Kayla Orlinsky Real Analysis Exam Fall 2013

Problem 1. Let μ be a finite Borel Measure on \mathbb{R} , which is absolutely continuous with respect to the Lebesgue measure m. Prove that $x \mapsto \mu(A + x)$ is continuous for every Borel set $A \subset \mathbb{R}$.

Solution. First, we will denote $A + x = A_x$. Now, because A is Borel and $\mu(A) < \infty$, for all $\varepsilon > 0$ there exists some set E which is a finite union of open intervals such that $\mu(A\Delta E) < \varepsilon$.

Now, because $\mu \ll m$, and

$$m(A_x \Delta E_x) = m(A_x \cup E_x) - m(A_x \cap E_x)$$

= $m((A \cup E)_x) - m((A \cap E)_x)$
= $m(A \cup E)) - m(A \cap E)$
= $m(A \Delta E)$

we have that $\mu(A_x \Delta E_x) < \varepsilon$ for all x (using the fact that we can ensure E satisfies that $m(A_x \Delta E_x) < \delta$ and so $\mu(A_x \Delta E_x) < \varepsilon$ by absolute continuity).

Thus, since $|\mu(A_x) - \mu(E_x)| < \varepsilon$ for all x, it suffices to show that

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \mu(E_x)$$

is continuous.

WLOG, let $E = \bigcup_{i=1}^{N} (a_i, b_i)$.

Let $\varepsilon > 0$ be given and x be fixed. Then let δ be such that

$$m(F) < \delta \implies \mu(F) < \varepsilon$$

by absolute continuity.

Then, whenever $|x - y| < \frac{\delta}{N}$, we have that

$$|f(x) - f(y)| = |\mu(E_x) - \mu(E_y)|$$

= $|\mu(E_x) - (\mu(E_y \setminus E_x) + \mu(E_y \cap E_x))|$
= $|\mu(E_x) - \mu(E_x \cap E_y) - \mu(E_y \setminus E_x))|$
= $|\mu(E_x \setminus E_y) - \mu(E_y \setminus E_x)|$
 $\leq \mu(E_x \setminus E_y).$

Now, since for each interval of $E_x \setminus E_y$ we have $(a_i + x, b_i + x) \setminus (a_i + y, b_i + y) = I_{x \setminus y_i}$ has length at most $\frac{\delta}{N}$, so

$$m(E_x \setminus E_y) \le \sum_{i=1}^N m(I_{x \setminus y_i}) < N \frac{\delta}{N} = \delta$$

so $\mu(E_x \setminus E_y) < \varepsilon$.

Thus, f is continuous.

Å

Problem 2. Let f be a Lebesgue integrable function on \mathbb{R} , and assume that

$$\sum_{n=1}^{\infty} \frac{1}{|a_n|} < \infty$$

Prove that $g(x) = \sum_{n=1}^{\infty} f(a_n x)$ converges almost everywhere and is integrable on \mathbb{R} . Also, find an example of a Lebesgue integrable function f on \mathbb{R} such that $g(x) = \sum_{n=1}^{\infty} f(nx)$ converges almost everywhere but is not integrable.

Solution. Let (\mathbb{N}, ν) be the counting measure. Then since the σ -algebra of ν is the powerset of \mathbb{N} , f is $m \times \nu$ measurable.

Let $M = \int |f(x)| dx$.

Furthermore, since m and ν are σ -finite measure spaces, and $|f(a_n x)| \in L^+(m \times \nu)$, by Tonelli,

$$\int |g(x)| dx = \int \left| \sum_{n=1}^{\infty} f(a_n x) \right| dx$$

$$\leq \int \sum_{n=1}^{\infty} |f(a_n x)| dx$$

$$= \sum_{n=1}^{\infty} \int |f(a_n x)| dx$$

$$= \sum_{n=1}^{\infty} \int \frac{|f(u)|}{a_n} du \qquad u = a_n x$$

$$du = a_n dx$$

$$= \sum_{n=1}^{\infty} \frac{M}{a_n} < \infty$$

since

$$\sum_{n=1}^{\infty} \frac{1}{a_n} \le \sum_{n=1}^{\infty} \frac{1}{|a_n|} < \infty.$$

Now, let $f(x) = \chi_{[0,1]}(x)$. Then $f \in L^1$. Furthermore,

$$f(nx) = \chi_{[0,1]}(nx) = \chi_{[0,\frac{1}{n}]}(x)$$
 since $0 \le nx \le 1 \implies 0 \le x \le \frac{1}{n}$.

$$\sum_{n=1}^{\infty} \chi_{[0,\frac{1}{n}]}(x) < \infty$$

for all $x \neq 0$ since for all $x \in [0, \frac{1}{n}]$, there exists some N such that $\frac{1}{N} < x$ so $\sum_{n=N}^{\infty} f(nx) = 0$. Thus, g(x) converges a.e..

Now, since $f(nx) \in L^+(m \times \nu)$ by the same reasoning as before,

$$\int \sum_{n=1}^{\infty} \chi_{[0,\frac{1}{n}]}(x) dx = \sum_{n=1}^{\infty} \int \chi_{[0,\frac{1}{n}]}(x) dx = \sum_{n=1}^{\infty} m([0,\frac{1}{n}]) = \sum_{n=1}^{\infty} \frac{1}{n} = \infty.$$

Problem 3. Assume b > 0. Show that the Lebesgue Integral

$$\int_{1}^{\infty} x^{-b} e^{\sin x} \sin(2x) dx$$

exists if and only if b > 1.

Solution. b > 1

0 <

$$\int_{1}^{\infty} x^{-b} e^{\sin x} \sin(2x) dx \le \int_{1}^{\infty} ex^{-b} dx < \infty$$

by *p*-test and since $|\sin a| \leq 1$ for all *a*.

$$\overline{b \leq 1}$$

$$\int_{1}^{\infty} x^{-b} e^{\sin x} \sin(2x) dx \geq \sum_{n=1}^{\infty} \int_{n\pi/12}^{(4n+1)\pi/12} e^{-1} x^{-b} \frac{1}{2} dx = \infty.$$

In other words, we restrict the domain to where $\sin(2x) \ge \frac{1}{2}$ and this integral is still infinite. This implies that $\int f^+ dx = \infty$. Similarly, restricting to where $\sin(2x) \le -\frac{1}{2}$ gives that $\int f^- dx = \infty$.

Thus, the integral does not exist.

H

Problem 4. Suppose that F is the distribution function of a Borel measure μ on \mathbb{R} with $\mu(\mathbb{R}) = 1$. Prove that

$$\int_{-\infty}^{\infty} (F(x+a) - F(x))dx = a$$

for all a > 0.

Solution. First, since x + a > x because a > 0

$$\int_{\mathbb{R}} (F(x+a) - F(x)) dx = \int_{\mathbb{R}} \mu([x, x+a)) dx = \int_{\mathbb{R}} \int_{\mathbb{R}} \chi_{[x, x+a)} d\mu dm$$

Now, since μ is finite and m is σ -finite, and $\chi_{[x,x+a)} \in L^+(m \times \mu)$ because μ is a Borel measure, the order of integration can be swapped and so we have

$$\int_{\mathbb{R}} \int_{\mathbb{R}} \chi_{[x,x+a)} d\mu dm = \int_{\mathbb{R}} \int_{\mathbb{R}} \chi_{[x,x+a)} dm d\mu = \int_{\mathbb{R}} a d\mu = a\mu(\mathbb{R}) = a.$$

M	
Ð	