Kayla Orlinsky Real Analysis Exam Spring 2014

Problem 1. Suppose that (X, \mathcal{B}, μ) is a measure space with $\mu(X) < \infty$, and that $\{f_n\}_{n\geq 1}$ and f are measurable functions on X such that $f_n \to f$ almost everywhere.

- (a) Suppose that $\int f^2 d\mu < \infty$. Show that f is integrable.
- (b) Suppose that there exists $C < \infty$ such that $\int f_n^2 d\mu \leq C$ for all $n \geq 1$. Show that $f_n \to f$ in L^1 .
- (c) Give an example where $\int |f_n| d\mu \leq 1$ for all $n \geq 1$ but $f_n \not\to f$ in L^1 .

Solution.

(a) Suppose that $\int f^2 d\mu < \infty$. Then let

$$E = \{ x \mid |f(x)| \ge 1 \}.$$

Then we note that if $|f(x)| \ge 1$, $|f(x)| \le f^2(x)$.

Thus,

$$\int |f(x)|d\mu = \int_{E} |f(x)|d\mu + \int_{E^{c}} |f(x)|d\mu \le \int_{E} f^{2}(x)d\mu + \int_{E^{c}} 1d\mu < \infty$$

since $f^2 \in L^1$ and since $\mu(E^c) \le \mu(X) < \infty$.

(b) Suppose that there exists $C < \infty$ such that $\int f_n^2 d\mu \leq C$ for all $n \geq 1$. From (a), $f_n \in L^1$ for all n.

Now, we note that if $f_n \to f$ a.e., then $f_n^2 \to f^2$ a.e.,

This is immediate since

$$|f_n^2(x) - f^2(x)| = |f_n(x) - f(x)||f_n(x) + f(x)| \to 0 \cdot 2|f(x)|.$$

Therefore,

$$\int |f^2| d\mu = \int \liminf |f_n^2| d\mu \le \liminf \int |f_n^2| d\mu \le \liminf C = C.$$

Thus, $f^2 \in L^1$ and so by (a), $f \in L^1$.

We now can apply DCT to $f_n(x) - f(x)$.

- $f_n(x) f(x)$ is measurable by assumption
- $f_n(x) \to f(x)$ a.e. by assumption so $f_n f \to 0$ a.e.
- $|f_n(x) f(x)| \le 2|f(x)|$ a.e. which is in L^1

Finally, by DCT,

$$\lim_{n \to \infty} \int |f_n - f| d\mu = \int \lim_{n \to \infty} |f_n - f| d\mu = \int 0 d\mu = 0$$

and so $f_n \to f$ in L^1 .

(c) Let $f_n(x) = n\chi_{[0,\frac{1}{n}]}$ with the Lebesgue measure. Then

$$\int |f_n(x)| dm = nm\left(\left[0, \frac{1}{n}\right]\right) = 1 \quad \text{for all } n.$$

However, $\lim_{n\to\infty} f_n(x) = 0$ a.e. and from the computation above, $\int f_n \to 1 \neq 0$. Thus, $f_n \not\to f$ in L^1 .

y

Problem 2. For what non-negative integer n and positive real c does the integral

$$\int_{1}^{\infty} \ln\left(1 + \frac{(\sin x)^n}{x^c}\right) dx$$

- (a) exist as a (finite) Lebesgue integral?
- (b) converge as an improper Riemann integral?

Solution.

(a) First,

$$\ln\left(1-\frac{1}{x^c}\right) \le \ln\left(1+\frac{(\sin x)^n}{x^c}\right) \le \ln\left(1+\frac{1}{x^c}\right)$$

for all n since \ln is an increasing function and $|\sin x| \le 1$.

Now, we consider two cases.

$$\frac{1}{x \ge 1} \text{ then } x \le x^c \text{ on } [1,\infty) \text{ and so } \frac{1}{x} \ge \frac{1}{x^c}. \text{ Therefore, } \ln\left(1+\frac{1}{x^c}\right) \le \ln\left(1+\frac{1}{x}\right).$$

$$\int_1^\infty \ln\left(1+\frac{(\sin x)^n}{x^c}\right) dx \le \int_1^\infty \ln\left(\frac{x+1}{x}\right) dx$$

$$= \int_1^\infty \ln(x+1) - \ln x dx$$

$$= x \ln(x+1) - x - [x \ln x - x]\Big|_1^\infty$$

$$= x \ln\left(\frac{x+1}{x}\right)\Big|_1^\infty$$

$$= 1 - \ln(2) < \infty$$

Note that

$$\lim_{x \to \infty} x \ln\left(1 + \frac{1}{x}\right) = \lim_{n \to \infty} \frac{\ln\left(1 + \frac{1}{x}\right)}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\frac{1}{1 + \frac{1}{x}} - \frac{1}{x^2}}{\frac{-1}{x^2}} = 1$$

by L'Hopital's Rule.

Thus, this integral exists for all n and for all $c \ge 1$. $\boxed{0 < c < 1}$ Now, $x^c \le x$ for all $x \ge 1$ and so

$$\int_{1}^{\infty} \ln\left(1 + \frac{(\sin x)^n}{x^c}\right) dx \ge \int_{1}^{\infty} \ln\left(\frac{x^c - 1}{x^c}\right) dx$$
$$= \int_{1}^{\infty} \ln(x^c - 1) - c \ln x dx$$

Now,

$$\int_{1}^{\infty} \ln(x^{c} - 1) dx = \int_{1}^{\infty} \frac{cx^{c-1}}{cx^{c-1}} \ln(x^{c} - 1) dx$$

$$= \int_{1}^{\infty} \frac{1}{c} u^{1/c-1} \ln(u - 1) du \qquad u = x^{c} \qquad u^{1/c} = x$$

$$du = cx^{c-1} dx \qquad u^{1-1/c} = x^{c-1}$$

$$\geq \int_{1}^{\infty} \frac{1}{c} \ln(u - 1) du \qquad \text{since } x^{c} \le x \implies 1 \le x^{1-c} = u^{1/c-1}$$

$$= \frac{1}{c} (u \ln(u - 1) - u) \Big|_{1}^{\infty}$$

$$= \frac{1}{c} (x^{c} \ln(x^{c} - 1) - x^{c}) \Big|_{1}^{\infty}$$

Now, since 1 - c > 1, there exists x sufficiently large such that

$$\frac{1}{x^{1-c}} \leq c^2 < c \implies \frac{x^c}{c} \leq cx$$

Thus, even after subtracting the $\int_1^\infty c \ln x dx$ we still get

$$\frac{1}{c}(x^c \ln(x^c - 1) - x^c) - [cx \ln x - cx]\Big|_1^\infty = \text{ positive } \ln \text{ term } + (cx - \frac{x^c}{c}) \to \infty.$$

Thus, the integral diverges for all 0 < c < 1 and all n.

(b) For all $c \ge 1$, we showed that the Lebesgue integral existed by bounding a Riemann integrable function. Thus, the two integrals coinside.

For c < 1, the Riemann integral will not exist by the same computation as for the Lebesgue integral.

H

y

Problem 3. Suppose f is Lebesgue integrable on \mathbb{R} . Show that

$$\lim_{t \to 0} \int_{-\infty}^{\infty} |f(x+t) - f(x)| dx = 0.$$

Solution. For all $\varepsilon > 0$, there exists a continuous function g which vanishes outside a bounded interval such that $\int |f - g| dx < \varepsilon$.

Thus,

$$\begin{split} \int |f(x+t) - f(x)| dx &= \int |f(x+t) - g(x+t) + g(x) - f(x) + g(x+t) - g(x)| dx \\ &\leq \int |f(x+t) - g(x+t)| dx + \int |g(x) - f(x)| dx + \int |g(x+t) - g(x)| dx \\ &< 2\varepsilon + \int |g(x+t) - g(x)| dx. \end{split}$$

Now, since g is continuous and vanishes outside a bounded interval, $g \in L^1$. Thus,

- 1. $\{g(x+t)\} \in L^1$
- 2. $g(x+t) \rightarrow g(x)$ for all x by continuity.
- 3. Since g(x) is continuous and non-zero only on some interval [a, b] (which we may take to be closed because we can always extend either end by ε), g(x) is bounded and so $|g(x)| \leq M\chi_{[a,b]}$ for some $M < \infty$.

Thus, $g(x+t) \leq M\chi[a+t,b+t] \in L^1$.

Therefore, by the Dominated Convergence Theorem, and the calculation above,

$$\lim_{t\to 0} \int |f(x+t) - f(x)| dx < 2\varepsilon + \lim_{t\to 0} \int |g(x+t) - g(x)| dx = 2\varepsilon + \int \lim_{t\to 0} |g(x+t) - g(x)| dx = 2\varepsilon.$$

Since ε was arbitrary, it must be that $\lim_{t\to 0} \int |f(x+t) - f(x)| dx = 0.$

Problem 4. Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces such that $\mu(X) > 0$ and $\nu(Y) > 0$. Let $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$ be measurable functions (with respect to \mathcal{A} and \mathcal{B} respectively) such that

$$f(x) = g(x)$$
 $\mu \times \nu$ -almost everywhere on $X \times Y$.

Show that there exists a constant λ such that $f(x) = \lambda$ for μ -a.e. x and $g(y) = \lambda$ for ν -a.e.

Solution. Let h(x, y) = f(x) - g(y). Then $h = 0 \ \mu \times \nu$ -a.e. and so $h \in L^1(\mu \times \nu)$. It is clear that h is measurable since $h(x, y) = f \circ \pi_x - g \circ \pi_y$ with $\pi_x(x, y) = x$ and $\pi_y(x, y) = y$ which is a composition of measurable functions in $\mu \times \nu$.

Now, let X' and Y' be any σ -finite subsets of X and Y respectively.

On these subsets, we may apply Tonelli's Theorem and so

$$0 = \int |h| d(\mu \times \nu)$$

= $\int \int |f - g| d\mu d\nu$
 $\implies \int |f - g| d\mu = 0 \ \nu$ -a.e.
 $|f(x) - g(y)| = 0 \ \mu$ -a.e.

However, then $f(x) = g(y) \mu$ -a.e. and since g(y) is a constant with respect to μ , this implies that $f(x) = \lambda = g(y_0)$ some fixed $y_0 \in Y' \mu$ -a.e. on X'.

Similarly, applying Tonelli again,

$$\begin{split} 0 &= \int |h| d(\mu \times \nu) \\ &= \int \int |\lambda - g| d\nu d\mu \\ &\implies \int |\lambda - g| d\nu = 0 \ \mu\text{-a.e.} \\ |\lambda - g(y)| &= 0 \ \nu\text{-a.e.} \end{split}$$

so $g(y) = \lambda \nu$ -a.e. on Y'.

Now, since $h \in L^1$, $\{(x, y) | h(x, y) \neq 0\}$ is σ -finite and is null with respect to $\mu \times \nu$. Thus, if

$$E = \{x \mid f(x) = \lambda\} \qquad F = \{y \mid g(y) = \lambda\}$$

then

$$(\mu \times \nu)(E^c \times F) = \mu(E^c)\nu(F) = 0 \quad \text{and} \quad (\mu \times \nu)(E \times F^c) = \mu(E)\nu(F^c) = 0$$

since if $f(x) = \lambda \neq g(y) \implies h(x, y) \neq 0$.

y

However, $E^c \times F$ is a subset of a σ -finite set and so it is σ -finite and since we have already showed that $f(x) = \lambda \mu$ -a.e. on all σ -finite sets, E^c must be μ -null. Then, since $\mu(X) > 0, \ \mu(E) > 0$ and so $\nu(F^c) = 0$.

Finally, this shows that $f(x) = \lambda = g(y) \mu$ -a.e. and ν -a.e.