Kayla Orlinsky
 Real Analysis Exam Fall 2013

Problem 1. Let μ be a finite Borel Measure on \mathbb{R}, which is absolutely continuous with respect to the Lebesgue measure m. Prove that $x \mapsto \mu(A+x)$ is continuous for every Borel set $A \subset \mathbb{R}$.

Solution. First, we will denote $A+x=A_{x}$. Now, because A is Borel and $\mu(A)<\infty$, for all $\varepsilon>0$ there exists some set E which is a finite union of open intervals such that $\mu(A \Delta E)<\varepsilon$.

Now, because $\mu \ll m$, and

$$
\begin{aligned}
m\left(A_{x} \Delta E_{x}\right) & =m\left(A_{x} \cup E_{x}\right)-m\left(A_{x} \cap E_{x}\right) \\
& =m\left((A \cup E)_{x}\right)-m\left((A \cap E)_{x}\right) \\
& =m(A \cup E))-m(A \cap E) \\
& =m(A \Delta E)
\end{aligned}
$$

we have that $\mu\left(A_{x} \Delta E_{x}\right)<\varepsilon$ for all x (using the fact that we can ensure E satisfies that $m\left(A_{x} \Delta E_{x}\right)<\delta$ and so $\mu\left(A_{x} \Delta E_{x}\right)<\varepsilon$ by absolute continuity).

Thus, since $\left|\mu\left(A_{x}\right)-\mu\left(E_{x}\right)\right|<\varepsilon$ for all x, it suffices to show that

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto \mu\left(E_{x}\right)
\end{aligned}
$$

is continuous.
WLOG, let $E=\bigcup_{i=1}^{N}\left(a_{i}, b_{i}\right)$.
Let $\varepsilon>0$ be given and x be fixed. Then let δ be such that

$$
m(F)<\delta \Longrightarrow \mu(F)<\varepsilon
$$

by absolute continuity.
Then, whenever $|x-y|<\frac{\delta}{N}$, we have that

$$
\begin{aligned}
|f(x)-f(y)| & =\left|\mu\left(E_{x}\right)-\mu\left(E_{y}\right)\right| \\
& =\left|\mu\left(E_{x}\right)-\left(\mu\left(E_{y} \backslash E_{x}\right)+\mu\left(E_{y} \cap E_{x}\right)\right)\right| \\
& \left.=\mid \mu\left(E_{x}\right)-\mu\left(E_{x} \cap E_{y}\right)-\mu\left(E_{y} \backslash E_{x}\right)\right) \mid \\
& =\left|\mu\left(E_{x} \backslash E_{y}\right)-\mu\left(E_{y} \backslash E_{x}\right)\right| \\
& \leq \mu\left(E_{x} \backslash E_{y}\right) .
\end{aligned}
$$

Now, since for each interval of $E_{x} \backslash E_{y}$ we have $\left(a_{i}+x, b_{i}+x\right) \backslash\left(a_{i}+y, b_{i}+y\right)=I_{x \backslash y_{i}}$ has length at most $\frac{\delta}{N}$, so

$$
m\left(E_{x} \backslash E_{y}\right) \leq \sum_{i=1}^{N} m\left(I_{x \backslash y_{i}}\right)<N \frac{\delta}{N}=\delta
$$

so $\mu\left(E_{x} \backslash E_{y}\right)<\varepsilon$.
Thus, f is continuous.

Problem 2. Let f be a Lebesgue integrable function on \mathbb{R}, and assume that

$$
\sum_{n=1}^{\infty} \frac{1}{\left|a_{n}\right|}<\infty
$$

Prove that $g(x)=\sum_{n=1}^{\infty} f\left(a_{n} x\right)$ converges almost everywhere and is integrable on \mathbb{R}. Also, find an example of a Lebesgue integrable function f on \mathbb{R} such that $g(x)=\sum_{n=1}^{\infty} f(n x)$ converges almost everywhere but is not integrable.

Solution. Let (\mathbb{N}, ν) be the counting measure. Then since the σ-algebra of ν is the powerset of \mathbb{N}, f is $m \times \nu$ measurable.

Let $M=\int|f(x)| d x$.
Furthermore, since m and ν are σ-finite measure spaces, and $\left|f\left(a_{n} x\right)\right| \in L^{+}(m \times \nu)$, by Tonelli,

$$
\begin{array}{rlrl}
\int|g(x)| d x & =\int\left|\sum_{n=1}^{\infty} f\left(a_{n} x\right)\right| d x \\
& \leq \int \sum_{n=1}^{\infty}\left|f\left(a_{n} x\right)\right| d x & \\
& =\sum_{n=1}^{\infty} \int\left|f\left(a_{n} x\right)\right| d x & \\
& =\sum_{n=1}^{\infty} \int \frac{|f(u)|}{a_{n}} d u & u=a_{n} x \\
& =\sum_{n=1}^{\infty} \frac{M}{a_{n}}<\infty &
\end{array}
$$

since

$$
\sum_{n=1}^{\infty} \frac{1}{a_{n}} \leq \sum_{n=1}^{\infty} \frac{1}{\left|a_{n}\right|}<\infty
$$

Now, let $f(x)=\chi_{[0,1]}(x)$. Then $f \in L^{1}$. Furthermore,

$$
\begin{gathered}
f(n x)=\chi_{[0,1]}(n x)=\chi_{\left[0, \frac{1}{n}\right]}(x) \quad \text { since } 0 \leq n x \leq 1 \Longrightarrow 0 \leq x \leq \frac{1}{n} . \\
\sum_{n=1}^{\infty} \chi_{\left[0, \frac{1}{n}\right]}(x)<\infty
\end{gathered}
$$

for all $x \neq 0$ since for all $x \in\left[0, \frac{1}{n}\right]$, there exists some N such that $\frac{1}{N}<x$ so $\sum_{n=N}^{\infty} f(n x)=0$. Thus, $g(x)$ converges a.e..

Now, since $f(n x) \in L^{+}(m \times \nu)$ by the same reasoning as before,

$$
\int \sum_{n=1}^{\infty} \chi_{\left[0, \frac{1}{n}\right]}(x) d x=\sum_{n=1}^{\infty} \int \chi_{\left[0, \frac{1}{n}\right]}(x) d x=\sum_{n=1}^{\infty} m\left(\left[0, \frac{1}{n}\right]\right)=\sum_{n=1}^{\infty} \frac{1}{n}=\infty
$$

Kayla Orlinsky
Fall 2013

Problem 3. Assume $b>0$. Show that the Lebesgue Integral

$$
\int_{1}^{\infty} x^{-b} e^{\sin x} \sin (2 x) d x
$$

exists if and only if $b>1$.

Solution. $b>1$

$$
\int_{1}^{\infty} x^{-b} e^{\sin x} \sin (2 x) d x \leq \int_{1}^{\infty} e x^{-b} d x<\infty
$$

by p-test and since $|\sin a| \leq 1$ for all a.

$$
0<b \leq 1
$$

$$
\int_{1}^{\infty} x^{-b} e^{\sin x} \sin (2 x) d x \geq \sum_{n=1}^{\infty} \int_{n \pi / 12}^{(4 n+1) \pi / 12} e^{-1} x^{-b} \frac{1}{2} d x=\infty
$$

In other words, we restrict the domain to where $\sin (2 x) \geq \frac{1}{2}$ and this integral is still infinite. This implies that $\int f^{+} d x=\infty$. Similarly, restricting to where $\sin (2 x) \leq-\frac{1}{2}$ gives that $\int f^{-} d x=\infty$.

Thus, the integral does not exist.

Problem 4. Suppose that F is the distribution function of a Borel measure μ on \mathbb{R} with $\mu(\mathbb{R})=1$. Prove that

$$
\int_{-\infty}^{\infty}(F(x+a)-F(x)) d x=a
$$

for all $a>0$.

Solution. First, since $x+a>x$ because $a>0$

$$
\int_{\mathbb{R}}(F(x+a)-F(x)) d x=\int_{\mathbb{R}} \mu([x, x+a)) d x=\int_{\mathbb{R}} \int_{\mathbb{R}} \chi_{[x, x+a)} d \mu d m
$$

Now, since μ is finite and m is σ-finite, and $\chi_{[x, x+a)} \in L^{+}(m \times \mu)$ because μ is a Borel measure, the order of integration can be swapped and so we have

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} \chi_{[x, x+a)} d \mu d m=\int_{\mathbb{R}} \int_{\mathbb{R}} \chi_{[x, x+a)} d m d \mu=\int_{\mathbb{R}} a d \mu=a \mu(\mathbb{R})=a
$$

