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Problem 1. Consider the sequence

fn(x) =
(

1 + x

n

)−n
cos

(
x

n

)
, n = 1, 2, ... .

Evaluate
lim
n

∫ ∞
0

fn(x)dx,

being careful to justify your answer.

Solution. We would like to use Dominated Convergence Theorem.

1. {fn} is measurable for all n.

2.

y = lim
n→∞

(
1 + x

n

)−n
=⇒ ln(y) = lim

n→∞
−n ln

(
1 + x

n

)

= lim
n→∞

ln
(
1 + x

n

)
−1
n

= lim
n→∞

1
1+ x

n

−x
n2

1
n2

L’Hopital’s Rule.

= lim
n→∞

−x
1 + x

n

= −x
=⇒ y = e−x

Thus,

lim
n→∞

fn(x) =
(

lim
n→∞

(
1 + x

n

)−n)(
lim
n→∞

cos
(
x

n

))
= e−x cos(0) = e−x

since both limits exist separately. Furthermore, this limit holds for all x.
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3. Now, for all n > 1, (
1 + x

n

)−n
≤ (1 + x)−n ≤ (1 + x)−2 ∈ L1.

Note that since
1

(1 + x)n =
( 1

1 + x

)n
and 1

1+x ≤ 1 for all x ≥ 0, we have that (1 + x)−n ≤ (1 + x)−n+1 for all n.

Thus, by the Dominated Convergence Theorem,

lim
n→∞

∫ ∞
0

fn(x)dx =
∫ ∞

0
lim
n→∞

fn(x)dx = −e−x
∣∣∣∣∣
∞

0
= 1.

�
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Problem 2. Suppose that f : [0,∞)→ R is Lebesgue integrable.

(a) Show that there exists a sequence xn →∞ such that f(xn)→ 0.

(b) Is it true that f(x) must converge to 0 as x → ∞? Give a proof or a counter
example.

(c) Suppose additionally that f is differentiable and f ′(x) → 0 as x → ∞. Is it true
that f(x) must converge to 0 as x→∞? Give a proof or counter example.

Solution.

(a) Let {xn} be such that for all n, xn > n and f(xn) < 1
n
.

If no such sequence exists, then for all sequences with xn > n, f(xn) ≥ 1
n
. However,

then ∫ ∞
n

f(x)dx ≥
∫ ∞
n

1
n

=∞

which contradicts that f ∈ L1. Thus, the sequence given exists.

(b) No. Let f(x) = χQ. Then f ∈ L1 since m(Q) = 0, however limx→∞ f(x) does not exist.

(c) Assume that f 6→ 0 as x→∞. Then there exists some {xn} tending to infinity with
f(xn) ≥ ε for all n. (WLOG we take f(xn) ≥ 0, however if f is everywhere negative,
then −f(xn) ≥ ε and the rest of the proof is similar).
Since |f ′(xn)| ≤ ε

2 for large enough n, and since differentiability implies continuity, we
may apply the Fundamental Theorem of Calculus. (Note that on any closed interval
[xn, xn + 1], f must be bounded) so for all xn ≤ x ≤ xn + 1

|f(x)− f(xn)| =
∣∣∣∣∫ xn+1

x
f ′(t)dt

∣∣∣∣ ≤ ∣∣∣∣∫ xn+1

xn

f ′(t)dt
∣∣∣∣ ≤ ∫ xn+1

xn

ε

2dt = ε

2 .

However,

|f(x)− f(xn)| ≤ ε

2
−ε2 ≤ f(x)− f(xn)

ε− ε

2 ≤ f(xn)− ε

2 ≤ f(x)

However, then∫
f(t)dt ≥

∞∑
n=N

∫ xn+1

xn

f(t)dt ≥
∞∑
n=N

ε

2 =∞

Again, this contradicts f ∈ L1 and so no such sequence can exist. Namely, f → 0 as
x→∞.

�
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Problem 3. Define fn(x) = ae−nax − be−nbx where 0 < a < b.

(a) Show that
∞∑
n=1

∫ ∞
0

fn(x)dx = 0

and ∫ ∞
0

∞∑
n=1

fn(x)dx = log(b/a).

(b) What can you deduce about the value of
∫ ∞

0

∞∑
n=1
|fn(x)|dx?

Solution.

(a) ∫ ∞
0

fn(x)dx =
∫ ∞

0
ae−nax − be−nbxdx

= ae−nax

−na
− be−nbx

−nb

∣∣∣∣∣
∞

0

= 0−
(−1
n

+ 1
n

)
= 0.

Thus,
∞∑
n=1

∫ ∞
0

fn(x)dx = 0.

Now, using the convergence of Geometric Series (because eax ≥ 1 for all a > 0 and all
x ≥ 0), we have that

∞∑
n=1

fn(x) = a
∞∑
n=1

( 1
eax

)n
− b

∞∑
n=1

( 1
ebx

)n
= ae−ax

1− e−ax −
be−bx

1− e−bx .
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Thus,
∫ ∞

0

∞∑
n=1

fn(x)dx =
∫ ∞

0

ae−ax

1− e−axdx−
∫ ∞

0

be−bx

1− e−bxdx

=
∫ 1

0

du

u
−
∫ 1

0

dw

w

u = 1− e−ax x : [0,∞]
du = ae−ax u : [0, 1] similarly for w

= ln(u)− ln(w)

= ln |1− eax| − ln |1− e−bx|
∣∣∣∣∣
∞

0

= ln(1)− lim
x→0

ln
(

1− e−ax
1− e−bx

)

= lim
x→0

ln
(

1− e−bx
1− e−ax

)
absorbing the negative

= ln
(

lim
x→0

1− e−bx
1− e−ax

)
ln is continuous

= ln
(

lim
x→0

be−bx

ae−ax

)
L’Hopital’s Rule

= ln
(
b

a

)
.

Note that it was necessary for b > a > 0.

(b) fn(x) is certainly a continuous function for all x and all n, thus fn is measurable.
Furthermore, if (N, ν) is the counting measure space, then fn(x) will certainly be
measurable with respect to m× ν.
Since both ([0,∞),m) and (N, ν) are σ-finite measure spaces, and |fn(x)| ∈ L+(m× ν),
by Tonelli, the integral and summation of |fn(x)| can be swapped.
However, from (a), we saw that swapping the order for fn(x) gave different results. It
must then be the case that Fubini does not apply to fn(x) and so fn(x) /∈ L1(m× ν).
Thus, ∫

|fn(x)|d(m× ν) =
∫ ∞

0

∞∑
n=1
|fn(x)|dx =∞

�
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Problem 4. Assume that f is integrable on [0, 1] with respect to the Lebesgue measure
m, and let F (x) =

∫ x
0 f(t)dt. Assume that φ : R → R is Lipschitz, i.e., there exists a

constant C ≥ 0 such that

|φ(x1)− φ(x2)| ≤ C|x1 − x2|, x1, x2 ∈ R.

Prove that there exists a function g which is integrable on [0, 1] such that φ(F (x)) =∫ x
0 g(t)dt for x ∈ [0, 1].

Solution. First, since F : [0, 1]→ R and F (x)−F (0) = F (x) =
∫ x

0 f(t)dt with f ∈ L1([0, 1]),
by the Fundamental Theorem of Lebesgue Integrals, F is absolutely continuous.

Furthermore, we may replace f with F ′ (as the two are equal a.e.).
Now, φ is certainly absolutely continuous. If C = 0, then φ is contant and absolute

continuity is immediate. If C > 0, then for all ε > 0, letting δ = ε
C
, for all finite disjoint

collections of intervals {(ai, bi)}n1 satisfying that
n∑
i=1

(bi − ai) < δ

we have that
n∑
i=1
|φ(bi)− φ(ai)| ≤

n∑
i=1

C|bi − ai| = C
n∑
i=1

(bi − ai) < Cδ = C
ε

C
= ε.

Thus, φ is absolutely continuous. Finally, let ε > 0 be given. Let δF and δφ be the
associated constants for the definition of absolute continuity of F and φ respectively.

Then let
δ = min {δF , δφ} .

Then, for any finite collection of disjoint intervals {(ai, bi)}n1 satisfying
n∑
i=1

(bi − ai) < δ,

we have that
n∑
i=1
|φ(F (bi))− φ(F (ai))| ≤

n∑
i=1

C|F (bi)− F (ai)| = C
n∑
i=1
|F (bi)− F (ai)| < Cε.

Thus, φ(F (x)) is absolutely continuous and since φ(F (x)) : [0, 1] → R, by the Fun-
damental Theorem of Lebesgue Integrals, there must exist a function g ∈ L1([0, 1]) such
that

φ(F (x))− φ(F (0)) = φ(F (x))− φ(0) =
∫ x

0
g(t)dt.

With possibly shifting g by a constant we obtain our result. �
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