Kayla Orlinsky
 Real Analysis Exam Fall 2014

Problem 1. Assume that f is integrable on $(0,1)$. Prove that

$$
\lim _{a \rightarrow \infty} \int_{0}^{1} f(x) x \sin \left(a x^{2}\right) d x=0
$$

Solution. First, let $f(x)=\chi_{E}(x)$ for some measurable set $E \subset[0,1]$. Then

$$
\begin{aligned}
\int_{0}^{1} \chi_{E}(x) x \sin \left(a x^{2}\right) d x & =\int_{E} x \sin \left(a x^{2}\right) d x \\
& \leq \int_{0}^{1} x \sin \left(a x^{2}\right) d x \\
& =\int_{0}^{a} \frac{\sin (u)}{2 a} d u \quad \begin{array}{cc}
u=a x^{2} & x:[0,1] \\
d u=2 a x d x & u:[0, a]
\end{array}=\left.\frac{-\cos (u)}{2 a}\right|_{0} ^{a} \\
& =\frac{-\cos (a)}{2 a}+\frac{1}{2 a} \rightarrow 0 \quad \text { as } a \rightarrow \infty
\end{aligned}
$$

Therefore, by linearity of the integral, the statement holds for simple functions.
Now, since $f \in L^{1}$, there exists some ϕ simple function such that for all $\varepsilon>0$,

$$
\int_{0}^{1}|f-\phi| d x<\varepsilon .
$$

Thus,

$$
\begin{aligned}
\left|\int_{0}^{1} f(x) x \sin \left(a x^{2}\right) d x-\int_{0}^{1} \phi(x) x \sin \left(a x^{2}\right) d x\right| & \leq \int_{0}^{1}\left|(f(x)-\phi(x)) x \sin \left(a x^{2}\right)\right| d x \\
& \leq \int_{0}^{1}|f(x)-\phi(x)| d x<\varepsilon
\end{aligned}
$$

since $x \sin \left(a x^{2}\right) \leq 1$ for all $x \in(0,1)$ and all a.
Thus, since we already showed that

$$
\int_{0}^{1} \phi(x) x \sin \left(a x^{2}\right) d x \rightarrow 0
$$

we are done.

Problem 2. Let (X, \mathcal{M}, μ) be a measure space, and let f and $f_{1}, f_{2}, f_{3}, \ldots$ be real valued measurable functions on X. If $f_{n} \rightarrow f$ in measure and if $F: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous, prove that $F \circ f_{n} \rightarrow F \circ f$ in measure.

Solution. Let $\varepsilon>0$ be given. Then, since F is uniformly continuous, there exists a $\delta>0$ such that whenever $|x-y|<\delta,|F(x)-F(y)|<\varepsilon$.

Let

$$
\begin{gathered}
E=\left\{x| | f_{n}(x)-f(x) \mid \geq \delta\right\} \\
F=\left\{x| |\left(F \circ f_{n}\right)(x)-(F \circ f)(x) \mid \geq \varepsilon\right\} .
\end{gathered}
$$

Now, we note that if $x \in E^{c}$, then $\left|f_{n}(x)-f(x)\right|<\delta$ and so $\left|F\left(f_{n}(x)\right)-F(f(x))\right|<\varepsilon$ which implies that $x \in F^{c}$.

Thus, $E^{c} \subset F^{c}$ and so $F \subset E$.
Finally, this implies that since $\mu(E) \rightarrow 0$ as $n \rightarrow \infty$ (since $f_{n} \rightarrow f$ in measure, then $\mu(F) \rightarrow 0$ as $n \rightarrow \infty$ as well.

Problem 3. Let f_{n} be nonnegative measurable functions on a measure space (X, \mathcal{M}, μ) which satisfy $\int f_{n} d \mu=1$ for all $n=1,2, \ldots$. Prove that

$$
\limsup _{n}\left(f_{n}(x)\right)^{1 / n} \leq 1
$$

for μ-a.e. x.

Solution. First, for all n, let

$$
E_{n}=\left\{x \mid f_{n}(x)>n\right\}
$$

Then

$$
\begin{aligned}
1 & =\int f_{n} d \mu \\
& =\int_{E_{n}} f_{n} d \mu+\int_{E_{n}^{c}} f_{n} d \mu \\
& \geq \int_{E_{n}} n d \mu+\int_{E_{n}^{c}} f_{n} d \mu \\
& \geq n \mu\left(E_{n}\right)+0 \quad \text { since } f_{n} \geq 0 \\
\Longrightarrow & \mu\left(E_{n}\right) \leq \frac{1}{n}
\end{aligned}
$$

Thus, except on a set of shrinking measure, $f_{n}(x) \leq n$, and so (again except on a set of shrinking measure) $f_{n}(x)^{1 / n} \leq n^{1 / n}$.

Finally, since

$$
\begin{aligned}
y & =\lim _{n \rightarrow \infty} n^{1 / n} \\
\Longrightarrow \ln y & =\lim _{n \rightarrow \infty} \frac{\ln n}{n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \\
& =0 \\
\Longrightarrow y & =e^{0}=1
\end{aligned}
$$

we have that

$$
\limsup _{n}\left(f_{n}(x)\right)^{1 / n} \leq \limsup _{n}\left(n^{1 / n}\right)=\lim _{n \rightarrow \infty} n^{1 / n}=1
$$

Problem 4. Let $-\infty<a<b<\infty$. Suppose $F:[a, b] \rightarrow \mathbb{C}$.
(a) Define what it means for F to be absolutely continuous on $[a, b]$.
(b) Give an example of a function which is uniformly continuous but not absolutely continuous. (Remember to justify your answer.)
(c) Prove that if there exists M such that $|F(x)-F(y)| \leq M|x-y|$ for all $x, y \in[a, b]$, then F is absolutely continuous. Is the converse true? (Again, remember to justify your answer).

Solution.

(a)
$F(x)$ is absolutely continuous on $[\mathrm{a}, \mathrm{b}]$ if for all $\varepsilon>0$ there exists a $\delta>0$ such that for any finite collection $\left\{\left(a_{i}, b_{i}\right)\right\}_{1}^{n}$ of disjoint subintervals of $[a, b]$ satisfying $\sum_{i=1}^{n}\left|b_{i}-a_{i}\right|<\delta$ implies that $\sum_{i=1}^{n}\left|F\left(b_{i}\right)-F\left(a_{i}\right)\right|<\varepsilon$
(b) Let $f(x)$ be the Cantor Function on $[0,1]$. Since $f(x)$ is continuous on a closed interval, it is uniformly continuous.
Now, assume that $f(x)$ is absolutely continuous. We already know that $f^{\prime}(x)=0$ a.e. since it is only non-constant on the Cantor set (which has Lebesgue Measure 0).
Thus, if $f(x)$ is absolutely continuous on $[0,1]$, then by the Fundamental Theorem of Lebesgue Integrals,

$$
1=f(1)-f(0)=\int_{0}^{1} f^{\prime}(x) d x=\int_{0}^{1} 0 d x=0
$$

Thus, $f(x)$ cannot be absolutely continuous on $[0,1]$.
(c) Clearly if such an M exists, it must be nonnegative. If $M=0$, then F is constant on $[a, b]$ and so it is clearly absolutely continuous.
If $M>0$, then for all $\varepsilon>0$, we can let $\delta=\frac{\varepsilon}{M}$. Then, for any finite collection of disjoint intervals $\left\{\left(a_{i}, b_{i}\right)\right\}_{1}^{n}$ satisfying

$$
\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)<\delta
$$

we have that

$$
\sum_{i=1}^{n}\left|F\left(b_{i}\right)-F\left(a_{i}\right)\right| \leq \sum_{i=1}^{n} M\left|b_{i}-a_{i}\right|=M \sum_{i=1}^{n}\left|b_{i}-a_{i}\right|<M \delta=M \frac{\varepsilon}{M}=\varepsilon
$$

Thus, F is absolutely continuous.
Now, let $F(x)=\sqrt{x}$ on $[0,1]$. Then $F^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ exists except at 0 (a null set) and since

$$
\lim _{b \rightarrow 0} \int_{b}^{1} \frac{1}{2 \sqrt{x}} d x=\left.\lim _{b \rightarrow 0} \sqrt{x}\right|_{b} ^{1}=\lim _{b \rightarrow 0}(1-\sqrt{b})=1
$$

so $F^{\prime}(x) \in L^{1}$ and by the same computation

$$
F(x)-F(0)=\int_{0}^{x} F^{\prime}(x) d x
$$

Thus, again by the Fundamental Theorem of Lebesgue Integrals, F is absolutely continuous on $[0,1]$.
However, for all $y>x$, we have

$$
|F(y)-F(x)|=\sqrt{y}-\sqrt{x}=\frac{y-x}{\sqrt{y}+\sqrt{x}}
$$

If there exists some $\infty>M>0$ such that $\frac{y-x}{\sqrt{y}+\sqrt{x}} \leq M(y-x)$, then $M \geq \frac{1}{\sqrt{y}+\sqrt{x}}$. However, for x, y very small near 0 , we can force M to grow as large as we like and so no such finite M exists.

