Kayla Orlinsky
 Real Analysis Exam Spring 2012

Note! There are a multitude of typos in the questions and hints for this exam (mainly in questions 3 and 4). To stay true to the exam, the typos in the question statements have not been rectified. My solutions are to what I perceived each question to mean.

Problem 1. Let f and g be real integrable functions on a σ-finite measure space (X, \mathcal{M}, μ) , and for $t \in \mathbb{R}$ let

$$
F_{t}=\{x \in E \mid f(x)>t\} \quad \text { and } \quad G_{t}=\{x \in E \mid g(x)>t\} .
$$

Show that

$$
\int_{X}|f-g| d \mu=\int_{-\infty}^{\infty} \mu\left(\left(F_{t} \backslash G_{t}\right) \cup\left(G_{t} \backslash F_{t}\right)\right) d t .
$$

Solution. Since f, g are integrable, they are measurable and so F_{t} and G_{t} are μ-measurable (because $F_{t}=f^{-1}(t, \infty)$ and $G_{t}=g^{-1}(t, \infty)$).

Thus, $\chi_{F_{t} \Delta G_{t}} \in L^{+}(\mu \times m)$ and since m and μ are σ-finite, by Tonelli,

$$
\begin{aligned}
\int_{\mathbb{R}} \mu\left(F_{t} \Delta G_{t}\right) d t & =\int_{\mathbb{R}} \int_{X} \chi_{F_{t} \Delta G_{t}} d \mu d t \\
& =\int_{X} \int_{\mathbb{R}} \chi_{F_{t} \Delta G_{t}} d t d \mu \\
& =\int_{X} \int_{\mathbb{R}} \chi_{F_{t} \backslash G_{t}}+\chi_{G_{t} \backslash F_{t}} d t d \mu \\
& =\int_{X}\left[\int_{g(x)}^{f(x)} d t+\int_{f(x)}^{g(x)} d t\right] d \mu \quad \text { on } F_{t} \cap G_{t}^{c}, g(t) \leq t<f(t) \\
& =\int_{\{x \mid f \geq g\}} f(x)-g(x) d \mu+\int_{\{x \mid f \leq g\}} g(x)-f(x) d \mu \\
& =\int_{X}|f(x)-g(x)| d \mu
\end{aligned}
$$

Problem 2. Show that

$$
\int_{\pi}^{\infty} \frac{d x}{x^{2}\left(\sin ^{2} x\right)^{1 / 3}}
$$

is finite.

Solution. Let $\varepsilon>0$. Then since

$$
\sin ^{2 / 3}(k \pi+\varepsilon)=\sin ^{2 / 3}(\varepsilon) \geq \varepsilon
$$

(and similarly for $\sin ^{2 / 3}(k \pi-\varepsilon)=\sin ^{2 / 3}(\varepsilon)$ since we are squaring sin which is an odd function) we have that

$$
\frac{1}{\sin ^{2 / 3} x} \leq \frac{1}{\varepsilon}
$$

near $k \pi$. This is easily verified since

$$
\frac{d}{d x}\left(\sin ^{2 / 3} x-x\right)=\frac{2}{3} \sin ^{-1 / 3} x \cos x-1=\frac{2 \cos x}{3 \sin ^{1 / 3} x} \geq 0 \quad \text { near } 0^{+}
$$

and since

$$
\sin ^{2 / 3} x-x=0 \quad \text { at } x=0
$$

we have that $\sin ^{2 / 3} x-x$ is increasing and positive near 0^{+}so in that region, $\sin ^{2 / 3} x \geq x$.
Now, since

$$
\int_{\pi}^{\infty} \frac{1}{x^{2} \sin ^{2 / 3} x} d x=\sum_{k=1}^{\infty} \int_{k \pi}^{(k+1) \pi} \frac{1}{x^{2} \sin ^{2 / 3} x} d x
$$

it suffices to show that the integral near any $k \pi$ is small.
However, using the above, we have that

$$
\begin{aligned}
\int_{k \pi-\varepsilon}^{k \pi+\varepsilon} \frac{1}{x^{2} \sin ^{2 / 3} x} d x & \leq \int_{k \pi-\varepsilon}^{k \pi+\varepsilon} \frac{1}{x^{2} \varepsilon} d x \\
& =\left.\frac{-1}{x \varepsilon}\right|_{k \pi-\varepsilon} ^{k \pi+\varepsilon} \\
& =\frac{1}{\varepsilon}\left(\frac{-1}{k \pi+\varepsilon}+\frac{1}{k \pi-\varepsilon}\right) \\
& =\frac{1}{\varepsilon}\left(\frac{-(k \pi-\varepsilon)}{(k \pi-\varepsilon)(k \pi+\varepsilon)}+\frac{k \pi+\varepsilon}{(k \pi+\varepsilon)(k \pi-\varepsilon)}\right) \\
& =\frac{1}{\varepsilon}\left(\frac{2 \varepsilon}{k^{2} \pi^{2}-\varepsilon^{2}}\right) \\
& =\frac{2}{k^{2} \pi^{2}-\varepsilon^{2}}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\int_{\pi}^{\infty} \frac{1}{x^{2} \sin ^{2 / 3} x} d x & =\sum_{k=1}^{\infty} \int_{k \pi}^{(k+1) \pi} \frac{1}{x^{2} \sin ^{2 / 3} x} d x \\
& =\sum_{k=1}^{\infty} \int_{k \pi+\varepsilon}^{(k+1) \pi-\varepsilon} \frac{1}{x^{2} \sin ^{2 / 3} x} d x+\sum_{k=1}^{\infty} \int_{k \pi-\varepsilon}^{k \pi+\varepsilon} \frac{1}{x^{2} \sin ^{2 / 3} x} d x \\
& \leq \int_{\pi}^{\infty} \frac{1}{x^{2} \varepsilon} d x+\sum_{k=1}^{\infty} \frac{2}{k^{2} \pi^{2}-\varepsilon^{2}}<\infty
\end{aligned}
$$

Problem 3. A collection of functions $\left\{f_{\alpha}\right\}_{\alpha \in \mathcal{A}} \subset L^{1}$ on the measure space (X, \mathcal{M}, μ) is said to be uniformly integrable if

$$
\lim _{M \rightarrow \infty} \sup _{\alpha \in \mathcal{A}} \int_{\left\{x| | f_{\alpha}(x)>M\right\}}\left|f_{\alpha}\right|=0
$$

(a) Prove that if $f \in L^{1}$ then $\{f\}$ is uniformly integrable.
(b) Prove that if $\left\{f_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ and $\left\{f_{\beta}\right\}_{\beta \in \mathcal{B}}$ are two collections of uniformly integrable functions then $\left\{f_{\gamma}\right\}_{\gamma \in \mathcal{A} \cup \mathcal{B}}$ is uniformly integrable.
(c) Show that if $\mu(X)<\infty$, and $\left\{f_{\alpha}\right\}_{\alpha \in \mathcal{A}} \subset L^{1}$ is uniformly integrable then

$$
\sup _{\alpha \in \mathcal{A}} \int|f| d \mu<\infty
$$

Give an example to show that the conclusion fails without the condition $\mu(X)<\infty$.
(d) Again, let $\mu(X)<\infty$ and suppose $\left\{f_{n}\right\}_{n=0}^{\infty} \subset L^{1}(\mu)$ such that $f_{n} \rightarrow f_{0}$ a.e. and $\int\left|f_{n}\right| d \mu \rightarrow \int\left|f_{0}\right| d \mu$. Prove that $\left\{f_{n}\right\}_{n=0}^{\infty}$ is uniformly integrable. Hint: Consider some ϕ_{M}, a continuous bounded function on $[0, \infty)$, equal to 0 on $[M, \infty)$, for which $|t| \mathbf{1}\{|t|>M\} \leq|t|-\phi_{M}(|t|)$.

Solution.

(a) Since $f \in L^{1},\{x \mid f(x)=\infty\}$ is μ-null and so $\mu(\{x||f(x)|>M\}) \rightarrow 0$ as $M \rightarrow \infty$. Thus, if $\int|f| d \mu=N$

$$
\lim _{M \rightarrow \infty} \int_{\{x \mid f(x)>M\}}|f(x)| d \mu \leq \lim _{M \rightarrow \infty} N \mu(\{x| | f(x) \mid>M\})=0
$$

(b)

$$
\begin{aligned}
\lim _{M \rightarrow \infty} \sup _{\alpha \in \mathcal{A} \cup \mathcal{B}} \int_{\left\{x \mid f_{\alpha}(x)>M\right\}}\left|f_{\alpha}\right| & =\lim _{M \rightarrow \infty} \max \left\{\sup _{\alpha \in \mathcal{A}} \int_{\left\{x \mid f_{\alpha}(x)>M\right\}}\left|f_{\alpha}\right|, \sup _{\beta \in \mathcal{B}} \int_{\left\{x \mid f_{\beta}(x)>M\right\}}\left|f_{\beta}\right|\right\} \\
& =\lim _{M \rightarrow \infty} \sup _{\alpha \in \mathcal{A}} \int_{\left\{x \mid f_{\alpha}(x)>M\right\}}\left|f_{\alpha}\right| \quad \text { WLOG take } \sup _{\alpha \in \mathcal{A}} \geq \sup _{\beta \in \mathcal{B}} \\
& =0 \quad \text { since }\left\{f_{\alpha}\right\} \text { are uniformly integrable. }
\end{aligned}
$$

(c)

$$
\begin{aligned}
\sup _{\alpha \in \mathcal{A}} \int\left|f_{\alpha}\right| d \mu & =\sup _{\alpha \in \mathcal{A}}\left[\int_{\left\{x \mid f_{\alpha}(x)>M\right\}}\left|f_{\alpha}\right| d \mu+\int_{\left\{x \mid f_{\alpha}(x) \leq M\right\}}\left|f_{\alpha}\right| d \mu\right] \\
& \leq \sup _{\alpha \in \mathcal{A}}\left[\int_{\left\{x \mid f_{\alpha}(x)>M\right\}}\left|f_{\alpha}\right| d \mu+M \mu(X)\right]<\infty
\end{aligned}
$$

Now, let $f_{n}(x)=\frac{1}{n x}$ on $[0, \infty)$ with the Lebesgue measure. Then $\left\{x \mid f_{n}(x)>M\right\}$ is m-null for $M \geq 1$ so

$$
\lim _{M \rightarrow \infty} \sup _{n \in \mathbb{N}} \int_{\left\{x \mid f_{n}(x)>M\right\}}\left|f_{n}\right| d m=0
$$

but $\frac{1}{n x}$ diverges as an integral for all n, so

$$
\sup _{n \in \mathbb{N}} \int_{1}^{\infty} \frac{1}{n x} d x=\infty
$$

(d) From (c),

$$
\infty>\sup _{n \in \mathbb{N}} \int\left|f_{n}\right| d \mu \geq \limsup _{n \in \mathbb{N}} \int\left|f_{n}\right| d \mu=\lim _{n \rightarrow \infty} \int\left|f_{n}\right| d \mu=\int\left|f_{0}\right| d \mu
$$

So $f_{0} \in L^{1}(\mu)$.
Again using (c), we note that since $f_{n} \in L^{1}$, for all n and for all $\varepsilon>0$, there exists some M_{n} such that

$$
\int_{\left\{x| | f_{n}(x) \mid>M_{n}\right\}}\left|f_{n}(x)\right| d \mu<\varepsilon
$$

and

$$
\infty>\sup _{n \in \mathbb{N}} \int\left|f_{n}\right| d \mu \geq \sup _{n \in \mathbb{N}} \int_{\left\{x| | f_{n}(x) \mid>M_{n}\right\}}\left|f_{n}(x)\right| d \mu
$$

So, because the sup is finite, and since each $f_{n} \in L^{1}$, for all $\varepsilon>0$ there exists some $M>0$ such that

$$
\begin{equation*}
\sup _{n} \int_{\left\{x| | f_{n}(x) \mid>M\right\}}\left|f_{n}(x)\right| d \mu<\varepsilon \tag{1}
\end{equation*}
$$

Finally, this implies that

$$
\lim _{M \rightarrow \infty} \sup _{n} \int_{\left\{x| | f_{n}(x) \mid>M\right\}}\left|f_{n}(x)\right| d \mu=0
$$

and so $\left\{f_{n}\right\}$ are uniformly integrable.
(1) Note that if no such M exists, then for all M

$$
\sup _{n} \int_{\left\{x| | f_{n}(x) \mid>M\right\}}\left|f_{n}(x)\right| d \mu \geq \varepsilon
$$

and so there is some $\int\left|f_{n}\right| d \mu$ such that

$$
\int_{\left\{x| | f_{n}(x) \mid>M\right\}}\left|f_{n}(x)\right| d \mu+\frac{\varepsilon}{2} \geq \sup _{n} \int_{\left\{x| | f_{n}(x) \mid>M\right\}}\left|f_{n}(x)\right| d \mu \geq \varepsilon
$$

which implies that for all M

$$
\int_{\left\{x| | f_{n}(x) \mid>M\right\}}\left|f_{n}(x)\right| d \mu \geq \frac{\varepsilon}{2}
$$

which is a contradiction OF $\left|f_{n}(x)\right| \in L^{1}$.

Problem 4. Let \mathbb{M} be the collection of all finte measures on the measure space (X, \mathcal{M}).
(a) Show that

$$
d(\nu, \lambda)=2 \sup _{E \in \mathcal{M}}|\nu(E)-\lambda(E)|
$$

defines a metric on \mathbb{M}.
(b) For any $\mu \in \mathbb{M}$, that dominates measures ν and λ with $\nu(X)=\lambda(X)=1$, let

$$
p=\frac{d \nu}{d \mu} \quad \text { and } \quad q=\frac{d \lambda}{d \mu} .
$$

Prove that

$$
d(\nu, \lambda)=\int|p(x)-q(x)| d \mu=2\left(1-\int(\min \{p(x), q(x)\}) d \mu\right)
$$

Hint: notice that $\mu(E)-\lambda(E)=\lambda\left(E^{c}\right)-\nu\left(E^{c}\right)$.

Solution.

(a) - $d(\nu, \lambda) \geq 0$ for all $\lambda, \nu \in \mathbb{M}$.

- $d(\nu, \lambda)=0 \Longleftrightarrow \nu=\lambda$ for all $\lambda, \nu \in \mathbb{M}$ is immediate from the definition.
- $d(\nu, \lambda)=2 \sup _{E}|\nu(E)-\lambda(E)|=2 \sup _{E}|\lambda(E)-\nu(E)|=d(\lambda, \nu)$ for all $\lambda, \nu \in \mathbb{M}$.
-

$$
\begin{aligned}
d(\nu, \mu)+d(\mu, \lambda) & =2 \sup _{E}|\nu(E)-\mu(E)|+2 \sup _{E}|\mu(E)-\lambda(E)| \\
& \geq 2 \sup _{E}(|\nu(E)-\mu(E)|+|\mu(E)-\lambda(E)|) \quad \sup A+\sup B \geq \sup (A+B) \\
& \geq 2 \sup _{E}|\nu(E)-\lambda(E)| \quad \text { Triangle Inequality } \\
& =d(\nu, \lambda)
\end{aligned}
$$

So d is a metric on \mathbb{M}.
(b) Note that since $\nu(E)=\lambda(E)=1$, for all E, we have that

$$
\nu(E)+\nu\left(E^{c}\right)=\lambda(E)+\lambda\left(E^{c}\right) \Longrightarrow \nu(E)-\lambda(E)=\lambda\left(E^{c}\right)-\nu\left(E^{c}\right)
$$

Claim 1. $2 \sup _{E}\left|\int_{E}(p-q) d \mu\right|=\int|p-q| d \mu$

Proof. \leq

$$
\begin{aligned}
2 \sup _{E}|\nu(E)-\lambda(E)| & =\sup _{E}|2(\nu(E)-\lambda(E))| \\
& =\sup _{E}\left|\nu(E)-\lambda(E)+\lambda\left(E^{c}\right)-\nu\left(E^{c}\right)\right| \\
& \leq \sup _{E}\left(|\nu(E)-\lambda(E)|+\left|\nu\left(E^{c}\right)-\lambda\left(E^{c}\right)\right|\right) \\
& =\sup _{E}\left(\left|\int_{E}(p-q) d \mu\right|+\left|\int_{E^{c}}(p-q) d \mu\right|\right) \\
& \leq \int|p-q| d \mu
\end{aligned}
$$

\geq Let $E=\{x \mid p(x)-q(x) \geq 0\}$. Then

$$
\begin{aligned}
\int_{X}|p-q| d \mu & =\int_{E}(p-q) d \mu+\int_{E^{c}}(q-p) d \mu \\
& =\nu(E)-\lambda(E)+\lambda\left(E^{c}\right)-\nu\left(E^{c}\right) \\
& =2(\nu(E)-\lambda(E)) \\
& \leq 2 \sup |\nu(E)-\lambda(E)| \\
& =2 \sup _{E}\left|\int_{E}(p-q) d \mu\right|
\end{aligned}
$$

Now, assuming that "dominates" implies that $\nu \ll \mu$ and $\lambda \ll \mu$, we have that

$$
\nu(X)=\int p d \mu=1 \quad \text { and } \quad \lambda(X)=\int q d \mu=1
$$

Finally, this gives

$$
\begin{aligned}
d(\nu, \lambda) & =2 \sup _{E \in \mathcal{M}}|\nu(E)-\lambda(E)| \\
& =2 \sup _{E \in \mathcal{M}}\left|\int_{E} p d \mu-\int_{E} q d \mu\right| \\
& =2 \sup _{E}\left|\int_{E}(p-q) d \mu\right| \\
& =\int|p-q| d \mu \quad \text { from the claim } \\
& =\int_{E}(p-q) d \mu+\int_{E^{c}}(q-p) d \mu \\
& =\int_{X}(p-\min \{p, q\}) d \mu+\int_{X}(q-\min \{p, q\}) d \mu \\
& \left.=2\left(1-\int \min \{q, p\}\right) d \mu\right)
\end{aligned}
$$

