counting measure on \mathbb{N} , our variable of integration is n and so h must be a function of n independent of x (the variable over which we are taking the limit).

Then, for all y,

$$\sum_{n} h(n) = \sum_{n < 1/\sqrt{y}} \frac{1}{2\sqrt{y}n} + \sum_{n \ge 1/\sqrt{y}} \frac{1}{2y^{1/3}n^{4/3}} < \infty$$

since 4/3 > 1 and the first sum is over finitely many n.

Furthermore, for $yn^2 \ge 1$, $1/\sqrt{y}n \le 1$ and so

$$f_n(x,y) \le \frac{1}{2\sqrt{y}n} \le \left(\frac{1}{2\sqrt{y}n}\right)^{2/3} = h(n).$$

When $yn^2 < 1$, h(n) is exactly the upper bound for $f_n(x, y)$ calculated previously. Thus, $f_n(x, y) \le h(n) \in L^1(\nu)$ for all x > 0 and all y > 0.

Finally, by DCT,

$$\lim_{x \to \infty} \sum_{n} f_n(x, y) = \sum_{n} \lim_{x \to \infty} f_n(x, y) = \sum_{n} 0 = 0$$

for all x, y > 0.

H

Problem 2. Let $A \subset \mathbb{R}$ be Lebesgue measurable. Show that $n(\chi_A * \chi_{[0,\frac{1}{n}]}) \to \chi_A$ pointwise a.e. as $n \to \infty$. (Recall that $(f * g)(x) = \int f(x - y)g(y)dy$ for $x \in \mathbb{R}$).

Solution. First,

$$n(\chi_A * \chi_{[0,\frac{1}{n}]}) = n \int_{\mathbb{R}} \chi_A(x-y)\chi_{[0,1/n]}(y)dy = n \int_{[0,1/n]} \chi_A(x-y)dy = \frac{1}{m([0,1/n])} \int_{[0,1/n]} \chi_A(x-y)dy$$

Now, we do the following changes, letting $r = \frac{1}{n}$ and noticing that if $x - y \in A$, then $x - y = a \in A$ and so $y = x - a \in x - A = \{x - a \mid a \in A\}$. Finally, since $0 \le y \le 1/n$, $x - 1/n \le x - y \le x$.

Now, we would like to apply the Lebesgue Differntiation Theorem.

1. $\chi_A \in L^1_{\text{loc}}$

2. [x - r, x] shrinks nicely to x

Thus,

$$\lim_{n \to \infty} \frac{1}{m([0, 1/n])} \int_{[0, 1/n]} \chi_A(x - y) dy = \lim_{r \to 0} \frac{1}{m([0, r])} \int_{[0, r]} \chi_A(x - y) dy$$
$$= \lim_{r \to 0} \frac{1}{m([x - r, x])} \int_{[x - r, x]} \chi_{x - A}(y) dy$$
$$= \lim_{r \to 0} \frac{1}{m([x - r, x])} \int_{[x - r, x]} \chi_A(y) dy \qquad m(A) = m(x - A)$$
$$= \chi_A(x) \qquad \text{a.e. by LDT.}$$

Ŵ	
Ð	

Problem 3.

- (a) Prove that if a sequence of integrable functions f_n on [0,1] satisfies $\int_0^1 |f_n(x)| dx \leq \frac{1}{n^2}$ for $n \in \mathbb{N}$, then $f_n \to 0$ a.e. on [0,1] as $n \to \infty$.
- (b) Show that the above fact is not true if $1/n^2$ is replaced by $1/\sqrt{n}$.

Solution.

- (a) First, let (\mathbb{N}, ν) be the counting measure space. We would like to use Tonelli.
 - (a) Both (\mathbb{N}, ν) and ([0, 1], m) are σ -finite.
 - (b) Since any function is measurable with respect to the counting measure, and $|f_n| \in L^+([0,1])$, so $|f_n| \in L^+(\mathbb{N} \times [0,1])$.

Thus,

$$\sum_{n=1}^{\infty} \int_{0}^{1} |f_{n}(x)| dx = \int_{0}^{1} \sum_{n=1}^{\infty} |f_{n}(x)| dx \le \sum_{n=1}^{\infty} \frac{1}{n^{2}} < \infty.$$

Therefore, $\sum_{n=1}^{\infty} |f_n(x)| < \infty$ m-a.e. which implies $|f_n(x)| \to 0$ a.e. and so $f_n \to 0$ a.e. as $n \to \infty$.

Note that Dominated Convergence would be difficult in this case since we do not know that the f_n are bounded.

(b) Let $f_n(x)$ be the moving box on [0,1]. Then, $f_n(x) = \chi_{\lfloor \frac{j-1}{2^k}, \frac{j}{2^k} \rfloor}$ with $n = 2^k + j$ and $0 \le j < 2^k$.

Then,

$$\int_0^1 |f_n(x)| dx = \frac{1}{2^k} \le \frac{1}{\sqrt{2^{k+1}}} = \frac{1}{\sqrt{2^k + 2^k}} \le \frac{1}{\sqrt{n}}$$

for all n since $j < 2^k$ and so $n = 2^k + j \le 2^k + 2^k$.

However, the moving box does not converge to anything a.e.. In fact, it does not converge for any x.

y

Problem 4 (Folland, 2.3.25, p.59). Let

$$f(x) = \begin{cases} \frac{1}{\sqrt{x}} & 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

Also, let $\{r_n\}_{n=1}^{\infty}$ be an enumeration of the rationals. Define

$$g_n(x) = \frac{1}{2^n} f(x - r_n), \qquad x \in \mathbb{R}$$

and let

$$g(x) = \sum_{n=1}^{\infty} g_n(x) \qquad x \in \mathbb{R}$$

- (a) Prove that g is integrable on \mathbb{R}
- (b) Prove that g is discontinuous at every point in \mathbb{R} .

Solution.

- (a) Let (\mathbb{N}, ν) be the counting measure space. Then
 - (i) Both (\mathbb{N}, ν) and (\mathbb{R}, m) are σ -finite.
 - (ii) f is continuous everywhere and so $g_n(x)$ is continuous everywhere, thus because the σ -algebra for ν is defined as the $\mathcal{P}(\mathbb{N})$, $_n$ is measurable and positive so $g_n \in L^+(\nu \times m)$.

Thus, by Tonelli,

$$\begin{split} \int_{\mathbb{R}} \sum_{n} g_{n}(x) dx &= \sum_{n} \int_{\mathbb{R}} g_{n}(x) dx \\ &= \sum_{n} \int_{(r_{n}, 1+r_{n})} \frac{1}{2^{n} \sqrt{x-r_{n}}} dx \\ &= \sum_{n} \frac{1}{2^{n}} 2\sqrt{x-r_{n}} \Big|_{r_{n}}^{1+r_{n}} \\ &= \sum_{n} \frac{1}{2^{n-1}} < \infty \end{split}$$

Thus, $g \in L^1(\mathbb{R})$.

(b) For any M > 0 and $x \in \mathbb{R}$, there exists some $N \in \mathbb{N}$ such that $1 > x - r_N \ge \frac{1}{2^{2N}M^2} > 0$. Then

$$g(x) \ge \frac{1}{2^N} f(x - r_N) \ge \frac{1}{2^N} 2^N M = M.$$

Thus, on any interval containing x, g(x) can be made arbitrarily large on that interval and so it cannot be continuous.