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Problem 1. Let
f(y) =

∑
n

x

x2 + yn2 .

Show that g(y) = limx→∞ f(x, y) exists for all y > 0. Find g(y).

Solution. Let (N, ν) be the counting measure space. Fix y > 0 and since we care to
examine x→∞, we may take x > 0 as well.

We would like to use Dominated Convergence Theorem. Let fn(x, y) = x
x2+yn2 .

1. {fn} measurable for all n.

2. limx→∞ fn(x, y) = 0 for all y > 0.

3. Now, using calculus,

∂

∂x
fn(x, y) = x2 + yn2 − x(2x)

(x2 + yn2)2 = yn2 − x2

(x2 + yn2)2 = 0 =⇒ x =
√
yn2 = √yn.

Clearly this is a maximum for fn(x, y), and so we see that

fn(x, y) ≤
√
yn

yn2 + yn2 = 1
2√yn.

Now, for every fixed y > 0, let

h(n) =


1

2y1/3n4/3 if yn2 ≥ 1
1

2√yn
if yn2 < 1

Note that since we are working over the counting measure on N, our variable of
integration is n and so h must be a function of n independent of x (the variable over
which we are taking the limit).
Then, for all y,

∑
n

h(n) =
∑

n<1/
√

y

1
2√yn +

∑
n≥1/

√
y

1
2y1/3n4/3 <∞

since 4/3 > 1 and the first sum is over finitely many n.
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Furthermore, for yn2 ≥ 1, 1/√yn ≤ 1 and so

fn(x, y) ≤ 1
2√yn ≤

(
1

2√yn

)2/3

= h(n).

When yn2 < 1, h(n) is exactly the upper bound for fn(x, y) calculated previously.
Thus, fn(x, y) ≤ h(n) ∈ L1(ν) for all x > 0 and all y > 0.

Finally, by DCT,
lim

x→∞

∑
n

fn(x, y) =
∑

n

lim
x→∞

fn(x, y) =
∑

n

0 = 0

for all x, y > 0. �
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Problem 2. Let A ⊂ R be Lebesgue measurable. Show that n(χA ∗ χ[0, 1
n

]) → χA

pointwise a.e. as n→∞. (Recall that (f ∗ g)(x) =
∫
f(x− y)g(y)dy for x ∈ R).

Solution. First,

n(χA∗χ[0, 1
n

]) = n
∫
R
χA(x−y)χ[0,1/n](y)dy = n

∫
[0,1/n]

χA(x−y)dy = 1
m([0, 1/n])

∫
[0,1/n]

χA(x−y)dy

Now, we do the following changes, letting r = 1
n
and noticing that if x − y ∈ A, then

x − y = a ∈ A and so y = x − a ∈ x − A = {x − a | a ∈ A}. Finally, since 0 ≤ y ≤ 1/n,
x− 1/n ≤ x− y ≤ x.

Now, we would like to apply the Lebesgue Differntiation Theorem.

1. χA ∈ L1
loc

2. [x− r, x] shrinks nicely to x

Thus,

lim
n→∞

1
m([0, 1/n])

∫
[0,1/n]

χA(x− y)dy = lim
r→0

1
m([0, r])

∫
[0,r]

χA(x− y)dy

= lim
r→0

1
m([x− r, x])

∫
[x−r,x]

χx−A(y)dy

= lim
r→0

1
m([x− r, x])

∫
[x−r,x]

χA(y)dy m(A) = m(x− A)

= χA(x) a.e. by LDT.

�
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Problem 3.

(a) Prove that if a sequence of integrable functions fn on [0, 1] satisfies
∫ 1

0 |fn(x)|dx ≤ 1
n2

for n ∈ N, then fn → 0 a.e. on [0, 1] as n→∞.

(b) Show that the above fact is not true if 1/n2 is replaced by 1/
√
n.

Solution.

(a) First, let (N, ν) be the counting measure space. We would like to use Tonelli.

(a) Both (N, ν) and ([0, 1],m) are σ-finite.
(b) Since any function is measurable with respect to the counting measure, and
|fn| ∈ L+([0, 1]), so |fn| ∈ L+(N× [0, 1]).

Thus,
∞∑
n

∫ 1

0
|fn(x)|dx =

∫ 1

0

∞∑
n

|fn(x)|dx ≤
∞∑
n

1
n2 <∞.

Therefore, ∑∞n |fn(x)| < ∞ m-a.e. which implies |fn(x)| → 0 a.e. and so fn → 0 a.e.
as n→∞.
Note that Dominated Convergence would be difficult in this case since we do not know
that the fn are bounded.

(b) Let fn(x) be the moving box on [0, 1]. Then, fn(x) = χ[ j−1
2k , j

2k ] with n = 2k + j and
0 ≤ j < 2k.
Then, ∫ 1

0
|fn(x)|dx = 1

2k
≤ 1√

2k+1
= 1√

2k + 2k
≤ 1√

n

for all n since j < 2k and so n = 2k + j ≤ 2k + 2k.
However, the moving box does not converge to anything a.e.. In fact, it does not
converge for any x.

�
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Problem 4 (Folland, 2.3.25, p.59). Let

f(x) =


1√
x

0 < x < 1
0 otherwise

Also, let {rn}∞n=1 be an enumeration of the rationals. Define

gn(x) = 1
2n
f(x− rn), x ∈ R

and let
g(x) =

∞∑
n=1

gn(x) x ∈ R

(a) Prove that g is integrable on R

(b) Prove that g is discontinuous at every point in R.

Solution.

(a) Let (N, ν) be the counting measure space.
Then

(i) Both (N, ν) and (R,m) are σ-finite.
(ii) f is continuous everywhere and so gn(x) is continuous everywhere, thus because

the σ-algebra for ν is defined as the P(N), n is measurable and positive so gn ∈
L+(ν ×m).

Thus, by Tonelli, ∫
R

∑
n

gn(x)dx =
∑

n

∫
R
gn(x)dx

=
∑

n

∫
(rn,1+rn)

1
2n
√
x− rn

dx

=
∑

n

1
2n

2
√
x− rn

∣∣∣∣∣
1+rn

rn

=
∑

n

1
2n−1 <∞

Thus, g ∈ L1(R).

(b) For any M > 0 and x ∈ R, there exists some N ∈ N such that 1 > x− rN ≥ 1
22N M2 > 0.

Then
g(x) ≥ 1

2N
f(x− rN) ≥ 1

2N
2NM = M.
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Thus, on any interval containing x, g(x) can be made arbitrarily large on that interval
and so it cannot be continuous.

�
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