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Problem 1. Prove that for almost all x ∈ [0, 1], there are at most finitely many rational
numbers with reduced form p/q such that q ≥ 2 and |x − p/q| < 1/(q log q)2. (Hint:
Consider intervals of length 2/(q log q)2 centered at rational points p/q).

Solution. Let Q(x) = {p/q ∈ Q | (p, q) = 1, q ≥ 2, |x− p/q| < 1/(q log q)2}.
Then Q(x) counts the number of such rationals stated in the problem. Note that if∫

RQ(x)dx <∞, then Q(x) must be finite a.e.
Now, since ∫

R
Q(x)dx =

∑
q≥2∈N

∫
B(1/(q log q)2,p/q)

Q(x)dx

=
∞∑

q=2
(q − 1)m(B(1/(q log q)2, p/q)) (1)

=
∞∑

q=2

2(q − 1)
q2 log2 q

= 2
∞∑

q=2

1
q log2 q

− 2
∞∑

q=2

1
q2 log2 q

(1) Because the Lebesgue measure is translation invariant, we may take p < q. Since
the number of rationals in an interval is also invariant under translation, if p > q, then p is
an integer shift of some p′ < q.

The (q − 1) comes from the number of integers 1 < p < q.
Now, we check the convergence of both sums.
∞∑

q=2

1
q2 log2 q

converges by limit comparison test. Specifically,

lim
q→∞

1
q2 log2 q

/
1
q2 = lim

q→∞

1
log2 q

= 0 =⇒ since
∞∑

q=2

1
q2 <∞ then

∞∑
q=2

1
q2 log2 q

<∞.

∞∑
q=2

1
q log2 q

converges by integral test.
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∫ ∞
2

1
q log2 q

dq =
∫ ∞

log 2

1
u2du <∞ since log 2 > 0

u = log q q : [2,∞]
du = 1

q
dq u : [log 2,∞]

Thus,
∫
Q(x)dx <∞ and so Q(x) must be finite a.e. �
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Problem 2. Suppose that the real-valued function f(x) is nondecreasing on the interval
[0, 1]. Prove that there exists a sequence of continuous functions fn(x) such that fn → f
pointwise on this interval.

Solution. First, since f is increasing, it has at most countably many discontinuities and so
is measurable. Specifically, f−1((−∞, a)) = {x | f(x) < a} = [0, inf f−1(a))\N for N some
null set.

Thus, because f is measurable, there exists a sequence of simple functions φ1 ≤ φ2 ≤
· · · ≤ f with φn → f pointwise.

Thus, it suffices to show that there exists a sequence of continuous functions converging
to φ a simple function. Furthermore, since the φn are an increasing sequence converging to
an increasing function, we may take our φ to also be increasing.

Then, let φ = ∑m
i=1 aiχEi

be the standard representation of φ. Since φ is increasing,
and by definition can have only a finite set as its range, φ can only have a finite number of
discontinuities. Furthermore, ai ≤ ai+1 for all 1 ≤ i ≤ m− 1.

Now, to construct a continuous approximation to φ, we simply use a trapezoid ap-
proximation. Let x1, x2, ..., xm−1 be the points where the jump discontinuities of φ occur.
Now,

If φ(xi) = ai If φ(xi) = ai+1
Let yi = n(ai+1 − ai)(x− (xi + 1

n
)) yi = n(ai+1 − ai)(x− (xi − 1

n
))

χi(x) = χ[xi,xi+ 1
n

](x) χi(x) = χ[xi− 1
n

,i)(x)

Then, the yi are the line segments connecting the jumps of φ and always connected to
φ(xi).

Let
gn(x) = φ(x) +

m∑
i=1

yiχi(x).

Then, we note that gn(x) = φ(x) for all x except within 1
n
of xi. (Note that gn(xi) = φ(xi)

for all xi.
Based on our construction, it is immediate that the gn are continuous.
Thus, if φ(xi) = ai and we can show that gn(xi + δ)→ φ(xi + δ) for each xi, and similarly

for φ(xi) = ai+1 and gn(xi − δ)→ φ(xi − δ) we will be done.
Let ε > 0. Then, for all δ > 0, there exists an N ∈ N such that 1

N
< δ. Then, for all

n ≥ N ,
|gn(xi + δ)− φ(xi + δ)| = |ai+1 − ai+1| = 0 < ε.
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Similarly for xi − δ.
Finally, since there are only finitely many discontinuites of φ, for whatever the minimum

distance between any two xi is, there exists an N ∈ N such that 1
n
is less than that distance

for all n > N . Thus, aside from possibly discarding the first finite N , gn → φ pointwise. �
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Problem 3. Let (X,µ) be a finite measure space. Assume that a sequence of integrable
functions fn satisfies fn → f in measure, where f is measurable. Assume that fn satisfies
the following property: For every ε > 0, there exists δ > 0 such that

µ(E) ≤ δ =⇒
∫

E
|fn|dµ ≤ ε.

Prove that f is integrable and that

lim
n

∫
X
|fn − f |dµ = 0.

Solution. Since fn → f in measure, there exists a subsequence {fnk
} such that fnk

→ f
a.e.

Since fn ∈ L1(µ) or all n, E = {x | fn(x) = ∞} is µ-null. Thus, each fnk
, for any

ε > 0 and associated δ from the problem, there exists some finite M > 0 such that
µ({x | fn(x) > M} < δ.

Thus, ∫
|f |dµ =

∫
E
|f |dµ+

∫
Ec
|f |dµ

=
∫

E
lim inf

nk
|fnk

dµ+
∫

Ec
lim inf

nk
|fnk

dµ

≤ lim inf
nk

∫
E
|fnk

dµ+ lim inf
nk

∫
Ec
|fnk

dµ Fatou’s Lemma

≤ lim inf
nk

ε+ lim inf
nk

Mµ(X) <∞ (1)

(1) Since δ is from the problem, and µ(E) < δ,
∫

E |fnk
dµ ≤ ε and µ(X) <∞.

Therefore, f ∈ L1.

Claim 1. The above property for fn holds for f .

Proof. Since f ∈ L1, for the subsequence {fnk
} converging to f a.e., by Fatou’s

we have that, for all ε > 0 and δ stated in the problem, if µ(E) < δ then∫
E
|f |dµ =

∫
E

lim inf
nk
|fnk
|dµ ≤ lim inf

nk

∫
E
|fnk
|dµ ≤ lim inf

nk
ε = ε.

�

Now, let ε > 0 be given and δ be as from the problem. Let F = {x | |fn(x)− f(x)| ≥ ε}.
Then since fn → f in measure, there exists some N such that µ(F ) < δ for all n ≥ N .

Then ∫
|fn − f |dµ =

∫
F
|fn − f |dµ+

∫
F c
|fn − f |dµ ≤ 2ε+ εµ(X).

5



Kayla Orlinsky
Fall 2015

Since ε is arbitrary, we have that
∫
|fn − f |dµ→ 0 as n→∞. �
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Problem 4 (Folland, 2.3.25, p.59). Consider the following statements about a functioin
f : [0, 1]→ R.

(i) f is continuous almost everywhere

(ii) f is equal to a continuous function g almost everywhere.

Does (i) imply (ii)? Prove or give a counterexample. Does (ii) imply (i)? Prove or
give a counter example.

Solution. (i) 6 =⇒ (ii) Let

f(x) =

0 if 0 ≤ x ≤ 1
2

1 if 1
2 < x ≤ 1

then f(x) is continuous a.e. since it is only discontinuous at 1
2 .

Now, assume there is some continuous function g(x) = f(x) a.e.
Let 1

2 > ε > 0 be given. Then, by continuity of g, there exists a δ such that for all
y ∈ (1

2 − δ,
1
2 + δ), |g(1

2)− g(y)| < ε.
However, because f = g a.e., there exists a x0 ∈ (1

2 − δ,
1
2) such that f(x0) = g(x0) = 0

and there exists y0 ∈ (1
2 ,

1
2 + δ) such that f(y0) = g(y0) = 1.

however, then |x0 − y0| < δ and |g(y0)− g(x0)| = 1 > ε which is a contradiction of the
continuity of g.

Therefore, f is not equal to a continuous function a.e.
(ii) 6 =⇒ (i) Let f(x) = χQ. Let g(x) = 0. Then f(x) = g(x) a.e. (since f(x) 6= 0 only

when x ∈ Q which is a Lebesgue-null set).
However, f(x) is discontinuous at every point and so f(x) is not continuous a.e. �
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