Kayla Orlinsky

Real Analysis Exam Fall 2016

Problem 1. Let (X, \mathcal{F}, μ) be a finite measure space, and let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of nonnegative measurable functions. Prove that $f_{n} \rightarrow 0$ in measure if and only if

$$
\lim _{n \rightarrow \infty} \int \frac{f_{n}}{f_{n}+1} d \mu=0
$$

Solution.

\square Assume $f_{n} \rightarrow 0$ in measure. Let $\delta>0$ and $\varepsilon=\frac{\delta}{2 \mu(X)}$, and N large enough that such that

$$
\mu\left(\left\{x \mid f_{n}(x) \geq \varepsilon\right\}\right)<\frac{\delta}{2} \quad \forall n \geq N
$$

Let $E_{n}=\left\{x \mid f_{n}(x) \geq \varepsilon\right\}$. Then since $f_{n} \geq 0$ for all $n, \frac{f_{n}}{f_{n}+1} \leq 1$.
Thus, for all $n \geq N$,

$$
\begin{aligned}
\int \frac{f_{n}}{f_{n}+1} d \mu & =\int_{E_{n}} \frac{f_{n}}{f_{n}+1} d \mu+\int_{E_{n}^{c}} \frac{f_{n}}{f_{n}+1} d \mu \\
& \leq \int_{E_{n}} 1 d \mu+\int_{E_{n}^{c}} \frac{\varepsilon}{f_{n}+1} d \mu \\
& \leq \mu\left(E_{n}\right)+\int_{E_{n}^{c}} \varepsilon d \mu \\
& =\mu\left(E_{n}\right)+\varepsilon \mu\left(E_{n}^{c}\right) \\
& <\frac{\delta}{2}+\varepsilon \mu\left(E_{n}^{c}\right) \\
& \leq \delta
\end{aligned}
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \int \frac{f_{n}}{f_{n}+1} d \mu=0
$$

\Longleftarrow Assume

$$
\lim _{n \rightarrow \infty} \int \frac{f_{n}}{f_{n}+1} d \mu=0
$$

Note that

$$
\begin{aligned}
f_{n}(x) & \geq \varepsilon \\
f_{n}(x)+\varepsilon f_{n}(x) & \geq \varepsilon+\varepsilon f_{n}(x) \\
f_{n}(x)(1+\varepsilon) & \geq \varepsilon\left(1+f_{n}(x)\right) \\
\frac{f_{n}(x)}{f_{n}(x)+1} & \geq \frac{\varepsilon}{\varepsilon+1}
\end{aligned}
$$

since of course $f_{n} \geq 0$ so $f_{n}+1>0$.
Therefore,
Since

$$
\int \frac{f_{n}}{f_{n}+1} d \mu \geq \int_{E_{n}} \frac{f_{n}}{f_{n}+1} d \mu \geq \int_{E_{n}} \frac{\varepsilon}{\varepsilon+1} d \mu=\frac{\varepsilon}{\varepsilon+1} \mu\left(E_{n}\right)
$$

and the left hand side goes 0 as $n \rightarrow \infty$, we have that $\mu\left(E_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
Thus, $f_{n} \rightarrow 0$ in measure.

Problem 2. Let (X, \mathcal{F}, μ) be a finite measure space, and let $\left\{A_{n}\right\}_{n=1}^{\infty} \subseteq \mathcal{F}$ be a sequence of sets. Assume that $\mu\left(A_{n}\right) \geq \delta$ for all $n \in \mathbb{N}$, where $\delta>0$. Prove that there exists a set $S \in \mathcal{F}$ of positive measure such that for every $x \in S$, is in A_{j} for infinitely many j.

Solution. We are looking for exactly the limit superior: the set of x such that x is in infinitely many A_{j}.

Let

$$
S=\bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} A_{j} .
$$

The certainly, if $x \in S$, then x is in infinitely many A_{j}. Furthermore, $S \in \mathcal{F}$ since it is a countable intersection of countable unions of elements of \mathcal{F} which is a σ-algebra.

We would like to show that $\mu(S)>0$.
Now, we note that

$$
\int \sum_{n=1}^{\infty} \chi_{A_{n}}(x) d \mu=\sum_{n=1}^{\infty} \int \chi_{A_{n}}(x) d \mu=\sum_{n=1}^{\infty} \mu\left(A_{n}\right) \geq \sum_{n=1}^{\infty} \delta=\infty .
$$

Therefore, since $\mu(X)<\infty$,

$$
\left\{x \mid \sum_{n=1}^{\infty} \chi_{A_{n}}(x)=\infty\right\}
$$

must have strictly positive measure. Namely, $\left\{x \mid x \in A_{n}\right.$ for infinitely many $\left.n\right\}$ has strictly positive measure and since this set is a subset of S, we have that $\mu(S)>0$.

Problem 3. Let $f_{n}:[0,1] \rightarrow[0, \infty)$ be Lebesgue measurable and such that $f_{n}(x) \rightarrow 0$ for almost every x. Assume that

$$
\sup _{n} \int_{0}^{1} \varphi\left(f_{n}(x)\right) d x \leq 1
$$

for some continuous $\varphi:[0, \infty) \rightarrow[0, \infty)$ which satisfies $\varphi(t) / t \rightarrow \infty$ as $t \rightarrow \infty$. Prove that $\int_{0}^{1} f_{n}(x) d x \rightarrow 0$ as $n \rightarrow \infty$. (Provide a detailed proof).

Solution. First, since $\varphi(t) / t \rightarrow \infty$, we have that for all $M>0$ there exists a T such that $\varphi(x) / x \geq M$ for all $x \geq T$.

Thus,

$$
\frac{x}{\varphi(x)} \leq \frac{1}{M} \quad x \geq T
$$

Let

$$
E_{n}^{T}=\left\{x \in[0,1]: f_{n}(x) \geq T\right\}
$$

Then,

$$
\begin{align*}
\left|\int_{0}^{1} f_{n}(x) d x\right| & =\int_{0}^{1} f_{n}(x) d x \\
& =\int_{E_{n}^{T}} f_{n}(x) d x+\int_{\left(E_{n}^{T}\right)^{c}} f_{n}(x) d x \\
& =\int_{E_{n}^{T}} \frac{\varphi\left(f_{n}(x)\right)}{\varphi\left(f_{n}(x)\right)} f_{n}(x) d x+\int_{\left(E_{n}^{T}\right)^{c}} f_{n}(x) d x \\
& \leq \int_{E_{n}^{T}} \varphi\left(f_{n}(x)\right) \frac{1}{M} d x+\int_{\left(E_{n}^{T}\right)^{c}} f_{n}(x) d x \\
& \leq \frac{1}{M} 1+\int_{\left(E_{n}^{T}\right)^{c}} f_{n}(x) d x \rightarrow \frac{1}{M} \tag{1}
\end{align*}
$$

with (1) by DCT.

1. f_{n} is measurable for all n.
2. $f_{n} \rightarrow 0$ a.e. $x \in[0,1]$.
3. on $\left(E_{n}^{T}\right)^{c}, f_{n} \leq T \in L^{1}([0,1])$.

Therefore, since M was arbitrary, we have that

$$
\int_{0}^{1} f_{n}(x) d x \rightarrow 0 \quad n \rightarrow \infty
$$

Problem 4. Let $h:[0, \infty) \rightarrow \mathbb{R}$ be continuous with compact support. Prove that

$$
\lim _{\varepsilon \rightarrow 0^{+}} \int_{\varepsilon}^{\infty} \frac{h(\alpha x)-h(\beta x)}{x} d x=h(0) \log \frac{\alpha}{\beta}
$$

for every $\alpha, \beta>0$.

Solution. WLOG, take $\beta>\alpha$.

$$
\begin{align*}
\lim _{\varepsilon \rightarrow 0^{+}} \int_{\varepsilon}^{\infty} \frac{h(\alpha x)}{x} d x & =\lim _{\varepsilon \rightarrow 0^{+}}\left[\int_{\varepsilon}^{\infty} \frac{h(\alpha x)}{x} d x-\int_{\varepsilon}^{\infty} \frac{h(\beta x)}{x} d x\right] \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \lim _{R \rightarrow \infty}\left[\int_{\varepsilon}^{R} \frac{\alpha h(\alpha x)}{\alpha x} d x-\int_{\varepsilon}^{R} \frac{\beta h(\beta x)}{\beta x} d x\right] \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \lim _{R \rightarrow \infty}\left[\int_{\alpha \varepsilon}^{\alpha R} \frac{h(u)}{u} d u-\int_{\beta \varepsilon}^{\beta R} \frac{h(u)}{u} d u\right] \quad u=\alpha x, \beta x \tag{1}\\
& =\lim _{\varepsilon \rightarrow 0^{+}} \lim _{R \rightarrow \infty}\left[\int_{\alpha \varepsilon}^{\beta \varepsilon} \frac{h(u)}{u} d u+\int_{\beta \varepsilon}^{\alpha R} \frac{h(u)}{u} d u-\int_{\beta \varepsilon}^{\alpha R} \frac{h(u)}{u} d u-\int_{\alpha R}^{\beta R} \frac{h(u)}{u} d u\right] \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \lim _{R \rightarrow \infty}\left[\int_{\alpha \varepsilon}^{\beta \varepsilon} \frac{h(u)}{u} d u-\int_{\alpha R}^{\beta R} \frac{h(u)}{u} d u\right] \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \lim _{R \rightarrow \infty}\left[\int_{\alpha \varepsilon}^{\beta \varepsilon} \frac{\frac{1}{\varepsilon} h(u)}{\frac{1}{\varepsilon} u} d u-\int_{\alpha R}^{\beta R} \frac{\frac{1}{R} h(u)}{\frac{1}{R} u} d u\right] \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \lim _{R \rightarrow \infty}\left[\int_{\alpha}^{\beta} \frac{h(x / \varepsilon)}{x} d x-\int_{\alpha}^{\beta} \frac{h(x / R)}{x} d x\right] \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \lim _{R \rightarrow \infty}\left[\int_{\alpha}^{\beta} \frac{h(x / \varepsilon)-h(x / R)}{x} d x\right] \\
& =\int_{\alpha}^{\beta} \lim _{\varepsilon \rightarrow 0^{+}} \lim _{R \rightarrow \infty} \frac{h(x / \varepsilon)-h(x / R)}{x} d x \tag{2}\\
& =\int_{\alpha}^{\beta} \frac{-h(0)}{x} d x \\
& =-\left.h(0) \log x\right|_{\alpha} ^{\beta} \\
& =-h(0) \log \frac{\beta}{\alpha} \\
& =h(0) \log \frac{\alpha}{\beta}
\end{align*}
$$

with (1) because u-sub is supported by Lebesgue integration because of the scaling and shifting properties of the Lebesgue measure, and (2) because of DCT.

Namely,

1. $\frac{h(x / \varepsilon)}{x}$ is measurable since h is continuous and so measurable, and $\frac{1}{x}$ is continuous on $[\alpha, \beta]$ and so measurable.
2. The various limits exist, specifically, because h is continuous $h(x / R) \rightarrow h(0)$ as $R \rightarrow \infty$ and since h has compact support, $h(x / \varepsilon)=0$ for ε small. Namely

$$
\lim _{\varepsilon \rightarrow 0^{+}} \lim _{R \rightarrow \infty} \frac{h(x / \varepsilon)-h(x / R)}{x}=\frac{0-h(0)}{x}=\frac{-h(0)}{x} .
$$

3. Because h is continuous and has compact support, it has a maximum value on $[\alpha, \beta]$ which is a finite. Therefore,

$$
\frac{h(x / \varepsilon)-h(x / R)}{x} \leq \frac{2 M}{\alpha} \in L^{1}([\alpha, \beta])
$$

for a.e. $x \in[\alpha, \beta]$ where M is the maximum of h on $[\alpha / R, \beta / \varepsilon]$.
Therefore, by DCT, we can bring both limits inside the integral.

