Kayla Orlinsky
 Real Analysis Exam Spring 2014

Problem 1. Suppose that (X, \mathcal{B}, μ) is a measure space with $\mu(X)<\infty$, and that $\left\{f_{n}\right\}_{n \geq 1}$ and f are measurable functions on X such that $f_{n} \rightarrow f$ almost everywhere.
(a) Suppose that $\int f^{2} d \mu<\infty$. Show that f is integrable.
(b) Suppose that there exists $C<\infty$ such that $\int f_{n}^{2} d \mu \leq C$ for all $n \geq 1$. Show that $f_{n} \rightarrow f$ in L^{1}.
(c) Give an example where $\int\left|f_{n}\right| d \mu \leq 1$ for all $n \geq 1$ but $f_{n} \nrightarrow f$ in L^{1}.

Solution.

(a) Suppose that $\int f^{2} d \mu<\infty$. Then let

$$
E=\{x| | f(x) \mid \geq 1\} .
$$

Then we note that if $|f(x)| \geq 1,|f(x)| \leq f^{2}(x)$.
Thus,

$$
\int|f(x)| d \mu=\int_{E}|f(x)| d \mu+\int_{E^{c}}|f(x)| d \mu \leq \int_{E} f^{2}(x) d \mu+\int_{E^{c}} 1 d \mu<\infty
$$

since $f^{2} \in L^{1}$ and since $\mu\left(E^{c}\right) \leq \mu(X)<\infty$.
(b) Suppose that there exists $C<\infty$ such that $\int f_{n}^{2} d \mu \leq C$ for all $n \geq 1$. From (a), $f_{n} \in L^{1}$ for all n.
Now, we note that if $f_{n} \rightarrow f$ a.e., then $f_{n}^{2} \rightarrow f^{2}$ a.e..
This is immediate since

$$
\left|f_{n}^{2}(x)-f^{2}(x)\right|=\left|f_{n}(x)-f(x)\right|\left|f_{n}(x)+f(x)\right| \rightarrow 0 \cdot 2|f(x)| .
$$

Therefore,

$$
\int\left|f^{2}\right| d \mu=\int \liminf \left|f_{n}^{2}\right| d \mu \leq \liminf \int\left|f_{n}^{2}\right| d \mu \leq \lim \inf C=C
$$

Thus, $f^{2} \in L^{1}$ and so by (a), $f \in L^{1}$.
We now can apply DCT to $f_{n}(x)-f(x)$.

- $f_{n}(x)-f(x)$ is measurable by assumption
- $f_{n}(x) \rightarrow f(x)$ a.e. by assumption so $f_{n}-f \rightarrow 0$ a.e.
- $\left|f_{n}(x)-f(x)\right| \leq 2|f(x)|$ a.e. which is in L^{1}

Finally, by DCT,

$$
\lim _{n \rightarrow \infty} \int\left|f_{n}-f\right| d \mu=\int \lim _{n \rightarrow \infty}\left|f_{n}-f\right| d \mu=\int 0 d \mu=0
$$

and so $f_{n} \rightarrow f$ in L^{1}.
(c) Let $f_{n}(x)=n \chi_{\left[0, \frac{1}{n}\right]}$ with the Lebesgue measure. Then

$$
\int\left|f_{n}(x)\right| d m=n m\left(\left[0, \frac{1}{n}\right]\right)=1 \quad \text { for all } n
$$

However, $\lim _{n \rightarrow \infty} f_{n}(x)=0$ a.e. and from the computation above, $\int f_{n} \rightarrow 1 \neq 0$. Thus, $f_{n} \nrightarrow f$ in L^{1}.

Problem 2. For what non-negative integer n and positive real c does the integral

$$
\int_{1}^{\infty} \ln \left(1+\frac{(\sin x)^{n}}{x^{c}}\right) d x
$$

(a) exist as a (finite) Lebesgue integral?
(b) converge as an improper Riemann integral?

Solution.

(a) First,

$$
\ln \left(1-\frac{1}{x^{c}}\right) \leq \ln \left(1+\frac{(\sin x)^{n}}{x^{c}}\right) \leq \ln \left(1+\frac{1}{x^{c}}\right)
$$

for all n since \ln is an increasing function and $|\sin x| \leq 1$.
Now, we consider two cases.
$c \geq 1$ then $x \leq x^{c}$ on $[1, \infty)$ and so $\frac{1}{x} \geq \frac{1}{x^{c}}$. Therefore, $\ln \left(1+\frac{1}{x^{c}}\right) \leq \ln \left(1+\frac{1}{x}\right)$.

$$
\begin{aligned}
\int_{1}^{\infty} \ln \left(1+\frac{(\sin x)^{n}}{x^{c}}\right) d x & \leq \int_{1}^{\infty} \ln \left(\frac{x+1}{x}\right) d x \\
& =\int_{1}^{\infty} \ln (x+1)-\ln x d x \\
& =x \ln (x+1)-x-\left.[x \ln x-x]\right|_{1} ^{\infty} \\
& =\left.x \ln \left(\frac{x+1}{x}\right)\right|_{1} ^{\infty} \\
& =1-\ln (2)<\infty
\end{aligned}
$$

Note that

$$
\lim _{x \rightarrow \infty} x \ln \left(1+\frac{1}{x}\right)=\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{1}{x}\right)}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{1+\frac{1}{x}} \frac{-1}{x^{2}}}{\frac{-1}{x^{2}}}=1
$$

by L'Hopital's Rule.
Thus, this integral exists for all n and for all $c \geq 1$.
$0<c<1$ Now, $x^{c} \leq x$ for all $x \geq 1$ and so

$$
\begin{aligned}
\int_{1}^{\infty} \ln \left(1+\frac{(\sin x)^{n}}{x^{c}}\right) d x & \geq \int_{1}^{\infty} \ln \left(\frac{x^{c}-1}{x^{c}}\right) d x \\
& =\int_{1}^{\infty} \ln \left(x^{c}-1\right)-c \ln x d x
\end{aligned}
$$

Now,

$$
\begin{aligned}
\int_{1}^{\infty} \ln \left(x^{c}-1\right) d x & =\int_{1}^{\infty} \frac{c x^{c-1}}{c x^{c-1}} \ln \left(x^{c}-1\right) d x \\
& =\int_{1}^{\infty} \frac{1}{c} u^{1 / c-1} \ln (u-1) d u \quad \begin{array}{c}
u=x^{c} \quad u^{1 / c}=x \\
\\
\\
\geq \int_{1}^{\infty} \frac{1}{c} \ln (u-1) d u \quad \text { since } x^{c} \leq x \Longrightarrow 1 \leq x^{c-1} d x \quad u^{1-1 / c}=x^{c-1} \\
\\
\end{array}=\left.\frac{1}{c}(u \ln (u-1)-u)\right|_{1} ^{\infty}=u^{1 / c-1} \\
& =\left.\frac{1}{c}\left(x^{c} \ln \left(x^{c}-1\right)-x^{c}\right)\right|_{1} ^{\infty}
\end{aligned}
$$

Now, since $1-c>1$, there exists x sufficiently large such that

$$
\frac{1}{x^{1-c}} \leq c^{2}<c \Longrightarrow \frac{x^{c}}{c} \leq c x
$$

Thus, even after subtracting the $\int_{1}^{\infty} c \ln x d x$ we still get

$$
\frac{1}{c}\left(x^{c} \ln \left(x^{c}-1\right)-x^{c}\right)-\left.[c x \ln x-c x]\right|_{1} ^{\infty}=\text { positive } \ln \text { term }+\left(c x-\frac{x^{c}}{c}\right) \rightarrow \infty
$$

Thus, the integral diverges for all $0<c<1$ and all n.
(b) For all $c \geq 1$, we showed that the Lebesgue integral existed by bounding a Riemann integrable function. Thus, the two integrals coinside.
For $c<1$, the Riemann integral will not exist by the same computation as for the Lebesgue integral.

Problem 3. Suppose f is Lebesgue integrable on \mathbb{R}. Show that

$$
\lim _{t \rightarrow 0} \int_{-\infty}^{\infty}|f(x+t)-f(x)| d x=0
$$

Solution. For all $\varepsilon>0$, there exists a continuous function g which vanishes outside a bounded interval such that $\int|f-g| d x<\varepsilon$.

Thus,

$$
\begin{aligned}
\int|f(x+t)-f(x)| d x & =\int|f(x+t)-g(x+t)+g(x)-f(x)+g(x+t)-g(x)| d x \\
& \leq \int|f(x+t)-g(x+t)| d x+\int|g(x)-f(x)| d x+\int|g(x+t)-g(x)| d x \\
& <2 \varepsilon+\int|g(x+t)-g(x)| d x
\end{aligned}
$$

Now, since g is continuous and vanishes outside a bounded interval, $g \in L^{1}$. Thus,

1. $\{g(x+t)\} \in L^{1}$
2. $g(x+t) \rightarrow g(x)$ for all x by continuity.
3. Since $g(x)$ is continuous and non-zero only on some interval $[a, b]$ (which we may take to be closed because we can always extend either end by ε), $g(x)$ is bounded and so $|g(x)| \leq M \chi_{[a, b]}$ for some $M<\infty$.
Thus, $g(x+t) \leq M \chi[a+t, b+t] \in L^{1}$.
Therefore, by the Dominated Convergence Theorem, and the calculation above, $\lim _{t \rightarrow 0} \int|f(x+t)-f(x)| d x<2 \varepsilon+\lim _{t \rightarrow 0} \int|g(x+t)-g(x)| d x=2 \varepsilon+\int \lim _{t \rightarrow 0}|g(x+t)-g(x)| d x=2 \varepsilon$.

Since ε was arbitrary, it must be that $\lim _{t \rightarrow 0} \int|f(x+t)-f(x)| d x=0$.

Problem 4. Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces such that $\mu(X)>0$ and $\nu(Y)>0$. Let $f: X \rightarrow \mathbb{R}$ and $g: Y \rightarrow \mathbb{R}$ be measurable functions (with respect to \mathcal{A} and \mathcal{B} respectively) such that

$$
f(x)=g(x) \quad \mu \times \nu \text {-almost everywhere on } X \times Y
$$

Show that there exists a constant λ such that $f(x)=\lambda$ for μ-a.e. x and $g(y)=\lambda$ for ν-a.e.

Solution. Let $h(x, y)=f(x)-g(y)$. Then $h=0 \mu \times \nu$-a.e. and so $h \in L^{1}(\mu \times \nu)$. It is clear that h is measurable since $h(x, y)=f \circ \pi_{x}-g \circ \pi_{y}$ with $\pi_{x}(x, y)=x$ and $\pi_{y}(x, y)=y$ which is a composition of measurable functions in $\mu \times \nu$.

Now, let X^{\prime} and Y^{\prime} be any σ-finite subsets of X and Y respectively.
On these subsets, we may apply Tonelli's Theorem and so

$$
\begin{gathered}
0=\int|h| d(\mu \times \nu) \\
=\iint|f-g| d \mu d \nu \\
\Longrightarrow \int|f-g| d \mu=0 \quad \nu \text {-a.e. } \\
|f(x)-g(y)|=0 \quad \mu \text {-a.e. }
\end{gathered}
$$

However, then $f(x)=g(y) \mu$-a.e. and since $g(y)$ is a constant with respect to μ, this implies that $f(x)=\lambda=g\left(y_{0}\right)$ some fixed $y_{0} \in Y^{\prime} \mu$-a.e. on X^{\prime}.

Similarly, applying Tonelli again,

$$
\begin{gathered}
0=\int|h| d(\mu \times \nu) \\
=\iint|\lambda-g| d \nu d \mu \\
\Longrightarrow \int|\lambda-g| d \nu=0 \quad \mu \text {-a.e. } \\
|\lambda-g(y)|=0 \quad \nu \text {-a.e. }
\end{gathered}
$$

so $g(y)=\lambda \nu$-a.e. on Y^{\prime}.
Now, since $h \in L^{1},\{(x, y) \mid h(x, y) \neq 0\}$ is σ-finite and is null with respect to $\mu \times \nu$.
Thus, if

$$
E=\{x \mid f(x)=\lambda\} \quad F=\{y \mid g(y)=\lambda\}
$$

then

$$
(\mu \times \nu)\left(E^{c} \times F\right)=\mu\left(E^{c}\right) \nu(F)=0 \quad \text { and } \quad(\mu \times \nu)\left(E \times F^{c}\right)=\mu(E) \nu\left(F^{c}\right)=0
$$

since if $f(x)=\lambda \neq g(y) \Longrightarrow h(x, y) \neq 0$.

However, $E^{c} \times F$ is a subset of a σ-finite set and so it is σ-finite and since we have already showed that $f(x)=\lambda \mu$-a.e. on all σ-finite sets, E^{c} must be μ-null. Then, since $\mu(X)>0, \mu(E)>0$ and so $\nu\left(F^{c}\right)=0$.

Finally, this shows that $f(x)=\lambda=g(y) \mu$-a.e. and ν-a.e.

