Kayla Orlinsky
 Real Analysis Exam Fall 2012

Problem 1. Let m be the Lebesgue measure on $X=[0,1]$. If

$$
m\left(\limsup _{n \rightarrow \infty} A_{n}\right)=1, \quad m\left(\liminf _{n \rightarrow \infty} B_{n}\right)=1
$$

prove that $m\left(\limsup _{n \rightarrow \infty}\left(A_{n} \cap B_{n}\right)\right)=1$, where

$$
\limsup _{n \rightarrow \infty} A_{n}=\cap_{n=1}^{\infty} \cup_{k=n}^{\infty} A_{k}, \quad \liminf _{n \rightarrow \infty} B_{n}=\cup_{n=1}^{\infty} \cap_{k=n}^{\infty} B_{k}
$$

Solution. Let $A=\limsup A_{n}$ and $B=\lim \sup B_{n}$. Since

$$
1=m\left(\liminf B_{n}\right) \leq m\left(\lim \sup B_{n}\right) \leq m(X)=1 \Longrightarrow m(B)=1
$$

Futhermore, since $m(A)=m(B)=m(X)=1, m\left(A^{c}\right)=m\left(B^{c}\right)=0$.
Now,
$\lim \sup A_{n} \cap B_{n}=\bigcap n=1^{\infty} \bigcup_{k=n}^{\infty}\left(A_{k} \cap B_{k}\right)=\bigcap_{n=1}^{\infty}\left(\bigcup_{k=n}^{\infty} A_{k} \cap \bigcup_{k=n}^{\infty} B_{k}\right)=\lim \sup A_{n} \bigcap \lim \sup B_{n}$.
Finally,

$$
1=m(A \cup B)=m(A)+m(B)-m(A \cap B)=2-m(A \cap B) \Longrightarrow m(A \cap B)=1
$$

since $m(A \cup B) \geq m(A)=1$.
Thus,

$$
m(A \cap B)=m\left(\limsup _{n \rightarrow \infty}\left(A_{n} \cap B_{n}\right)\right)=1
$$

Problem 2. Assume that $f: X \rightarrow[0, \infty)$ is measurable. Find

$$
\lim _{n} \int_{X} n \log \left[1+\frac{f(x)}{n}\right] d \mu
$$

Solution.

$(n+1) \log \left(1+\frac{f}{n+1}\right)-n \log \left(1+\frac{f}{n}\right)=n \log \left(\frac{1+\frac{f}{n+1}}{1+\frac{f}{n}}\right)-\log \left(1+\frac{f}{n+1}\right) \leq 0 \quad$ for all n since

$$
\frac{1+\frac{f}{n+1}}{1+\frac{f}{n}} \leq 1 \quad \text { and } \quad 1+\frac{f}{n+1} \geq 1
$$

Thus, we have that $f_{n}=n \log \left(1+\frac{f}{n}\right)$ is decreasing in terms of n so $f_{n+1} \leq f_{n}$. Now, because f is measurable, f_{n} is measurable since the natural log is continuous.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} f_{n}(x) & =\lim _{n \rightarrow \infty} \frac{\log \left(1+\frac{f(x)}{n}\right)}{\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{1}{1+\frac{f(x)}{n}} \frac{-f(x)}{n^{2}}}{\frac{-1}{n^{2}}} \quad \text { L'Hopital's Rule } \\
& =\lim _{n \rightarrow \infty} \frac{f(x)}{1+\frac{f(x)}{n}} \\
& =f(x) \quad \text { for all } x .
\end{aligned}
$$

Now, let $g_{n}(x)=f(x)-f_{n}(x)$. Then

$$
f(x) \geq \log (1+f(x))=f_{1}(x)
$$

for all $f(x) \geq 0$ and since $f_{1}(x) \geq f_{n}(x)$ for all $n \geq 1$, we have that $g_{n}(x) \geq 0$ for all x. We would like to use the Monotone Convergence Theorem on g_{n}.

1. $\left\{g_{n}\right\} \in L^{+}$since it is measurable and positive.
2. $f_{n} \geq f_{n+1}$ so $g_{n} \leq g_{n+1}$ for all n.
3. $g_{n} \rightarrow 0$ for all x since $f_{n} \rightarrow f(x)$.

Thus, by MCT,

$$
\lim _{n} \int_{X} n \log \left[1+\frac{f(x)}{n}\right] d \mu=\int_{X} f(x) d x
$$

Problem 3. Let $f \in L^{1}(m)$. For $k=1,2, \ldots$ let f_{k} be the step function defined by

$$
\begin{gathered}
f_{k}(x)=k \int_{j / k}^{(j+1) / k} f(t) d t \\
\text { for } \frac{j}{k}<x \leq \frac{j+1}{k}, j=0, \pm 1, \ldots
\end{gathered}
$$

Show that f_{k} converge to f in L^{1} as $k \rightarrow \infty$.

Solution. First, since $f \in L^{1} f \in L_{l o c}^{1}$. For each x, there exists some j such that $x \in\left(\frac{j}{k}, \frac{j+1}{k}\right]$ and so

$$
f_{k}(x)=k \int_{j / k}^{(j+1) / k} f(t) d t=\frac{1}{m((j / k,(j+1) / k])} \int_{(j / k,(j+1) / k])} f(t) d t
$$

Since $(j / k,(j+1) / k]$ shrinks nicely to x as $k \rightarrow \infty$, by the Lebesgue Differentiation Theorem

$$
\lim _{k \rightarrow \infty} f_{k}(x)=f(x) \quad \text { a.e.. }
$$

Now, we would like to use Dominated Convergence Theorem.

1. Let $g_{k}(x)=\left|f(x)-f_{k}(x)\right|$. Then, let $\int|f(x)|=M<\infty$ since $f \in L^{1}$. Then

$$
\begin{aligned}
\int\left|g_{k}(x)\right| d x & =\int\left|f(x)-f_{k}(x)\right| d x \\
& \leq \int|f(x)| d x+\int\left|f_{k}(x)\right| d x \\
& =M+\sum_{j} k \int_{j / k}^{(j+1) / k}\left|\int_{j / k}^{(j+1) / k} f(x) d x\right| d x \\
& =M+\sum_{j} k m\left(\left(\frac{j}{k}, \frac{j+1}{k}\right)\right)\left|\int_{j / k}^{(j+1) / k} f(x) d x\right| \quad\left|\int_{j / k}^{(j+1) / k} f(x) d x\right| \text { is constant } \\
& =M+\sum_{j} k \frac{1}{k}\left|\int_{j / k}^{(j+1) / k} f(x) d x\right| \\
& \leq M+\sum_{j} \int_{j / k}^{(j+1) / k}|f(x)| d x \\
& =M+M=2 m
\end{aligned}
$$

Thus, $g_{k}(x) \in L^{1}$ for all k.
2. $g_{k}(x) \rightarrow 0$ a.e. since $f_{k} \rightarrow f$ a.e.
3. For each $x>0$ and k there exists some $j \geq 0$ such that $x \in(j / k,(j+1) / k]$. Then $x \in(0, j+1]$. Similarly, if $x \leq 0$, then $x \in(j, 0]$. Thus,

$$
g_{k}(x) \leq|f(x)|+\left|f_{k}(x)\right| \leq|f(x)|+\left\{\begin{array}{l}
M_{(0, j+1]}(x) \\
M \chi_{(j, 0]}(x)
\end{array} \in L^{1}\right.
$$

Thus, by the dominated convergence theorem,

$$
\lim _{k \rightarrow \infty} \int\left|f-f_{k}\right| d x=\lim _{k \rightarrow \infty} g_{k}(x) d x=\int \lim _{k \rightarrow \infty} g_{k}(x) d x=0
$$

Problem 4 (Folland, 3.4.25, p.100). If E is Borel set in \mathbb{R}^{n} the density $D_{E}(x)$ of E at x is defined as

$$
D_{E}(x)=\lim _{r \rightarrow 0} \frac{m(E \cap B(x, r))}{m(B(x, r))}
$$

whenever the limit exists [Here m denotes the Lebesgue measure and $B(x, r)$ is the open ball with center at x and radius r.]
(a) Show that $D_{E}(x)=0$ for a.e. $x \in E$ and $D_{E}(x)=0$ for a.e. $x \notin E$.
(b) For $\alpha \in(0,1)$ find an example of E and x such that $D_{E}(x)=\alpha$.
(c) Find an example of E and x such that $D_{E}(x)$ does not exist.

Solution.

(a)

$$
m(E \cap B(x, r))=\int_{B(x, r)} \chi_{E}(x) d x
$$

Since $\chi_{E} \in L_{l o c}^{1}$ because E is Borel measurable, and certainly $B(x, r)$ shrinks nicely to x, so by the Lebesgue Dominated Convergence Theorem

$$
\lim _{r \rightarrow 0} \frac{m(E \cap B(x, r))}{m(B(x, r))}=\lim _{r \rightarrow 0} \frac{1}{m(B(x, r))} \int_{B(x, r)} \chi_{E}(x) d x=\chi_{E}(x) \quad \text { a.e. }
$$

Thus, $D_{E}(x)=0$ for a.e. $x \in E$ and $D_{E}(x)=0$ for a.e. $x \notin E$.
(b) We will work in \mathbb{R}^{2}. Fix $\alpha \in(0,1)$. For $x=0$ let $\theta=2 \phi \alpha$. Let E be the set of points in a θ sector of x. Specifically,

$$
E=\{(R \cos \gamma, R \sin \gamma) \mid R \geq 0,0 \leq \gamma \leq \theta\}
$$

Then

$$
B(0, r) \cap E=\{(R \cos \gamma, R \sin \gamma) \mid r>R \geq 0,0 \leq \gamma \leq \theta\}
$$

Thus,

$$
m(B(0, r) \cap E)=\frac{\theta}{2 \pi} m(B(0, r)=\alpha m(B(0, r))
$$

so

$$
\lim _{r \rightarrow 0} \frac{m(E \cap B(0, r))}{m(B(0, r))}=\lim _{r \rightarrow 0} \alpha=\alpha
$$

(c) We will work in \mathbb{R}^{1}. Let $B_{n}\left(-\frac{1}{n}, \frac{1}{n}\right)$. Fix $x=0$.

Let $E=\bigcap_{n=1}^{\infty}\left(B_{(2 n-1)!} \backslash B_{(2 n)!}\right)$.

If n is odd then we note that $B_{n!} \backslash B_{(n+1)!} \subset E$ so

$$
\frac{m\left(E \cap B_{n!}\right)}{m\left(B_{n!}\right)} \geq \frac{m\left(B_{n!} \backslash B_{(n+1)!}\right)}{m\left(B_{n!}\right)}=\frac{\frac{2}{n!}-\frac{2}{(n+1)!}}{\frac{2}{n!}}=1-\frac{1}{n} \rightarrow 1 .
$$

Thus $D_{E}(0) \geq 1$.
If n is even, then $E \cap B_{n!} \subset B_{(n+1)!}$ so

$$
\frac{m\left(E \cap B_{n!}\right)}{m\left(B_{n!}\right)} \leq \frac{m\left(B_{(n+1)!}\right)}{m\left(B_{n!}\right)}=\frac{\frac{2}{(n+1)!}}{\frac{2}{n!}}=\frac{1}{n+1} \rightarrow 0 .
$$

So $D_{E}(0)=0$. Thus, since there are infinitely many even and odd $n, D_{E}(0)$ does not exist.

8

