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Problem 1. Suppose that {fn} is a sequence of real valued continuously differentiable
functions on [0, 1] such that

lim
n→∞

∫ 1

0
|fn(x)|dx = 0 and lim

n→∞

∫ 1

0
|f ′n(x)|dx = 0.

Show that {fn} converges to 0 uniformly on [0, 1].

Solution. Since f ′(x) exists and is continuous on [0, 1],

0 = lim
n→∞

∫ 1

0
|f ′n(x)|dx ≥ lim

n→∞

∣∣∣∣∫ 1

0
f ′n(x)dx

∣∣∣∣ = lim
n→∞

|fn(1)− fn(0)|.

Similarly, since |fn(x)| ≥ 0 for all x, we have that |fn(b)−fn(a)| → 0 for all (a, b) ⊂ [0, 1]
since ∫ 1

0
|fn(x)|dx ≥

∫ b

a
|fn(x)|dx 0 ≤ a < b ≤ 1.

Thus, fn(x) → c for some constant as n → ∞. Now, we’d like to use the Dominated
Convergence Theorem.

1. {fn} ∈ L1 since each fn is continuous on [0, 1], it is bounded so |f(x)| ≤ M < ∞ on
[0, 1].

2. fn → c for all x.

3. |fn(x)| ≤ supnMn <∞ with Mn the upper bound of fn on [0, 1]. If supnMn =∞ then
the Mn grow arbitrarily large which contradicts the continuity of fn on [0, 1].

Thus,
0 = lim

n→∞

∫ 1

0
|fn(x)|dx =

∫ 1

0
lim
n→∞

|fn(x)|dx =
∫ 1

0
cdx = c.

Thus, fn → 0 for all x.
Now, letting

Mn = sup
x∈[0,1]

|fn(x)|,

then there exists some x ∈ [0, 1] such that |fn(x)| ≥Mn − ε and so

lim
n→∞

|fn(x)| ≥ lim
n→∞

Mn − ε =⇒ ε ≥ lim
n→∞

Mn.
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Thus, Mn → 0 as n→∞.
Finally, for all ε > 0, there exists some N ∈ N such that Mn < ε for all n > N and so,

for all n > N ,
|fn(x)| ≤Mn < ε.

Thus, f → 0 uniformly on [0, 1]. �
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Problem 2. Investigate the convergence of ∑∞n=0 an where

an =
∫ 1

0

xn

1− x sin(πx)dx.

Solution. First, sin(πx) ≥ 0 for all 0 ≤ x ≤ 1. Now, using a quick sketch we see that
y = −2(x− 1) seems to be below sin(πx). A quick check shows that

d

dx
(sin(πx) + 2(x− 1)) = π cos(πx) + 2 changes sign once for 1

2 ≤ x ≤ 1

which is verified since
d

dx
(π cos(πx) + 2) = −π2 sin(πx) ≤ 0 1

2 ≤ x ≤ 1.

Thus, since
sin(πx) + 2x− 2 = 0 when x = 1

2 , 1

and √
2

2 + 3
2 − 2 ≥ 0 for x = 3

4
so for all 1

2 ≤ x ≤ 1. Thus, sin(πx) ≥ −2(x− 1).
Let fn(x) = xn

1−x sin(πx). Let (N, ν) be the counting measure. Then, ([0, 1],m) and (N, ν)
are σ-finite and fn(x) ∈ L+(m×ν). Then by Tonelli, we can swap the order of integration, so

∞∑
n=0

an =
∫ 1

0

∞∑
n=0

xn

1− x sin(πx)dx

=
∫ 1

0

∞∑
n=0

xn

1− x sin(πx)dx

=
∫ 1

0

∑∞
n=0 x

n

1− x sin(πx)dx

=
∫ 1

0

1
(1− x)2 sin(πx)dx since 0 ≤ x ≤ 1 =⇒

∞∑
n=0

xn = 1
1− x

≥
∫ 1

1/2

−1
(1− x)2 2(x− 1)dx

=
∫ 1

1/2

1
(1− x)2 2(1− x)dx

=
∫ 1

1/2

1
(1− x)2dx

= − ln |1− x|
∣∣∣∣∣
1

1/2
=∞

�

3



Kayla Orlinsky
Spring 2013

Problem 3. Let (X,M, µ) be a measure space, fn, f ∈ L1(µ). Show that
∫
X |fn−f |dµ→

0 as n→∞ if and only if

sup
A∈M

∣∣∣∣∫
A
fndµ−

∫
A
fdµ

∣∣∣∣→ 0

as n→∞.

Solution. =⇒

0 = lim
n→∞

∫
|fn(x)− f(x)|dµ

≥ lim
n→∞

sup
A∈M

∫
A
|fn(x)− f(x)|dµ since

∫
X
|fn − f | ≥

∫
A
|fn − f | for all A ⊂ X

≥ lim
n→∞

sup
A∈M

∣∣∣∣∫
A
fn(x)− f(x)dµ

∣∣∣∣ |fn − f | ∈ L1 for sufficiently large n

= lim
n→∞

sup
A∈M

∣∣∣∣∫
A
fn(x)dµ−

∫
A
f(x)dµ

∣∣∣∣
Thus, since we are taking the sup of positive values, the sup must then tend to 0.
⇐= Let gn(x) = fn(x)− f(x), then gn is measurable since f and fn are and so

A = {x | gn(x) ≥ 0} = g−1([0,∞)) ∈M

and similarly,
Ac = {x | gn(x) < 0} = g−1((−∞, 0)) ∈M.

Then,

0 = lim
n→∞

sup
E∈M

∣∣∣∣∫
E
fn(x)dµ−

∫
E
f(x)dµ

∣∣∣∣
= lim

n→∞
sup
E∈M

∣∣∣∣∫
E
fn(x)− f(x)dµ

∣∣∣∣
≥ lim

n→∞

∣∣∣∣∫
A
fn(x)− f(x)dµ

∣∣∣∣
= lim

n→∞

∫
A
fn(x)− f(x)dµ since fn − f ≥ 0 on A

Similarly,
0 ≥ lim

n→∞

∣∣∣∣∫
Ac
fn(x)− f(x)dµ

∣∣∣∣
so

lim
n→∞

∫
X
|fn(x)− f(x)|dµ = lim

n→∞

[∫
A
fn(x)− f(x)dµ−

∫
Ac
fn(x)− f(x)dµ

]
= 0− 0 = 0.

�
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Problem 4 (Similar to Folland, 3.2.16, p.92). Let µ and ν be σ-finite positive measures,
µ ≥ ν and assume that ν << µ− ν (ν is absolutely continuous with respect to µ− ν).

Prove that
µ

({
dν

dµ
= 1

})
= 0.

Solution. We make several observations. Note, that in all facts used below, σ-finiteness as
well as positivity of the measures is necessary.

1. From ν << µ− ν, (µ− ν)(E) = 0 =⇒ ν(E) = 0 =⇒ µ(E)− ν(E) = 0 =⇒ µ(E) =
ν(E) = 0. Thus, µ << ν.

2. Since µ ≥ ν, ν << µ.

Now, we claim that µ = ν only on null sets.

Claim 1. Since µ << ν and ν << µ and µ ≥ ν, µ(E) = ν(E) if and only if
µ(E) = 0.

Proof. ⇐= Clearly if µ(E) = 0, then µ(E) = ν(E) = 0 since µ << ν and
ν << µ.

=⇒ Assume µ(E) 6= 0. Then ν(E) 6= 0, else, if ν(E) = 0 then µ(E) = 0
since µ << ν.

Now, if µ(E) = ν(E) then µ(E) − ν(E) = 0 and so ν(E) = 0 since
ν << µ− ν. However, this is a contradiction.

Thus, µ(E) 6= ν(E).
Namely, µ and ν agree only on null sets. �
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Now, let f = dν
dµ
. Then 1

f
= dµ

dν
clearly. We will use the fact that µ(E) =

∫
E
fdν.

µ

({
dν

dµ
= 1

})
= µ ({f = 1})

= µ

({
1
f

= 1
})

= µ

({
dµ

dν
= 1

})

=
∫
{ dµdν =1}

fdν

=
∫
{ dµdν =1}

f
dµ

dν
dν

=
∫
{ dµdν =1}

f
1
f
dν

=
∫
{ dµdν =1}

dν

= ν

({
dµ

dν
= 1

})

= ν

({
dν

dµ
= 1

})

From the claim, since µ and ν agree on
{
dν
dµ

= 1
}
, it must be a null set for both and so

µ

({
dν

dµ
= 1

})
= 0.
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