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Problem 1. Suppose that (X, B, u) is a measure space with u(X) < oo, and that
{fn}n>1 and f are measurable functions on X such that f, — f almost everywhere.

(a) Suppose that [ f2du < co. Show that f is integrable.

(b) Suppose that there exists C' < oo such that [ f2du < C for all n > 1. Show that
fo— fin L.

(c) Give an example where [ |f,|du <1 for all n > 1 but f, /4 f in L.

Solution.
(a) Suppose that [ f2du < co. Then let
E={z|[f(z)] > 1}.

Then we note that if |f(z)| > 1, |f(z)] < f*(x).
Thus,

Jl@ldi= [ \f@)ldpt [ 1F@ldi< [ P@)dp+ [ 1dp < oo

since f2 € L' and since pu(E°) < u(X) < oo.

(b) Suppose that there exists C' < oo such that [ f2du < C for alln > 1. From (a), f, € L
for all n.

Now, we note that if f, — f a.e., then f> — f% a.e..

This is immediate since
[f3(x) = f2(@)| = | fulx) = f@)||fulz) + f(z)] = 0- 2| f(2)].
Therefore,

/|f2|du — /liminf f2|dp < liminf/ | f2|dp < liminf C = C.

Thus, f? € L' and so by (a), f € L'.
We now can apply DCT to f,(z) — f(z).
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o fu(z)
o fu(x)
o |fu(x) — f(z)] <2|f(2)] a.e. which is in L'

— f(x) is measurable by assumption

— f(x) a.e. by assumption so f, — f — 0 a.e.

Finally, by DCT,
dim [ 1o = flan = [ im |, = fldu = [ 0dn =0
and so f, — f in L'.

(c) Let fu(x) =mnxp,1) with the Lebesgue measure. Then

/ | fr(2)]dm = nm ([O, 711D =1 for all n.

However, nlg%o fa(z) = 0 a.e. and from the computation above, [ f, — 1 # 0. Thus,

fu > fin LY.
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Problem 2. For what non-negative integer n and positive real ¢ does the integral

/Ooln <1+(smx)> dx
1 x€

(a) exist as a (finite) Lebesgue integral?

(b) converge as an improper Riemann integral?

Solution.

(a) First,

tn (1- ;) In ( (m;:;)n) <1+ xl)

for all n since In is an increasing function and |sinz| < 1.

Now, we consider two cases.
then 2 < 2¢ on [1,00) and so £ > L. Therefore, In (1 + %) <In (1 + i)

/Ooln<1_|_(smx)>dx§/ooln<x+1>dx
1 x° 1 x

= /Ooln(m—i- 1) — Inzdx
1

=zln(z+1)—z—[rlnz — z]
1
4+ 1\ |~
:xln< )
z 1
=1—-1In(2) < o0
Note that o
1 In(1+2 T2
lim zln (1+) = lim (lx): im 1+21 -1

by L’Hopital’s Rule.
Thus, this integral exists for all n and for all ¢ > 1.
Now, z¢ < z for all z > 1 and so

/looln< (SIM )d >/ ln( )dx

—/ n(z®—1) — clnzdx
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Now,
[o.¢] (o] CI‘
In(z¢ — 1)da = / ~1)d
/1 n(z ) JZC ——In(2 — 1)dx
— pC 1/e _

_ 1/0 1 . u=2x u =T
/ I = 1)du du = cx®'dx u'"1e = ¢!

>/ fln u—1)d since 1 <z = 1< zgl"¢ =/ !

= (uln(u —1)—u)
¢ 1

= i(xc In(z® —1) — 29

1

Now, since 1 — ¢ > 1, there exists x sufficiently large such that

1 x©
- <d?<ec= “<c
¢ c

Thus, even after subtracting the [ c¢lnxdx we still get

oo c

1
—(z°In(2° — 1) — 2°) — [ecxInz — cz]| = positive In term + (cx — —) — oo.

c 1 C

Thus, the integral diverges for all 0 < ¢ < 1 and all n.
(b) For all ¢ > 1, we showed that the Lebesgue integral existed by bounding a Riemann
integrable function. Thus, the two integrals coinside.

For ¢ < 1, the Riemann integral will not exist by the same computation as for the
Lebesgue integral.



Kayla Orlinsky
Spring 2014

Problem 3. Suppose f is Lebesgue integrable on R. Show that

lim [ [f(z+t) — f(z)|de = 0.

t—0 J _o

Solution. For all ¢ > 0, there exists a continuous function g which vanishes outside a
bounded interval such that [|f — gldz < e.

Thus,
J1f@+0) = f@)lde = [1f(@+1) = (o + 1)+ gl2) = f(z) + gl + ) - gla)|dz
< [1f@+t) = gtz + e + [ lg(@) = f@)ldz + [ gl +1) — gla)lda

<2+ / g(x + 1) — g(x)|d.
Now, since ¢ is continuous and vanishes outside a bounded interval, g € L'. Thus,

L {g(x+1t)} € L!
2. g(x +t) — g(x) for all x by continuity.

3. Since g(x) is continuous and non-zero only on some interval [a, b] (which we may take
to be closed because we can always extend either end by ¢), g(x) is bounded and so
lg(x)| < Mxjqy for some M < oo.

Thus, g(z +t) < Mx|a+t,b+t] € L.

Therefore, by the Dominated Convergence Theorem, and the calculation above,
11_1)101/ |f(z+1t)— f(z)|de < 2€+11t5%/ lg(x+1t)—g(z)|dx = 28—}—/%15% lg(x+1t)—g(x)|dx = 2e.

Since € was arbitrary, it must be that lim; .o [ |f(z 4+ t) — f(x)|dx = 0. ¥
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Problem 4. Let (X, A, ) and (Y, B,v) be measure spaces such that p(X) > 0 and
v(Y)>0. Let f: X - Rand ¢g:Y — R be measurable functions (with respect to A
and B respectively) such that

f(x) =g(x) p x v -almost everywhere on X x Y.

Show that there exists a constant A\ such that f(x) = A for p-a.e. z and g(y) = A for
v-a.e.

Solution. Let h(z,y) = f(x) — g(y). Then h =0 u x v-a.e. and so h € L'(u x v). It is
clear that h is measurable since h(z,y) = f om, — g o m, with m,(z,y) = = and 7, (z,y) =y
which is a composition of measurable functions in pu x v.

Now, let X’ and Y’ be any o-finite subsets of X and Y respectively.

On these subsets, we may apply Tonelli’s Theorem and so
0= [ Inld(ux )

://\f—g!dudv

= /‘f—g|du:0 v-a.e.
|f(x) —g(y)| =0 p-ae.

However, then f(z) = g(y) p-a.e. and since g(y) is a constant with respect to pu, this implies
that f(z) = XA = g(yo) some fixed yo € Y’ p-a.e. on X'.

Similarly, applying Tonelli again,
0= [ Inld(ux )
= // A — gldvdp
— /\)\ —gldv =0 p-a.e.
IA—g(y)| =0 v-ae.

so g(y) = A v-a.e. on Y'.
Now, since h € L', {(x,y) | h(z,y) # 0} is o-finite and is null with respect to u x v.
Thus, if
E={z|f(x)=A}  F={ylgly) =A}
then

(e xv)(ECX F)=p(E(F)=0 and (X v)(Ex F) = p(E)v(F°) =0

since if f(z) =\ # g(y) = h(z,y) #0.
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However, £ x F' is a subset of a o-finite set and so it is o-finite and since we have
already showed that f(x) = A p-a.e. on all o-finite sets, £ must be p-null. Then, since
u(X) >0, u(E) >0 and so v(F°) = 0.

Finally, this shows that f(z) = A = ¢g(y) p-a.e. and v-a.e. Y



