Kayla Orlinsky Real Analysis Exam Spring 2013

Problem 1. Suppose that $\{f_n\}$ is a sequence of real valued continuously differentiable functions on [0, 1] such that

$$\lim_{n \to \infty} \int_0^1 |f_n(x)| dx = 0 \text{ and } \lim_{n \to \infty} \int_0^1 |f'_n(x)| dx = 0.$$

Show that $\{f_n\}$ converges to 0 uniformly on [0, 1].

Solution. Since f'(x) exists and is continuous on [0, 1],

$$0 = \lim_{n \to \infty} \int_0^1 |f'_n(x)| dx \ge \lim_{n \to \infty} \left| \int_0^1 f'_n(x) dx \right| = \lim_{n \to \infty} |f_n(1) - f_n(0)|$$

Similarly, since $|f_n(x)| \ge 0$ for all x, we have that $|f_n(b) - f_n(a)| \to 0$ for all $(a, b) \subset [0, 1]$ since

$$\int_0^1 |f_n(x)| dx \ge \int_a^b |f_n(x)| dx \qquad 0 \le a < b \le 1.$$

Thus, $f_n(x) \to c$ for some constant as $n \to \infty$. Now, we'd like to use the Dominated Convergence Theorem.

- 1. $\{f_n\} \in L^1$ since each f_n is continuous on [0,1], it is bounded so $|f(x)| \leq M < \infty$ on [0,1].
- 2. $f_n \to c$ for all x.
- 3. $|f_n(x)| \leq \sup_n M_n < \infty$ with M_n the upper bound of f_n on [0, 1]. If $\sup_n M_n = \infty$ then the M_n grow arbitrarily large which contradicts the continuity of f_n on [0, 1].

Thus,

$$0 = \lim_{n \to \infty} \int_0^1 |f_n(x)| dx = \int_0^1 \lim_{n \to \infty} |f_n(x)| dx = \int_0^1 c dx = c.$$

Thus, $f_n \to 0$ for all x.

Now, letting

$$M_n = \sup_{x \in [0,1]} |f_n(x)|,$$

then there exists some $x \in [0, 1]$ such that $|f_n(x)| \ge M_n - \varepsilon$ and so

$$\lim_{n \to \infty} |f_n(x)| \ge \lim_{n \to \infty} M_n - \varepsilon \implies \varepsilon \ge \lim_{n \to \infty} M_n.$$

Thus, $M_n \to 0$ as $n \to \infty$.

Finally, for all $\varepsilon > 0$, there exists some $N \in \mathbb{N}$ such that $M_n < \varepsilon$ for all n > N and so, for all n > N,

$$|f_n(x)| \le M_n < \varepsilon.$$

Thus, $f \to 0$ uniformly on [0, 1].

y

Problem 2. Investigate the convergence of $\sum_{n=0}^{\infty} a_n$ where

$$a_n = \int_0^1 \frac{x^n}{1-x} \sin(\pi x) dx.$$

Solution. First, $\sin(\pi x) \ge 0$ for all $0 \le x \le 1$. Now, using a quick sketch we see that y = -2(x-1) seems to be below $\sin(\pi x)$. A quick check shows that

$$\frac{d}{dx}(\sin(\pi x) + 2(x-1)) = \pi \cos(\pi x) + 2 \qquad \text{changes sign once for } \frac{1}{2} \le x \le 1$$

which is verified since

$$\frac{d}{dx}(\pi\cos(\pi x) + 2) = -\pi^2\sin(\pi x) \le 0 \qquad \frac{1}{2} \le x \le 1.$$

Thus, since

$$\sin(\pi x) + 2x - 2 = 0$$
 when $x = \frac{1}{2}, 1$

and

$$\frac{\sqrt{2}}{2} + \frac{3}{2} - 2 \ge 0 \qquad \text{for } x = \frac{3}{4}$$

so for all $\frac{1}{2} \le x \le 1$. Thus, $\sin(\pi x) \ge -2(x-1)$.

Let $f_n(x) = \frac{x^n}{1-x}\sin(\pi x)$. Let (\mathbb{N}, ν) be the counting measure. Then, ([0, 1], m) and (\mathbb{N}, ν) are σ -finite and $f_n(x) \in L^+(m \times \nu)$. Then by Tonelli, we can swap the order of integration, so

$$\begin{split} \sum_{n=0}^{\infty} a_n &= \int_0^1 \sum_{n=0}^{\infty} \frac{x^n}{1-x} \sin(\pi x) dx \\ &= \int_0^1 \sum_{n=0}^{\infty} \frac{x^n}{1-x} \sin(\pi x) dx \\ &= \int_0^1 \frac{\sum_{n=0}^{\infty} x^n}{1-x} \sin(\pi x) dx \\ &= \int_0^1 \frac{1}{(1-x)^2} \sin(\pi x) dx \qquad \text{since } 0 \le x \le 1 \implies \sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \\ &\ge \int_{1/2}^1 \frac{-1}{(1-x)^2} 2(x-1) dx \\ &= \int_{1/2}^1 \frac{1}{(1-x)^2} 2(1-x) dx \\ &= \int_{1/2}^1 \frac{1}{(1-x)^2} 2dx \\ &= -\ln|1-x| \Big|_{1/2}^1 = \infty \end{split}$$

H

S

Problem 3. Let (X, \mathcal{M}, μ) be a measure space, $f_n, f \in L^1(\mu)$. Show that $\int_X |f_n - f| d\mu \to 0$ as $n \to \infty$ if and only if

$$\sup_{A \in \mathcal{M}} \left| \int_A f_n d\mu - \int_A f d\mu \right| \to 0$$

as $n \to \infty$.

Solution. $\square \Longrightarrow$

$$0 = \lim_{n \to \infty} \int |f_n(x) - f(x)| d\mu$$

$$\geq \lim_{n \to \infty} \sup_{A \in \mathcal{M}} \int_A |f_n(x) - f(x)| d\mu \qquad \text{since } \int_X |f_n - f| \geq \int_A |f_n - f| \text{ for all } A \subset X$$

$$\geq \lim_{n \to \infty} \sup_{A \in \mathcal{M}} \left| \int_A f_n(x) - f(x) d\mu \right| \qquad |f_n - f| \in L^1 \text{ for sufficiently large } n$$

$$= \lim_{n \to \infty} \sup_{A \in \mathcal{M}} \left| \int_A f_n(x) d\mu - \int_A f(x) d\mu \right|$$

Thus, since we are taking the sup of positive values, the sup must then tend to 0. Let $g_n(x) = f_n(x) - f(x)$, then g_n is measurable since f and f_n are and so $A = \{x \mid g_n(x) \ge 0\} = g^{-1}([0,\infty)) \in \mathcal{M}$

$$A^{c} = \{x \mid g_{n}(x) < 0\} = g^{-1}((-\infty, 0)) \in \mathcal{M}$$

Then,

$$0 = \lim_{n \to \infty} \sup_{E \in \mathcal{M}} \left| \int_E f_n(x) d\mu - \int_E f(x) d\mu \right|$$

=
$$\lim_{n \to \infty} \sup_{E \in \mathcal{M}} \left| \int_E f_n(x) - f(x) d\mu \right|$$

$$\geq \lim_{n \to \infty} \left| \int_A f_n(x) - f(x) d\mu \right|$$

=
$$\lim_{n \to \infty} \int_A f_n(x) - f(x) d\mu \qquad \text{since } f_n - f \ge 0 \text{ on } A$$

Similarly,

$$0 \ge \lim_{n \to \infty} \left| \int_{A^c} f_n(x) - f(x) d\mu \right|$$

 \mathbf{SO}

$$\lim_{n \to \infty} \int_X |f_n(x) - f(x)| d\mu = \lim_{n \to \infty} \left[\int_A f_n(x) - f(x) d\mu - \int_{A^c} f_n(x) - f(x) d\mu \right] = 0 - 0 = 0.$$

Problem 4 (Similar to Folland, 3.2.16, p.92). Let μ and ν be σ -finite positive measures, $\mu \geq \nu$ and assume that $\nu \ll \mu - \nu$ (ν is absolutely continuous with respect to $\mu - \nu$).

Prove that

 $\mu\left(\left\{\frac{d\nu}{d\mu}=1\right\}\right)=0.$

We make several observations. Note, that in all facts used below, σ -finiteness as Solution. well as positivity of the measures is necessary.

- 1. From $\nu \ll \mu \nu$, $(\mu \nu)(E) = 0 \implies \nu(E) = 0 \implies \mu(E) \nu(E) = 0 \implies \mu(E) = 0$ $\nu(E) = 0$. Thus, $\mu \ll \nu$.
- 2. Since $\mu \geq \nu, \nu \ll \mu$.

Now, we claim that $\mu = \nu$ only on null sets.

Claim 1. Since $\mu \ll \nu$ and $\nu \ll \mu$ and $\mu \geq \nu$, $\mu(E) = \nu(E)$ if and only if $\mu(E) = 0.$ *Proof.* \frown Clearly if $\mu(E) = 0$, then $\mu(E) = \nu(E) = 0$ since $\mu \ll \nu$ and $\nu \ll \mu$. \implies Assume $\mu(E) \neq 0$. Then $\nu(E) \neq 0$, else, if $\nu(E) = 0$ then $\mu(E) = 0$ since $\mu \ll \nu$. Now, if $\mu(E) = \nu(E)$ then $\mu(E) - \nu(E) = 0$ and so $\nu(E) = 0$ since $\nu \ll \mu - \nu$. However, this is a contradiction. Thus, $\mu(E) \neq \nu(E)$.

Namely, μ and ν agree only on null sets.

Å

Now, let $f = \frac{d\nu}{d\mu}$. Then $\frac{1}{f} = \frac{d\mu}{d\nu}$ clearly. We will use the fact that $\mu(E) = \int_E f d\nu$. $\mu\left(\left\{\frac{d\nu}{d\mu} = 1\right\}\right) = \mu\left(\{f = 1\}\right)$

$$= \mu \left(\left\{ \frac{1}{f} = 1 \right\} \right)$$
$$= \mu \left(\left\{ \frac{d\mu}{d\nu} = 1 \right\} \right)$$
$$= \int_{\left\{ \frac{d\mu}{d\nu} = 1 \right\}} f d\nu$$
$$= \int_{\left\{ \frac{d\mu}{d\nu} = 1 \right\}} f \frac{d\mu}{d\nu} d\nu$$
$$= \int_{\left\{ \frac{d\mu}{d\nu} = 1 \right\}} f \frac{1}{f} d\nu$$
$$= \nu \left(\left\{ \frac{d\mu}{d\nu} = 1 \right\} \right)$$
$$= \nu \left(\left\{ \frac{d\nu}{d\mu} = 1 \right\} \right)$$

From the claim, since μ and ν agree on $\left\{\frac{d\nu}{d\mu} = 1\right\}$, it must be a null set for both and so

$$\mu\left(\left\{\frac{d\nu}{d\mu}=1\right\}\right)=0.$$

Å