Kayla Orlinsky
 Real Analysis Exam Fall 2015

Problem 1. Prove that for almost all $x \in[0,1]$, there are at most finitely many rational numbers with reduced form p / q such that $q \geq 2$ and $|x-p / q|<1 /(q \log q)^{2}$. (Hint: Consider intervals of length $2 /(q \log q)^{2}$ centered at rational points $\left.p / q\right)$.

Solution. Let $Q(x)=\left\{p / q \in \mathbb{Q}\left|(p, q)=1, q \geq 2,|x-p / q|<1 /(q \log q)^{2}\right\}\right.$.
Then $Q(x)$ counts the number of such rationals stated in the problem. Note that if $\int_{\mathbb{R}} Q(x) d x<\infty$, then $Q(x)$ must be finite a.e.

Now, since

$$
\begin{align*}
\int_{\mathbb{R}} Q(x) d x & =\sum_{q \geq 2 \in \mathbb{N}} \int_{B\left(1 /(q \log q)^{2}, p / q\right)} Q(x) d x \\
& =\sum_{q=2}^{\infty}(q-1) m\left(B\left(1 /(q \log q)^{2}, p / q\right)\right) \tag{1}\\
& =\sum_{q=2}^{\infty} \frac{2(q-1)}{q^{2} \log ^{2} q} \\
& =2 \sum_{q=2}^{\infty} \frac{1}{q \log ^{2} q}-2 \sum_{q=2}^{\infty} \frac{1}{q^{2} \log ^{2} q}
\end{align*}
$$

(1) Because the Lebesgue measure is translation invariant, we may take $p<q$. Since the number of rationals in an interval is also invariant under translation, if $p>q$, then p is an integer shift of some $p^{\prime}<q$.

The $(q-1)$ comes from the number of integers $1<p<q$.
Now, we check the convergence of both sums.

$$
\begin{aligned}
& \sum_{q=2}^{\infty} \frac{1}{q^{2} \log ^{2} q} \text { converges by limit comparison test. Specifically, } \\
& \lim _{q \rightarrow \infty} \frac{1}{q^{2} \log ^{2} q} / \frac{1}{q^{2}}=\lim _{q \rightarrow \infty} \frac{1}{\log ^{2} q}=0 \Longrightarrow \text { since } \sum_{q=2}^{\infty} \frac{1}{q^{2}}<\infty \text { then } \sum_{q=2}^{\infty} \frac{1}{q^{2} \log ^{2} q}<\infty . \\
& \sum_{q=2}^{\infty} \frac{1}{q \log ^{2} q} \text { converges by integral test. }
\end{aligned}
$$

$$
\begin{gathered}
\int_{2}^{\infty} \frac{1}{q \log ^{2} q} d q=\int_{\log 2}^{\infty} \frac{1}{u^{2}} d u<\infty \quad \text { since } \log 2>0 \\
u=\log q \\
d u=\frac{1}{q} d q \quad u:[2, \infty] \\
d \log 2, \infty]
\end{gathered}
$$

Thus, $\int Q(x) d x<\infty$ and so $Q(x)$ must be finite a.e.

Problem 2. Suppose that the real-valued function $f(x)$ is nondecreasing on the interval $[0,1]$. Prove that there exists a sequence of continuous functions $f_{n}(x)$ such that $f_{n} \rightarrow f$ pointwise on this interval.

Solution. First, since f is increasing, it has at most countably many discontinuities and so is measurable. Specifically, $f^{-1}((-\infty, a))=\{x \mid f(x)<a\}=\left[0, \inf f^{-1}(a)\right) \backslash N$ for N some null set.

Thus, because f is measurable, there exists a sequence of simple functions $\phi_{1} \leq \phi_{2} \leq$ $\cdots \leq f$ with $\phi_{n} \rightarrow f$ pointwise.

Thus, it suffices to show that there exists a sequence of continuous functions converging to ϕ a simple function. Furthermore, since the ϕ_{n} are an increasing sequence converging to an increasing function, we may take our ϕ to also be increasing.

Then, let $\phi=\sum_{i=1}^{m} a_{i} \chi_{E_{i}}$ be the standard representation of ϕ. Since ϕ is increasing, and by definition can have only a finite set as its range, ϕ can only have a finite number of discontinuities. Furthermore, $a_{i} \leq a_{i+1}$ for all $1 \leq i \leq m-1$.

Now, to construct a continuous approximation to ϕ, we simply use a trapezoid approximation. Let $x_{1}, x_{2}, \ldots, x_{m-1}$ be the points where the jump discontinuities of ϕ occur. Now,

$$
\text { If } \phi\left(x_{i}\right)=a_{i}
$$

$$
\text { If } \phi\left(x_{i}\right)=a_{i+1}
$$

$$
\text { Let } y_{i}=n\left(a_{i+1}-a_{i}\right)\left(x-\left(x_{i}+\frac{1}{n}\right)\right)
$$

$$
y_{i}=n\left(a_{i+1}-a_{i}\right)\left(x-\left(x_{i}-\frac{1}{n}\right)\right)
$$

$$
\chi_{i}(x)=\chi_{\left[x_{i}, x_{i}+\frac{1}{n}\right]}(x)
$$

$$
\chi_{i}(x)=\chi_{\left[x_{i}-\frac{1}{n}, i\right)}(x)
$$

Then, the y_{i} are the line segments connecting the jumps of ϕ and always connected to $\phi\left(x_{i}\right)$.

Let

$$
g_{n}(x)=\phi(x)+\sum_{i=1}^{m} y_{i} \chi_{i}(x) .
$$

Then, we note that $g_{n}(x)=\phi(x)$ for all x except within $\frac{1}{n}$ of x_{i}. (Note that $g_{n}\left(x_{i}\right)=\phi\left(x_{i}\right)$ for all x_{i}.

Based on our construction, it is immediate that the g_{n} are continuous.
Thus, if $\phi\left(x_{i}\right)=a_{i}$ and we can show that $g_{n}\left(x_{i}+\delta\right) \rightarrow \phi\left(x_{i}+\delta\right)$ for each x_{i}, and similarly for $\phi\left(x_{i}\right)=a_{i+1}$ and $g_{n}\left(x_{i}-\delta\right) \rightarrow \phi\left(x_{i}-\delta\right)$ we will be done.

Let $\varepsilon>0$. Then, for all $\delta>0$, there exists an $N \in \mathbb{N}$ such that $\frac{1}{N}<\delta$. Then, for all $n \geq N$,

$$
\left|g_{n}\left(x_{i}+\delta\right)-\phi\left(x_{i}+\delta\right)\right|=\left|a_{i+1}-a_{i+1}\right|=0<\varepsilon
$$

Similarly for $x_{i}-\delta$.
Finally, since there are only finitely many discontinuites of ϕ, for whatever the minimum distance between any two x_{i} is, there exists an $N \in \mathbb{N}$ such that $\frac{1}{n}$ is less than that distance for all $n>N$. Thus, aside from possibly discarding the first finite $N, g_{n} \rightarrow \phi$ pointwise.

Problem 3. Let (X, μ) be a finite measure space. Assume that a sequence of integrable functions f_{n} satisfies $f_{n} \rightarrow f$ in measure, where f is measurable. Assume that f_{n} satisfies the following property: For every $\varepsilon>0$, there exists $\delta>0$ such that

$$
\mu(E) \leq \delta \Longrightarrow \int_{E}\left|f_{n}\right| d \mu \leq \varepsilon
$$

Prove that f is integrable and that

$$
\lim _{n} \int_{X}\left|f_{n}-f\right| d \mu=0
$$

Solution. Since $f_{n} \rightarrow f$ in measure, there exists a subsequence $\left\{f_{n_{k}}\right\}$ such that $f_{n_{k}} \rightarrow f$ a.e.

Since $f_{n} \in L^{1}(\mu)$ or all $n, E=\left\{x \mid f_{n}(x)=\infty\right\}$ is μ-null. Thus, each $f_{n_{k}}$, for any $\varepsilon>0$ and associated δ from the problem, there exists some finite $M>0$ such that $\mu\left(\left\{x \mid f_{n}(x)>M\right\}<\delta\right.$.

Thus,

$$
\begin{align*}
\int|f| d \mu & =\int_{E}|f| d \mu+\int_{E^{c}}|f| d \mu \\
& =\int_{E} \liminf _{n_{k}}\left|f_{n_{k}} d \mu+\int_{E^{c}} \liminf _{n_{k}}\right| f_{n_{k}} d \mu \\
& \leq \liminf _{n_{k}} \int_{E}\left|f_{n_{k}} d \mu+\liminf _{n_{k}} \int_{E^{c}}\right| f_{n_{k}} d \mu \quad \text { Fatou's Lemma } \\
& \leq \liminf _{n_{k}} \varepsilon+\liminf _{n_{k}} M \mu(X)<\infty \tag{1}
\end{align*}
$$

(1) Since δ is from the problem, and $\mu(E)<\delta, \int_{E} \mid f_{n_{k}} d \mu \leq \varepsilon$ and $\mu(X)<\infty$.

Therefore, $f \in L^{1}$.

Claim 1. The above property for f_{n} holds for f.

Proof. Since $f \in L^{1}$, for the subsequence $\left\{f_{n_{k}}\right\}$ converging to f a.e., by Fatou's we have that, for all $\varepsilon>0$ and δ stated in the problem, if $\mu(E)<\delta$ then

$$
\int_{E}|f| d \mu=\int_{E} \liminf _{n_{k}}\left|f_{n_{k}}\right| d \mu \leq \liminf _{n_{k}} \int_{E}\left|f_{n_{k}}\right| d \mu \leq \liminf _{n_{k}} \varepsilon=\varepsilon
$$

Now, let $\varepsilon>0$ be given and δ be as from the problem. Let $F=\left\{x| | f_{n}(x)-f(x) \mid \geq \varepsilon\right\}$. Then since $f_{n} \rightarrow f$ in measure, there exists some N such that $\mu(F)<\delta$ for all $n \geq N$.

Then

$$
\int\left|f_{n}-f\right| d \mu=\int_{F}\left|f_{n}-f\right| d \mu+\int_{F^{c}}\left|f_{n}-f\right| d \mu \leq 2 \varepsilon+\varepsilon \mu(X)
$$

Since ε is arbitrary, we have that $\int\left|f_{n}-f\right| d \mu \rightarrow 0$ as $n \rightarrow \infty$.

Problem 4 (Folland, 2.3.25, p.59). Consider the following statements about a functioin $f:[0,1] \rightarrow \mathbb{R}$.
(i) f is continuous almost everywhere
(ii) f is equal to a continuous function g almost everywhere.

Does (i) imply (ii)? Prove or give a counterexample. Does (ii) imply (i)? Prove or give a counter example.

Solution. $\quad($ i $) \neq(i i)$ Let

$$
f(x)= \begin{cases}0 & \text { if } 0 \leq x \leq \frac{1}{2} \\ 1 & \text { if } \frac{1}{2}<x \leq 1\end{cases}
$$

then $f(x)$ is continuous a.e. since it is only discontinuous at $\frac{1}{2}$.
Now, assume there is some continuous function $g(x)=f(x)$ a.e.
Let $\frac{1}{2}>\varepsilon>0$ be given. Then, by continuity of g, there exists a δ such that for all $y \in\left(\frac{1}{2}-\delta, \frac{1}{2}+\delta\right),\left|g\left(\frac{1}{2}\right)-g(y)\right|<\varepsilon$.

However, because $f=g$ a.e., there exists a $x_{0} \in\left(\frac{1}{2}-\delta, \frac{1}{2}\right)$ such that $f\left(x_{0}\right)=g\left(x_{0}\right)=0$ and there exists $y_{0} \in\left(\frac{1}{2}, \frac{1}{2}+\delta\right)$ such that $f\left(y_{0}\right)=g\left(y_{0}\right)=1$.
however, then $\left|x_{0}-y_{0}\right|<\delta$ and $\left|g\left(y_{0}\right)-g\left(x_{0}\right)\right|=1>\varepsilon$ which is a contradiction of the continuity of g.

Therefore, f is not equal to a continuous function a.e.
$($ ii $) \Longrightarrow(i)$ Let $f(x)=\chi_{\mathbb{Q}}$. Let $g(x)=0$. Then $f(x)=g(x)$ a.e. (since $f(x) \neq 0$ only when $x \in \mathbb{Q}$ which is a Lebesgue-null set).

However, $f(x)$ is discontinuous at every point and so $f(x)$ is not continuous a.e.

