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Problem 1. Assume that f is integrable on (0, 1). Prove that

lim
a→∞

∫ 1

0
f(x)x sin(ax2)dx = 0.

Solution. First, let f(x) = χE(x) for some measurable set E ⊂ [0, 1]. Then∫ 1

0
χE(x)x sin(ax2)dx =

∫
E
x sin(ax2)dx

≤
∫ 1

0
x sin(ax2)dx

=
∫ a

0

sin(u)
2a du

u = ax2 x : [0, 1]
du = 2axdx u : [0, a] = − cos(u)

2a

∣∣∣∣∣
a

0

= − cos(a)
2a + 1

2a → 0 as a→∞.

Therefore, by linearity of the integral, the statement holds for simple functions.
Now, since f ∈ L1, there exists some φ simple function such that for all ε > 0,∫ 1

0
|f − φ|dx < ε.

Thus,∣∣∣∣∫ 1

0
f(x)x sin(ax2)dx−

∫ 1

0
φ(x)x sin(ax2)dx

∣∣∣∣ ≤ ∫ 1

0
|(f(x)− φ(x))x sin(ax2)|dx

≤
∫ 1

0
|f(x)− φ(x)|dx < ε

since x sin(ax2) ≤ 1 for all x ∈ (0, 1) and all a.
Thus, since we already showed that∫ 1

0
φ(x)x sin(ax2)dx→ 0

we are done. �
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Problem 2. Let (X,M, µ) be a measure space, and let f and f1, f2, f3, ... be real valued
measurable functions on X. If fn → f in measure and if F : R → R is uniformly
continuous, prove that F ◦ fn → F ◦ f in measure.

Solution. Let ε > 0 be given. Then, since F is uniformly continuous, there exists a δ > 0
such that whenever |x− y| < δ, |F (x)− F (y)| < ε.

Let
E = {x | |fn(x)− f(x)| ≥ δ}

F = {x | |(F ◦ fn)(x)− (F ◦ f)(x)| ≥ ε}.

Now, we note that if x ∈ Ec, then |fn(x)− f(x)| < δ and so |F (fn(x))− F (f(x))| < ε
which implies that x ∈ F c.

Thus, Ec ⊂ F c and so F ⊂ E.
Finally, this implies that since µ(E) → 0 as n → ∞ (since fn → f in measure, then

µ(F )→ 0 as n→∞ as well. �
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Problem 3. Let fn be nonnegative measurable functions on a measure space (X,M, µ)
which satisfy

∫
fndµ = 1 for all n = 1, 2, .... Prove that

lim sup
n

(fn(x))1/n ≤ 1

for µ-a.e. x.

Solution. First, for all n, let

En = {x | fn(x) > n}.

Then

1 =
∫
fndµ

=
∫

En

fndµ+
∫

Ec
n

fndµ

≥
∫

En

ndµ+
∫

Ec
n

fndµ

≥ nµ(En) + 0 since fn ≥ 0

=⇒ µ(En) ≤ 1
n

Thus, except on a set of shrinking measure, fn(x) ≤ n, and so (again except on a set of
shrinking measure) fn(x)1/n ≤ n1/n.

Finally, since

y = lim
n→∞

n1/n

=⇒ ln y = lim
n→∞

lnn
n

= lim
n→∞

1
n

= 0
=⇒ y = e0 = 1

we have that

lim sup
n

(fn(x))1/n ≤ lim sup
n

(n1/n) = lim
n→∞

n1/n = 1.

�

3



Kayla Orlinsky
Fall 2014

Problem 4. Let −∞ < a < b <∞. Suppose F : [a, b]→ C.

(a) Define what it means for F to be absolutely continuous on [a, b].

(b) Give an example of a function which is uniformly continuous but not absolutely
continuous. (Remember to justify your answer.)

(c) Prove that if there exists M such that |F (x)−F (y)| ≤M |x− y| for all x, y ∈ [a, b],
then F is absolutely continuous. Is the converse true? (Again, remember to justify
your answer).

Solution.

(a)

F (x) is absolutely continuous on [a,b] if for all ε > 0 there
exists a δ > 0 such that for any finite collection {(ai, bi)}n

1

of disjoint subintervals of [a, b] satisfying
n∑

i=1
|bi − ai| < δ

implies that
n∑

i=1
|F (bi)− F (ai)| < ε

(b) Let f(x) be the Cantor Function on [0, 1]. Since f(x) is continuous on a closed interval,
it is uniformly continuous.
Now, assume that f(x) is absolutely continuous. We already know that f ′(x) = 0 a.e.
since it is only non-constant on the Cantor set (which has Lebesgue Measure 0).
Thus, if f(x) is absolutely continuous on [0, 1], then by the Fundamental Theorem of
Lebesgue Integrals,

1 = f(1)− f(0) =
∫ 1

0
f ′(x)dx =

∫ 1

0
0dx = 0.

Thus, f(x) cannot be absolutely continuous on [0, 1].

(c) Clearly if such an M exists, it must be nonnegative. If M = 0, then F is constant on
[a, b] and so it is clearly absolutely continuous.
If M > 0, then for all ε > 0, we can let δ = ε

M
. Then, for any finite collection of disjoint

intervals {(ai, bi)}n
1 satisfying

n∑
i=1

(bi − ai) < δ,
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we have that
n∑

i=1
|F (bi)− F (ai)| ≤

n∑
i=1

M |bi − ai| = M
n∑

i=1
|bi − ai| < Mδ = M

ε

M
= ε.

Thus, F is absolutely continuous.
Now, let F (x) =

√
x on [0, 1]. Then F ′(x) = 1

2
√

x
exists except at 0 (a null set) and

since

lim
b→0

∫ 1

b

1
2
√
x
dx = lim

b→0

√
x

∣∣∣∣∣
1

b

= lim
b→0

(1−
√
b) = 1

so F ′(x) ∈ L1 and by the same computation

F (x)− F (0) =
∫ x

0
F ′(x)dx.

Thus, again by the Fundamental Theorem of Lebesgue Integrals, F is absolutely
continuous on [0, 1].
However, for all y > x, we have

|F (y)− F (x)| = √y −
√
x = y − x
√
y +
√
x
.

If there exists some ∞ > M > 0 such that y−x√
y+
√

x
≤ M(y − x), then M ≥ 1√

y+
√

x
.

However, for x, y very small near 0, we can force M to grow as large as we like and so
no such finite M exists.

�
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