Kayla Orlinsky
 Real Analysis Exam Spring 2013

Problem 1. Suppose that $\left\{f_{n}\right\}$ is a sequence of real valued continuously differentiable functions on $[0,1]$ such that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)\right| d x=0 \text { and } \lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}^{\prime}(x)\right| d x=0
$$

Show that $\left\{f_{n}\right\}$ converges to 0 uniformly on $[0,1]$.

Solution. Since $f^{\prime}(x)$ exists and is continuous on $[0,1]$,

$$
0=\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}^{\prime}(x)\right| d x \geq \lim _{n \rightarrow \infty}\left|\int_{0}^{1} f_{n}^{\prime}(x) d x\right|=\lim _{n \rightarrow \infty}\left|f_{n}(1)-f_{n}(0)\right| .
$$

Similarly, since $\left|f_{n}(x)\right| \geq 0$ for all x, we have that $\left|f_{n}(b)-f_{n}(a)\right| \rightarrow 0$ for all $(a, b) \subset[0,1]$ since

$$
\int_{0}^{1}\left|f_{n}(x)\right| d x \geq \int_{a}^{b}\left|f_{n}(x)\right| d x \quad 0 \leq a<b \leq 1
$$

Thus, $f_{n}(x) \rightarrow c$ for some constant as $n \rightarrow \infty$. Now, we'd like to use the Dominated Convergence Theorem.

1. $\left\{f_{n}\right\} \in L^{1}$ since each f_{n} is continuous on $[0,1]$, it is bounded so $|f(x)| \leq M<\infty$ on $[0,1]$.
2. $f_{n} \rightarrow c$ for all x.
3. $\left|f_{n}(x)\right| \leq \sup _{n} M_{n}<\infty$ with M_{n} the upper bound of f_{n} on $[0,1]$. If $\sup _{n} M_{n}=\infty$ then the M_{n} grow arbitrarily large which contradicts the continuity of f_{n} on $[0,1]$.

Thus,

$$
0=\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)\right| d x=\int_{0}^{1} \lim _{n \rightarrow \infty}\left|f_{n}(x)\right| d x=\int_{0}^{1} c d x=c
$$

Thus, $f_{n} \rightarrow 0$ for all x.
Now, letting

$$
M_{n}=\sup _{x \in[0,1]}\left|f_{n}(x)\right|
$$

then there exists some $x \in[0,1]$ such that $\left|f_{n}(x)\right| \geq M_{n}-\varepsilon$ and so

$$
\lim _{n \rightarrow \infty}\left|f_{n}(x)\right| \geq \lim _{n \rightarrow \infty} M_{n}-\varepsilon \quad \Longrightarrow \quad \varepsilon \geq \lim _{n \rightarrow \infty} M_{n}
$$

Thus, $M_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Finally, for all $\varepsilon>0$, there exists some $N \in \mathbb{N}$ such that $M_{n}<\varepsilon$ for all $n>N$ and so, for all $n>N$,

$$
\left|f_{n}(x)\right| \leq M_{n}<\varepsilon
$$

Thus, $f \rightarrow 0$ uniformly on $[0,1]$.

Problem 2. Investigate the convergence of $\sum_{n=0}^{\infty} a_{n}$ where

$$
a_{n}=\int_{0}^{1} \frac{x^{n}}{1-x} \sin (\pi x) d x
$$

Solution. First, $\sin (\pi x) \geq 0$ for all $0 \leq x \leq 1$. Now, using a quick sketch we see that $y=-2(x-1)$ seems to be below $\sin (\pi x)$. A quick check shows that

$$
\frac{d}{d x}(\sin (\pi x)+2(x-1))=\pi \cos (\pi x)+2 \quad \text { changes sign once for } \frac{1}{2} \leq x \leq 1
$$

which is verified since

$$
\frac{d}{d x}(\pi \cos (\pi x)+2)=-\pi^{2} \sin (\pi x) \leq 0 \quad \frac{1}{2} \leq x \leq 1
$$

Thus, since

$$
\sin (\pi x)+2 x-2=0 \quad \text { when } x=\frac{1}{2}, 1
$$

and

$$
\frac{\sqrt{2}}{2}+\frac{3}{2}-2 \geq 0 \quad \text { for } x=\frac{3}{4}
$$

so for all $\frac{1}{2} \leq x \leq 1$. Thus, $\sin (\pi x) \geq-2(x-1)$.
Let $f_{n}(x)=\frac{x^{n}}{1-x} \sin (\pi x)$. Let (\mathbb{N}, ν) be the counting measure. Then, $([0,1], m)$ and (\mathbb{N}, ν) are σ-finite and $f_{n}(x) \in L^{+}(m \times \nu)$. Then by Tonelli, we can swap the order of integration, so

$$
\begin{aligned}
\sum_{n=0}^{\infty} a_{n} & =\int_{0}^{1} \sum_{n=0}^{\infty} \frac{x^{n}}{1-x} \sin (\pi x) d x \\
& =\int_{0}^{1} \sum_{n=0}^{\infty} \frac{x^{n}}{1-x} \sin (\pi x) d x \\
& =\int_{0}^{1} \frac{\sum_{n=0}^{\infty} x^{n}}{1-x} \sin (\pi x) d x \\
& =\int_{0}^{1} \frac{1}{(1-x)^{2}} \sin (\pi x) d x \quad \text { since } 0 \leq x \leq 1 \Longrightarrow \sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} \\
& \geq \int_{1 / 2}^{1} \frac{-1}{(1-x)^{2}} 2(x-1) d x \\
& =\int_{1 / 2}^{1} \frac{1}{(1-x)^{2}} 2(1-x) d x \\
& =\int_{1 / 2}^{1} \frac{1}{(1-x)} 2 d x \\
& =-\left.\ln |1-x|\right|_{1 / 2} ^{1}=\infty
\end{aligned}
$$

Problem 3. Let (X, \mathcal{M}, μ) be a measure space, $f_{n}, f \in L^{1}(\mu)$. Show that $\int_{X}\left|f_{n}-f\right| d \mu \rightarrow$ 0 as $n \rightarrow \infty$ if and only if

$$
\sup _{A \in \mathcal{M}}\left|\int_{A} f_{n} d \mu-\int_{A} f d \mu\right| \rightarrow 0
$$

as $n \rightarrow \infty$.

Solution. $\quad \Longrightarrow$

$$
\begin{aligned}
0 & =\lim _{n \rightarrow \infty} \int\left|f_{n}(x)-f(x)\right| d \mu \\
& \geq \lim _{n \rightarrow \infty} \sup _{A \in \mathcal{M}} \int_{A}\left|f_{n}(x)-f(x)\right| d \mu \quad \text { since } \int_{X}\left|f_{n}-f\right| \geq \int_{A}\left|f_{n}-f\right| \text { for all } A \subset X \\
& \geq \lim _{n \rightarrow \infty} \sup _{A \in \mathcal{M}}\left|\int_{A} f_{n}(x)-f(x) d \mu\right| \quad\left|f_{n}-f\right| \in L^{1} \text { for sufficiently large } n \\
& =\lim _{n \rightarrow \infty} \sup _{A \in \mathcal{M}}\left|\int_{A} f_{n}(x) d \mu-\int_{A} f(x) d \mu\right|
\end{aligned}
$$

Thus, since we are taking the sup of positive values, the sup must then tend to 0 .
\Longleftarrow Let $g_{n}(x)=f_{n}(x)-f(x)$, then g_{n} is measurable since f and f_{n} are and so

$$
A=\left\{x \mid g_{n}(x) \geq 0\right\}=g^{-1}([0, \infty)) \in \mathcal{M}
$$

and similarly,

$$
A^{c}=\left\{x \mid g_{n}(x)<0\right\}=g^{-1}((-\infty, 0)) \in \mathcal{M}
$$

Then,

$$
\begin{aligned}
0 & =\lim _{n \rightarrow \infty} \sup _{E \in \mathcal{M}}\left|\int_{E} f_{n}(x) d \mu-\int_{E} f(x) d \mu\right| \\
& =\lim _{n \rightarrow \infty} \sup _{E \in \mathcal{M}}\left|\int_{E} f_{n}(x)-f(x) d \mu\right| \\
& \geq \lim _{n \rightarrow \infty}\left|\int_{A} f_{n}(x)-f(x) d \mu\right| \\
& =\lim _{n \rightarrow \infty} \int_{A} f_{n}(x)-f(x) d \mu \quad \text { since } f_{n}-f \geq 0 \text { on } A
\end{aligned}
$$

Similarly,

$$
0 \geq \lim _{n \rightarrow \infty}\left|\int_{A^{c}} f_{n}(x)-f(x) d \mu\right|
$$

so

$$
\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}(x)-f(x)\right| d \mu=\lim _{n \rightarrow \infty}\left[\int_{A} f_{n}(x)-f(x) d \mu-\int_{A^{c}} f_{n}(x)-f(x) d \mu\right]=0-0=0
$$

Problem 4 (Similar to Folland, 3.2.16, p.92). Let μ and ν be σ-finite positive measures, $\mu \geq \nu$ and assume that $\nu \ll \mu-\nu(\nu$ is absolutely continuous with respect to $\mu-\nu)$.

Prove that

$$
\mu\left(\left\{\frac{d \nu}{d \mu}=1\right\}\right)=0
$$

Solution. We make several observations. Note, that in all facts used below, σ-finiteness as well as positivity of the measures is necessary.

1. From $\nu \ll \mu-\nu,(\mu-\nu)(E)=0 \Longrightarrow \nu(E)=0 \Longrightarrow \mu(E)-\nu(E)=0 \Longrightarrow \mu(E)=$ $\nu(E)=0$. Thus, $\mu \ll \nu$.
2. Since $\mu \geq \nu, \nu \ll \mu$.

Now, we claim that $\mu=\nu$ only on null sets.

Claim 1. Since $\mu \ll \nu$ and $\nu \ll \mu$ and $\mu \geq \nu, \mu(E)=\nu(E)$ if and only if $\mu(E)=0$.

Proof. \Longleftarrow Clearly if $\mu(E)=0$, then $\mu(E)=\nu(E)=0$ since $\mu \ll \nu$ and $\nu \ll \mu$.
\Longrightarrow Assume $\mu(E) \neq 0$. Then $\nu(E) \neq 0$, else, if $\nu(E)=0$ then $\mu(E)=0$ since $\mu \ll \nu$.

Now, if $\mu(E)=\nu(E)$ then $\mu(E)-\nu(E)=0$ and so $\nu(E)=0$ since $\nu \ll \mu-\nu$. However, this is a contradiction.

Thus, $\mu(E) \neq \nu(E)$.
Namely, μ and ν agree only on null sets.

Now, let $f=\frac{d \nu}{d \mu}$. Then $\frac{1}{f}=\frac{d \mu}{d \nu}$ clearly. We will use the fact that $\mu(E)=\int_{E} f d \nu$.

$$
\begin{aligned}
\mu\left(\left\{\frac{d \nu}{d \mu}=1\right\}\right) & =\mu(\{f=1\}) \\
& =\mu\left(\left\{\frac{1}{f}=1\right\}\right) \\
& =\mu\left(\left\{\frac{d \mu}{d \nu}=1\right\}\right) \\
& =\int_{\left\{\frac{d \mu}{d \nu}=1\right\}} f d \nu \\
& =\int_{\left\{\frac{d \mu}{d \nu}=1\right\}} f \frac{d \mu}{d \nu} d \nu \\
& =\int_{\left\{\frac{d \mu}{d \nu}=1\right\}} f \frac{1}{f} d \nu \\
& =\int_{\left\{\frac{d \mu}{d \nu}=1\right\}} d \nu \\
& =\nu\left(\left\{\frac{d \mu}{d \nu}=1\right\}\right) \\
& =\nu\left(\left\{\frac{d \nu}{d \mu}=1\right\}\right)
\end{aligned}
$$

From the claim, since μ and ν agree on $\left\{\frac{d \nu}{d \mu}=1\right\}$, it must be a null set for both and so

$$
\mu\left(\left\{\frac{d \nu}{d \mu}=1\right\}\right)=0
$$

