Kayla Orlinsky Real Analysis Exam Spring 2011

Problem 1. Let $A \subset \mathbb{R}$ and suppose that for each $\varepsilon > 0$ there are Lebesgue-measurable sets E, F with $E \subset A \subset F$ and $m(F \setminus E) < \varepsilon$. Show that A is Lebesgue measurable.

Solution. First,

$$A = E \cup (A \cap E^c \cap F) = E \cup (A \cap (F \setminus E)).$$

Now, for all n, there exists F_n and E_n Lebesgue measurable with $m(F_n \setminus E_n) < \frac{1}{n}$ and $E_n \subset A \subset F_n$.

Let

$$E = \bigcup_{n=1}^{\infty} E_n \subset A$$
 and $F = \bigcap_{n=1}^{\infty} F_n \supset A$.

Then, let

$$E_i' = \bigcup_{n=1}^i E_n$$

so $E'_1 \subset E'_2 \subset \cdots$ and so

$$A \backslash E_1' \supset A \backslash E_2' \supset \cdots$$

Furthermore, since

$$m(A \setminus E'_1) \le m(F_1 \setminus E'_1) = m(F_1 \setminus E_1) < 1 < \infty,$$

by continuity from below,

$$m(\bigcap^{\infty}(A \setminus E'_n)) = m(A \setminus \bigcap E'_n)$$

= $\lim_{n \to \infty} m(A \setminus E'_n)$
 $\leq \lim_{n \to \infty} m(F_n \setminus E'_n)$
 $\leq \lim_{n \to \infty} m(F_n \setminus E_n)$
 $\leq \lim_{n \to \infty} \frac{1}{n} = 0.$

Thus, since $m(A \setminus E) \leq m(A \setminus E_n)$ for all n, we have that $m(A \setminus E) = 0$. By a similar argument, $m(F \setminus A) = 0$. Now, since

 $m(F \setminus E) = m(F \setminus A) + m(A \setminus E) = 0 + 0 = 0$

we have that

$$A = E \mid |(A \cap (F \setminus E))$$

however, since $A \cap (F \setminus E) \subset F \setminus E$ which is null, we have that $A \cap (F \setminus E) \in \mathcal{L}$ since *m* is complete and since $E \in \mathcal{L}$ by assumption, we have that $A \in \mathcal{L}$ since it is the union of two measurable sets.

Problem 2. Let f > 0 be a Lebesgue-integrable function on [0, 1]. Show that

$$\lim_{\varepsilon \searrow 0} \frac{1}{\varepsilon} \int_{[0,1]} (f^{\varepsilon} - 1) dm = \int_{[0,1]} \log f dm.$$

Here m denotes Lebesgue measure. HINT: Decompose f (or $\log f$) into two parts.

Solution. First,

$$\lim_{\varepsilon \to 0^+} \frac{f^\varepsilon - 1}{\varepsilon} = \lim_{\varepsilon \to 0^+} \frac{f^\varepsilon \log f}{1} = \log f$$

for all x by L'Hopital's Rule.

Now, let

$$E = \{ x \in [0,1] \, | \, f(x) > 1 \}.$$

Then,

$$\int_{[0,1]} \frac{f^{\varepsilon} - 1}{\varepsilon} dm = \int_E \frac{f^{\varepsilon} - 1}{\varepsilon} dm + \int_{E^c} \frac{f^{\varepsilon} - 1}{\varepsilon} dm.$$

Now, we let $\varepsilon = \frac{1}{n}$ and

$$f_n(x) = \frac{f^{1/n}(x) - 1}{\frac{1}{n}} = n(f^{1/n}(x) - 1).$$

on E We would like to use Monotone Convergence Theorem.

1. $\{f_n\} \in L^+$. Since f > 1 on E, $f^{1/n} > 1$ and so $n(f^{1/n} - 1) > 0$ for all n. Furthermore, f_n is measurable since f is.

2.

$$\frac{d}{dn}f_n(x) = f^{1/n} - 1 + n(f^{1/n}\log f)(-1/n)$$
$$= f^{1/n} - 1 - \frac{f^{1/n}\log f}{n}$$
$$= \frac{n(f^{1/n} - 1) - f^{1/n}\log f}{n}$$

Since, f > 1, $f^{1/n} > 1$ for all n and so for large enough n, the derivative is eventually positive and so, after perhaps removing the first N terms, $f_n \leq f_{n+1}$.

3. $f_n \to \log f$ for all $x \in E$.

Thus, by the monotone convergence theorem, we may bring the limit inside the integral on E.

on E^c Now, $f_n \leq 0$. However, by the same argument as above, for sufficiently large n, $f'_n \leq 0$. Thus, $-f_n(x) \geq 0$ and $-f'_n \geq 0$.

- 1. for $f \leq 1$, f_n is negative, so $\{-f_n\} \in L^+$.
- 2. Using the same derivative as above, since $f^{1/n} 1 < 0$ and $f^{1/n} \log f < 0$ for all n on E^c we have that $-f'_n \ge 0$ for sufficiently large n. So $-f_n$ is eventually increasing.
- 3. $-f_n \to -\log f$ for all $x \in E^c$

Thus, by the monotone convergence theorem we can bring the limit inside the intergral on E.

Finally,

$$\lim_{\varepsilon \to 0^+} \int_{[0,1]} \frac{f^{\varepsilon} - 1}{\varepsilon} dm = \lim_{n \to \infty} \left[\int_E f_n - \int_{E^c} -f_n \right]$$
$$= \int_E \lim_{n \to \infty} f_n dm - \int_{E^c} \lim_{n \to \infty} -f_n dm$$
$$= \int_E \log f dm - \int_{E^c} -\log f dm$$
$$= \int \log f dm.$$

M	
Ð	

Problem 3. Suppose $f \in L^1$ is absolutely continuous, and

$$\lim_{h \searrow 0} \int_{\mathbb{R}} \left| \frac{f(x+h) - f(x)}{h} \right| dx = 0.$$

Show that f = 0 a.e.

Solution. Let $h = \frac{1}{n}$ and $f_n(x) = n(f(x + \frac{1}{n}) - f(x))$.

$$\lim_{n \to \infty} \int |f_n(x)| dx = 0$$

implies that $|f_n(x)| \to 0$ in L^1 .

Now, since f is absolutely continuous, f' exists a.e. and $f_n \to f'$ where it exists.

Thus, since $f_n \to 0$ in L^1 , there exists a subsequence $\{f_{n_k}\}$ which converges to 0 a.e. However, since $f_{n_k} \to f'$ a.e., this implies that f' = 0 a.e

Finally, since f is absolutely continuous, by the Fundamental Theorem of Lebesgue Integrals, on any closed interval [a, b], we have that

$$f(x) - f(a) = \int_a^x f'(t)dt = 0 \implies f(x) = f(a) \text{ for all } x > a.$$

Similarly, we have that f(x) = f(a) for all x < a. Thus, f(x) = c for some constant a.e. Since $f \in L^1$, and

$$\int |c| dx = \infty \qquad \text{for all } c \neq 0$$

we have that f = 0 a.e.

y

Problem 4.

- (a) Let (X, \mathcal{F}, μ) be a measure space with $\mu(X) = 1$, and suppose $F_1, ..., F_7$ are 7 measurable sets with $\mu(F_j) \geq \frac{1}{2}$ for all j. Show that there exists indices $i_1 < i_2 < i_3 < i_4$ for which $F_{i_1} \cap F_{i_2} \cap F_{i_3} \cap F_{i_4} \neq \emptyset$.
- (b) Let m denote the Lebesgue measure on [0,1] and let $f_n \in L^1(m)$ be nonnegative and measurable with

$$\int_{[0,1/n]} f_n dm \ge 1/2$$

for all $n \ge 1$. Show that $\int_{[0,1]} [\sup_n f_n(x)] m(dx) = \infty$. HINT: Part (b) does not necessarily use part (a).

Solution.

(a) Assume not. Then

$$\sum_{i=1}^{7} \chi_{F_i}(x) \le 3$$

for all $x \in X$. (Else there exists $x \in F_i$ for at least 4 of the F_i). Now,

$$\int \sum_{i=1}^{7} \chi_{F_i}(x) d\mu \le \int 3 = 3\mu(X) = 3$$

however,

$$\int \sum_{i=1}^{7} \chi_{F_i}(x) d\mu = \sum_{i=1}^{7} \int_X \chi_{F_i}(x) d\mu = \sum_{i=1}^{7} \mu(F_i) \ge \sum_{i=1}^{7} \frac{1}{2} = \frac{7}{2} > 3.$$

Thus, there exists some x such that for some indices $i_1 < i_2 < i_3 < i_4$, $x \in F_{i_1} \cap F_{i_2} \cap F_{i_3} \cap F_{i_4}$.

(b) Let M > 0 be large and

$$E = \left\{ x \in \left[0, \frac{1}{n}\right] \mid f_n(x) > M \right\}.$$

Now, for all n > 2M, we have that

$$\begin{aligned} \frac{1}{2} &\leq \int_{[1,\frac{1}{n}]} f_n(x) dm \\ &= \int_E f_n(x) dm + \int_{E^c} f_n(x) dm \\ &\leq \int_E f_n(x) dm + \int_{E^c} M dm \\ &\leq \int_E f_n(x) dm + \frac{M}{n} \qquad m\left(\left[1,\frac{1}{n}\right]\right) = \frac{1}{n} \\ &< \int_E f_n(x) dm + \frac{1}{2} \end{aligned}$$

Thus,

$$\int_E f_n(x)dm > 0$$

for all n > 2M so $f_n(x) > M$ on a set of positive measure for arbitrary M. Thus,

$$\int_{[0,1]} [\sup_{n} f_n(x)] m(dx) = \infty$$

since f_n grow arbitrarily large near 0.

Ŵ	
T	