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Kayla Orlinsky
Real Analysis Exam Spring 2012

Note! There are a multitude of typos in the questions and hints for
this exam (mainly in questions 3 and 4). To stay true to the exam, the
typos in the question statements have not been rectified. My solutions are
to what I perceived each question to mean.

Problem 1. Let f and g be real integrable functions on a o-finite measure space
(X, M, ), and for t € R let

={ze€E|f(x) >t} and G;={xecFE|g(x)>t}.

Show that

J T =gldn= [ w((FAG) U (G\F)di

Solution. Since f, g are integrable, they are measurable and so F; and G; are pg-measurable
(because F; = f~1(t,00) and G; = g7 (¢, 0)).

Thus, xrag, € L1 (pu x m) and since m and p are o-finite, by Tonelli,

/Mﬂmmﬁz//Xmﬂwm
R RJX

= / / XF.aGdtdp

/ /XFt\Gt+XGt\Ftdth

Uﬁ ﬁ+/' ﬁLm on F,NGE, g(t) <t < f(t)

Jx
/ o1z 10 T 9T /{z|f<g} glo) = fle)dp
- flra

x)|dp
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Problem 2. Show that
/00 dx
x  2%(sin?x)1/3

is finite.

Solution. Let € > 0. Then since
sin?/?(km + ) = sin?3(e) > ¢,

(and similarly for sin?3(km —¢) = sin?/3(e) since we are squaring sin which is an odd function)
we have that

1 < 1
sin?3x ~ ¢
near kw. This is easily verified since
d 9 2 2cosw
/3 _ A —1/3 _ +
sin“?x — x) = —sin rcosx—1=—+—2>0 near 0
dx s ) 3 3sin'/P gy —
and since
sin??g — 2 =0 atx =0

we have that sin?® z — x is increasing and positive near 07 so in that region, sin®?3z > x.

fe’e) (k+1)7
/ g = Z / 736“’
~ wx2sin?/ 228in?/3

it suffices to show that the integral near any k7 is small.

Now, since

However, using the above, we have that

km+e 1 km+e 1
kr—e 22sin?°x kr—e IT2€

_1 km+4e

xre

km—e

e
kr+e¢ km—c¢

—(km —¢) km+¢e
<(l<;7r —e)kr+¢e)  (kn+e)(km — 5))

2e
(k27r2 — 52)

2

k2712 — g2

M= = M|
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Thus,

00 (k+1)m
[ Y ——
x x2sin?/ 22sin?/3 ¢
o

(k+1)m—e kn+e
[ e S T
k

=y ke 22 sin?/ kr—e x2sin?/3 g

_/ —dx%—ZkQZ 5 < 00
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Problem 3. A collection of functions {fs}aeca C L' on the measure space (X, M, ) is
said to be uniformly integrable if

lim sup

fal = 0.
MﬂooaeA/{Ilfa(sz}' |

(a) Prove that if f € L' then {f} is uniformly integrable.

(b) Prove that if {f,}aea and {fs}ges are two collections of uniformly integrable
functions then {f,},caus is uniformly integrable.

(c) Show that if u(X) < 0o, and {f,}aea C L' is uniformly integrable then

sup [ |fldp < oo.
acA

Give an example to show that the conclusion fails without the condition u(X) < oc.

(d) Again, let u(X) < oo and suppose {f,}°>, C L'(u) such that f, — fy a.e. and
[ fuldie — [|foldu. Prove that {f,}>2, is uniformly integrable. Hint: Consider
some ¢/, a continuous bounded function on [0, 00), equal to 0 on [M, 00), for which

(L[] > M} < [t] = oar([2])-

Solution.

(a) Since f € L', {x| f(x) = oo} is p-null and so u({z||f(z)] > M}) — 0 as M — oc.
Thus, if [ |f|du = N

dm o F@de < lim Nu({]1f(@)] > M)

lim sup / |fo| = lim max{sup | fal,sup ‘f,8|}
M—00 aeAUB /{z | falz)>M} M—o0 acA J{z| fa(z)>M} peB J{z| fa(z)>M}

= lim sup/ | fal WLOG take sup > sup
M=00 qep Nz | fo(x)>M} acA  BEB

=0 since {f,} are uniformly integrable.

sup [ 1/.ld :sup[/ Joldy+ [ fad]
acA [faldy acA {zlfa(w)>M}| s {x\fa(x)SM}| [y

<su / oldp + Mp(X
<swp| [ o Mu(x)

acA

< 00
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Now, let f,(z) = -= on [0, 00) with the Lebesgue measure. Then {z | f,(z) > M} is
m-null for M > 1 so

| faldm =0

lim sup/
M—00 peN JH{z| fn(z)>M}

but 1z diverges as an integral for all n, so

n.

sup —dxr = 0.
neNJ1  NT

(d) From (c),
oo > sup [ |fuldp > limsup [ |ifd= lim [ |.ld= [ |oldp.

So fo € Ll(,u)

Again using (c), we note that since f,, € L', for all n and for all € > 0, there exists
some M, such that

/ fua)ldpe < =
{2 [ fnl()[>Mn}

and
00 > sup nldp > sup n(x)|dp.

So, because the sup is finite, and since each f, € L', for all € > 0 there exists some
M > 0 such that

|[fo(@)ldp < & (1)

sup

n /{wl | fn(2)|>M}
Finally, this implies that

| fn()|dp =0

lim sup/
M=oo n Ja||fn(x)|>M}

and so {f,} are uniformly integrable.

(1) Note that if no such M exists, then for all M
sup folx)|dp > ¢
n x| |falx)|>M} (@)l

and so there is some [ |f,|du such that

€

fn-iﬁdﬂ‘i‘*ESup fnxd,UZ€
/{Zlfn(ﬂﬁ)|>M} (@)l 2 n Ha||falz)|>M} 7a(@)

which implies that for all M

9
falz)|dp > =
/{wllfn(w)|>M}’ (@)ldp 2

which is a contradiction OF |f,(x)| € L.
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Problem 4. Let M be the collection of all finte measures on the measure space (X, M).

(a) Show that
d(v, \) = 2 sup |(E) — \(E)|
EeM
defines a metric on M.

(b) For any pu € M, that dominates measures v and A with v(X) = A\(X) =1, let

dv d\

= — d ==,
P= an 1=

Prove that
A, \) = [ Ipte) = a(a)ldu =2 (1= [(mingp(z), g(@)})dp).

Hint: notice that u(E) — A(E) = A(E€) — v(E°).

Solution.

(a) e d(r,\) >0 forall \,v € M.
e d(v,\) =0 < v = \forall \,» € M is immediate from the definition.
d(v,\) =2sup |[V(E) — AME)| = 2sup |\(E) — v(E)| = d(\,v) for all \,v € M.
E E

d(v, p) +d(p, A) = 2sup [v(E) — p(E)| + 2sup |u(E) — ME))]
= 2sup(|v(E) — p(E)| + [u(E) = ME)|) - supA+sup B > sup(4 + B)
> QS%p |V(E) — A(E)| Triangle Inequality
=d(v,\)

So d is a metric on M.

(b) Note that since v(E) = A(F) = 1, for all E, we have that

V(E) + v(E) = A(E) + M(E°) = v(E) — \(E) = ME°) — v(E°).

Claim 1. ZSup‘/ (p—q)d,u‘ =/|p— qldp
E E
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Proof.
2sup [v(E) — A(E)| = sup 2(v(E) — A(E))]
= sup |v(E) — A(E) + ME*) — v(E°)|
< sup([p(E) = A(E)[ + [v(E) = AE)))

= sup (’/E(p - Q)du‘ - ’/Ec(p — q)duD
< /\p—qldu

Let £ = {z|p(z) — q(z) > 0}. Then

/X lp — qldp = /E(p— Q)du+/EC(q — p)du
=v(E) — A\(E) + A\(E°) — v(E")
=2(v(E) - AE))
< 2sup |v(E) — A(E)]

= 2sup / (p— Q)du’
E |/E
¥
Now, assuming that "dominates" implies that v << p and A << pu, we have that
y(X) = /pd,u: 1 and A(X)= /qd,u: 1.
Finally, this gives
d(v,\) =2 sup [v(E) — A\(E)]
EeM
=2sup‘/ pdu—/ qdu’
Eem VE E
= 2sup / (p— Q)dﬁb’
E |JE
= / Ip — qldp from the claim
Z/(p—q)dqu[E (¢ — p)dp
= [ (= min{p,q})dp + [ (a—min{p. a})d
=2 <1 - /min{q,p})du)
¥



