Kayla Orlinsky
 Real Analysis Exam Spring 2015

Problem 1. Consider the sequence

$$
f_{n}(x)=\left(1+\frac{x}{n}\right)^{-n} \cos \left(\frac{x}{n}\right), \quad n=1,2, \ldots
$$

Evaluate

$$
\lim _{n} \int_{0}^{\infty} f_{n}(x) d x
$$

being careful to justify your answer.

Solution. We would like to use Dominated Convergence Theorem.

1. $\left\{f_{n}\right\}$ is measurable for all n.
2.

$$
\begin{aligned}
y & =\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{-n} \\
\Longrightarrow \ln (y) & =\lim _{n \rightarrow \infty}-n \ln \left(1+\frac{x}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{x}{n}\right)}{\frac{-1}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{1}{1+\frac{x}{n}} \frac{-x}{n^{2}}}{\frac{1}{n^{2}}} \quad \text { L'Hopital's Rule. } \\
& =\lim _{n \rightarrow \infty} \frac{-x}{1+\frac{x}{n}} \\
& =-x \\
\Longrightarrow y & =e^{-x}
\end{aligned}
$$

Thus,

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\left(\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{-n}\right)\left(\lim _{n \rightarrow \infty} \cos \left(\frac{x}{n}\right)\right)=e^{-x} \cos (0)=e^{-x}
$$

since both limits exist separately. Furthermore, this limit holds for all x.
3. Now, for all $n>1$,

$$
\left(1+\frac{x}{n}\right)^{-n} \leq(1+x)^{-n} \leq(1+x)^{-2} \in L^{1}
$$

Note that since

$$
\frac{1}{(1+x)^{n}}=\left(\frac{1}{1+x}\right)^{n}
$$

and $\frac{1}{1+x} \leq 1$ for all $x \geq 0$, we have that $(1+x)^{-n} \leq(1+x)^{-n+1}$ for all n.
Thus, by the Dominated Convergence Theorem,

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(x) d x=\int_{0}^{\infty} \lim _{n \rightarrow \infty} f_{n}(x) d x=-\left.e^{-x}\right|_{0} ^{\infty}=1
$$

Problem 2. Suppose that $f:[0, \infty) \rightarrow \mathbb{R}$ is Lebesgue integrable.
(a) Show that there exists a sequence $x_{n} \rightarrow \infty$ such that $f\left(x_{n}\right) \rightarrow 0$.
(b) Is it true that $f(x)$ must converge to 0 as $x \rightarrow \infty$? Give a proof or a counter example.
(c) Suppose additionally that f is differentiable and $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$. Is it true that $f(x)$ must converge to 0 as $x \rightarrow \infty$? Give a proof or counter example.

Solution.

(a) Let $\left\{x_{n}\right\}$ be such that for all $n, x_{n}>n$ and $f\left(x_{n}\right)<\frac{1}{n}$.

If no such sequence exists, then for all sequences with $x_{n}>n, f\left(x_{n}\right) \geq \frac{1}{n}$. However, then

$$
\int_{n}^{\infty} f(x) d x \geq \int_{n}^{\infty} \frac{1}{n}=\infty
$$

which contradicts that $f \in L^{1}$. Thus, the sequence given exists.
(b) No. Let $f(x)=\chi_{\mathbb{Q}}$. Then $f \in L^{1}$ since $m(\mathbb{Q})=0$, however $\lim _{x \rightarrow \infty} f(x)$ does not exist.
(c) Assume that $f \nrightarrow 0$ as $x \rightarrow \infty$. Then there exists some $\left\{x_{n}\right\}$ tending to infinity with $f\left(x_{n}\right) \geq \varepsilon$ for all n. (WLOG we take $f\left(x_{n}\right) \geq 0$, however if f is everywhere negative, then $-f\left(x_{n}\right) \geq \varepsilon$ and the rest of the proof is similar).
Since $\left|f^{\prime}\left(x_{n}\right)\right| \leq \frac{\varepsilon}{2}$ for large enough n, and since differentiability implies continuity, we may apply the Fundamental Theorem of Calculus. (Note that on any closed interval $\left[x_{n}, x_{n}+1\right], f$ must be bounded) so for all $x_{n} \leq x \leq x_{n}+1$

$$
\left|f(x)-f\left(x_{n}\right)\right|=\left|\int_{x}^{x_{n}+1} f^{\prime}(t) d t\right| \leq\left|\int_{x_{n}}^{x_{n}+1} f^{\prime}(t) d t\right| \leq \int_{x_{n}}^{x_{n}+1} \frac{\varepsilon}{2} d t=\frac{\varepsilon}{2}
$$

However,

$$
\begin{aligned}
\left|f(x)-f\left(x_{n}\right)\right| & \leq \frac{\varepsilon}{2} \\
-\frac{\varepsilon}{2} & \leq f(x)-f\left(x_{n}\right) \\
\varepsilon-\frac{\varepsilon}{2} & \leq f\left(x_{n}\right)-\frac{\varepsilon}{2} \leq f(x)
\end{aligned}
$$

However, then

$$
\int f(t) d t \geq \sum_{n=N}^{\infty} \int_{x_{n}}^{x_{n}+1} f(t) d t \geq \sum_{n=N}^{\infty} \frac{\varepsilon}{2}=\infty
$$

Again, this contradicts $f \in L^{1}$ and so no such sequence can exist. Namely, $f \rightarrow 0$ as $x \rightarrow \infty$.

Problem 3. Define $f_{n}(x)=a e^{-n a x}-b e^{-n b x}$ where $0<a<b$.
(a) Show that

$$
\sum_{n=1}^{\infty} \int_{0}^{\infty} f_{n}(x) d x=0
$$

and

$$
\int_{0}^{\infty} \sum_{n=1}^{\infty} f_{n}(x) d x=\log (b / a)
$$

(b) What can you deduce about the value of

$$
\int_{0}^{\infty} \sum_{n=1}^{\infty}\left|f_{n}(x)\right| d x ?
$$

Solution.

(a)

$$
\begin{aligned}
\int_{0}^{\infty} f_{n}(x) d x & =\int_{0}^{\infty} a e^{-n a x}-b e^{-n b x} d x \\
& =\frac{a e^{-n a x}}{-n a}-\left.\frac{b e^{-n b x}}{-n b}\right|_{0} ^{\infty} \\
& =0-\left(\frac{-1}{n}+\frac{1}{n}\right)=0 .
\end{aligned}
$$

Thus,

$$
\sum_{n=1}^{\infty} \int_{0}^{\infty} f_{n}(x) d x=0
$$

Now, using the convergence of Geometric Series (because $e^{a x} \geq 1$ for all $a>0$ and all $x \geq 0$), we have that

$$
\sum_{n=1}^{\infty} f_{n}(x)=a \sum_{n=1}^{\infty}\left(\frac{1}{e^{a x}}\right)^{n}-b \sum_{n=1}^{\infty}\left(\frac{1}{e^{b x}}\right)^{n}=\frac{a e^{-a x}}{1-e^{-a x}}-\frac{b e^{-b x}}{1-e^{-b x}}
$$

Thus,

$$
\begin{aligned}
\int_{0}^{\infty} \sum_{n=1}^{\infty} f_{n}(x) d x & =\int_{0}^{\infty} \frac{a e^{-a x}}{1-e^{-a x}} d x-\int_{0}^{\infty} \frac{b e^{-b x}}{1-e^{-b x}} d x \\
& =\int_{0}^{1} \frac{d u}{u}-\int_{0}^{1} \frac{d w}{w} \quad \begin{array}{c}
u=1-e^{-a x} \\
\\
\end{array} \ln ^{x}(u)-\ln (w) \quad\left[0, \infty e^{-a x} \quad u:[0,1] \quad \text { similarly for } w\right. \\
& =\ln \left|1-e^{a x}\right|-\left.\ln \left|1-e^{-b x}\right|\right|_{0} ^{\infty} \\
& =\ln (1)-\lim _{x \rightarrow 0} \ln \left(\frac{1-e^{-a x}}{1-e^{-b x}}\right) \\
& =\lim _{x \rightarrow 0} \ln \left(\frac{1-e^{-b x}}{1-e^{-a x}}\right) \quad \text { absorbing the negative } \\
& =\ln \left(\lim _{x \rightarrow 0} \frac{1-e^{-b x}}{1-e^{-a x}}\right) \quad \ln \text { is continuous } \\
& =\ln \left(\lim _{x \rightarrow 0} \frac{b e^{-b x}}{a e^{-a x}}\right) \quad \text { L'Hopital's Rule } \\
& =\ln \left(\frac{b}{a}\right) .
\end{aligned}
$$

Note that it was necessary for $b>a>0$.
(b) $f_{n}(x)$ is certainly a continuous function for all x and all n, thus f_{n} is measurable. Furthermore, if (\mathbb{N}, ν) is the counting measure space, then $f_{n}(x)$ will certainly be measurable with respect to $m \times \nu$.
Since both $([0, \infty), m)$ and (\mathbb{N}, ν) are σ-finite measure spaces, and $\left|f_{n}(x)\right| \in L^{+}(m \times \nu)$, by Tonelli, the integral and summation of $\left|f_{n}(x)\right|$ can be swapped.
However, from (a), we saw that swapping the order for $f_{n}(x)$ gave different results. It must then be the case that Fubini does not apply to $f_{n}(x)$ and so $f_{n}(x) \notin L^{1}(m \times \nu)$. Thus,

$$
\int\left|f_{n}(x)\right| d(m \times \nu)=\int_{0}^{\infty} \sum_{n=1}^{\infty}\left|f_{n}(x)\right| d x=\infty
$$

Problem 4. Assume that f is integrable on $[0,1]$ with respect to the Lebesgue measure m, and let $F(x)=\int_{0}^{x} f(t) d t$. Assume that $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz, i.e., there exists a constant $C \geq 0$ such that

$$
\left|\phi\left(x_{1}\right)-\phi\left(x_{2}\right)\right| \leq C\left|x_{1}-x_{2}\right|, \quad x_{1}, x_{2} \in \mathbb{R}
$$

Prove that there exists a function g which is integrable on $[0,1]$ such that $\phi(F(x))=$ $\int_{0}^{x} g(t) d t$ for $x \in[0,1]$.

Solution. First, since $F:[0,1] \rightarrow \mathbb{R}$ and $F(x)-F(0)=F(x)=\int_{0}^{x} f(t) d t$ with $f \in L^{1}([0,1])$, by the Fundamental Theorem of Lebesgue Integrals, F is absolutely continuous.

Furthermore, we may replace f with F^{\prime} (as the two are equal a.e.).
Now, ϕ is certainly absolutely continuous. If $C=0$, then ϕ is contant and absolute continuity is immediate. If $C>0$, then for all $\varepsilon>0$, letting $\delta=\frac{\varepsilon}{C}$, for all finite disjoint collections of intervals $\left\{\left(a_{i}, b_{i}\right)\right\}_{1}^{n}$ satisfying that

$$
\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)<\delta
$$

we have that

$$
\sum_{i=1}^{n}\left|\phi\left(b_{i}\right)-\phi\left(a_{i}\right)\right| \leq \sum_{i=1}^{n} C\left|b_{i}-a_{i}\right|=C \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)<C \delta=C \frac{\varepsilon}{C}=\varepsilon
$$

Thus, ϕ is absolutely continuous. Finally, let $\varepsilon>0$ be given. Let δ_{F} and δ_{ϕ} be the associated constants for the definition of absolute continuity of F and ϕ respectively.

Then let

$$
\delta=\min \left\{\delta_{F}, \delta_{\phi}\right\}
$$

Then, for any finite collection of disjoint intervals $\left\{\left(a_{i}, b_{i}\right)\right\}_{1}^{n}$ satisfying

$$
\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)<\delta
$$

we have that

$$
\sum_{i=1}^{n}\left|\phi\left(F\left(b_{i}\right)\right)-\phi\left(F\left(a_{i}\right)\right)\right| \leq \sum_{i=1}^{n} C\left|F\left(b_{i}\right)-F\left(a_{i}\right)\right|=C \sum_{i=1}^{n}\left|F\left(b_{i}\right)-F\left(a_{i}\right)\right|<C \varepsilon .
$$

Thus, $\phi(F(x))$ is absolutely continuous and since $\phi(F(x)):[0,1] \rightarrow \mathbb{R}$, by the Fundamental Theorem of Lebesgue Integrals, there must exist a function $g \in L^{1}([0,1])$ such that

$$
\phi(F(x))-\phi(F(0))=\phi(F(x))-\phi(0)=\int_{0}^{x} g(t) d t
$$

With possibly shifting g by a constant we obtain our result.

