Kayla Orlinsky
 Real Analysis Exam Fall 2011

Problem 1. Let $f \geq 0$ and suppose $f \in L^{1}([0, \infty))$. Find

$$
\lim _{n} \frac{1}{n} \int_{0}^{n} x f(x) d x
$$

Solution. Let $f_{n}(x)=\frac{1}{n} \chi_{[0, n]} x f(x)$. Then

$$
\int_{0}^{n} \frac{1}{n} x f(x) d x=\int_{0}^{\infty} f_{n}(x) d x
$$

Now, we would like to use Dominated Convergence Theorem.

1. $\lim _{n \rightarrow \infty} f_{n}(x)=\frac{x f(x)}{\infty}=0$ a.e.
2. $f_{n}(x) \leq f(x) \in L^{1}$ since for $x \in[0, n], x \leq n$ so $\frac{x}{n} \leq 1$. Thus

$$
\int f_{n}(x) d m \leq \int f(x) d m<\infty
$$

so $\left\{f_{n}\right\} \in L^{1}$ for all n.
Thus, by the dominated convergence theorem,

$$
\lim _{n} \int f_{n} d x=\int \lim _{n \rightarrow \infty} f_{n}(x) d x=0
$$

Problem 2. Suppose $f \geq 0$ is absolutely continuous on $[0,1]$ and $\alpha>1$. Show that f^{α} is absolutely continuous.

Solution. We would like to use the Fundamental Theorem of Lebesgue Integrals.

1. f is absolutely continuous so f^{\prime} exists a.e. Thus,

$$
\left(f^{\alpha}\right)^{\prime}=\alpha f^{\alpha-1} f^{\prime}
$$

exists a.e. (since $\alpha>1$).
2. Since f is absolutely continuous, by FTOLI, $f^{\prime} \in L^{1}([0,1])$ and since f is continuous on a closed interval it is bounded so there is some $\infty>M>0$ with $f(x) \leq M$ for all $x \in[0,1]$. Thus,

$$
\left(f^{\alpha}\right)^{\prime}=\alpha f^{\alpha-1} f^{\prime} \leq \alpha M^{\alpha-1} f^{\prime} \in L^{1}
$$

3.

$$
\begin{gathered}
\int_{0}^{x} \alpha f^{\alpha-1} f^{\prime} d x=\int_{f(0)}^{f(x)} \alpha u^{\alpha-1} d u=\left.u^{\alpha}\right|_{f(0)} ^{f(x)}=f^{\alpha}(x)-f^{\alpha}(0) \\
u=f(x) \\
d u=[0,1] \\
d u=f^{\prime}(x) d x \\
u:[f(0), f(1)]
\end{gathered}
$$

Thus, by FTOLI, f^{α} is absolutely continuous.

Problem 3 (part (b) is Folland, 3.5.30, p.107).
(a) Let $\left\{\mu_{k}\right\}$ be a sequence of finite signed measures. Find a finite positive measure μ such that $\mu_{k} \ll \mu$ for all k.
(b) Construct an increasing function whose set of discontinuities is \mathbb{Q}. (Prove that it is a valid example).

Solution.

(a) Let

$$
\mu=\sum_{k} \frac{\left|\mu_{k}\right|}{\left|\mu_{k}\right|(X) 2^{k}}
$$

Then, if $\mu(E)=0$, since $\left|\mu_{k}\right| \geq 0,\left|\mu_{k}\right|(E)=0$ for all k. Since
$0=\left|\mu_{k}\right|(E)=\mu_{k}^{+}(E)+\mu_{k}^{-}(E) \Longrightarrow \mu_{k}^{+}(E)=-\mu_{k}^{-}(E) \Longrightarrow \mu_{k}^{+}(E)=\mu_{k}^{-}(E)=0 \Longrightarrow \mu_{k}(E)=0$.
Thus $\mu_{k} \ll \mu$ for all k. Furthermore, $\mu \geq 0$ and finally, $\mu<\infty$ since

$$
\mu(X)=\sum_{k} \frac{\left|\mu_{k}\right|(X)}{\left|\mu_{k}\right|(X) 2^{k}}=\sum_{k} \frac{1}{2^{k}}<\infty .
$$

(b) Let $\left(r_{i}\right)_{1}^{\infty}$ be an enumeration of the rationals. Let $f(x)=\sum_{i=1}^{\infty} \frac{1}{2^{i}} \chi_{\left[r_{i}, \infty\right)}(x)$. Then clearly if $y>x, f(y) \geq f(x)$ since there are more $r_{i} \leq y$ than $r_{i} \leq x$ so $f(x)$ is increasing.
Now, fix $x . x \in \mathbb{Q}$ Then $x=r_{i_{0}}$ for some i_{0}. Thus, for all $\delta>0$, there exists some y such that $0<y-x<\delta$ (so $y>x$) but

$$
f(y)-f(x)=\sum_{\left\{i \mid x<r_{i} \leq y\right\}} \frac{1}{2^{i}} \geq \frac{1}{2^{i}} .
$$

Thus,

$$
\lim _{y \rightarrow x} f(y) \geq \lim _{y \rightarrow x}\left(f(x)+\frac{1}{2^{i}}\right)>f(x)
$$

So f is discontinuous at x.
$x \notin \mathbb{Q}$ Fix $\varepsilon>0$ and pick N such that

$$
\sum_{i=N+1}^{\infty} \frac{1}{2^{i}} \chi_{\left[r_{i}, \infty\right)}(x)<\varepsilon
$$

Now, let

$$
s=\max _{i \leq N} r_{i} \in(x-\varepsilon, x) \quad \text { and } \quad t=\min _{i \leq N} r_{i} \in(x, x+\varepsilon) .
$$

Then $(x-s, x+t)$ contain no r_{i} for $i \leq N$.
If no such r_{i} exists we set $s=\varepsilon$ and/or $t=\varepsilon$.
Then, let $\delta=\min \{s, t\}$ for all $|y-x|<\delta$ we have that

$$
|f(y)-f(x)| \leq \sum_{i=N+1}^{\infty} \frac{1}{2^{2}} \chi_{\left[r_{i}, \infty\right)}<\varepsilon
$$

so f is continuous at x.

Problem 4 (Folland, part (a) 3.4.22, and part (b) 3.4.23, p.100). Let m be the Lebesgue measure on \mathbb{R}. For $f \in L_{l o c}^{1}$ and $x \in \mathbb{R}^{n}$, define the function $A_{r} f$ by

$$
A_{r} f(x)=\frac{1}{m(B(x, r))} \int_{B(x, r)} f(y) d y
$$

which is the average value of f on the ball $B(x, r)$ of radius r centered at x, and define the function $H f$ by $H f(x)=A_{r}|f|(x), x \in \mathbb{R}^{d}$.
(a) Show that for $f \in L^{1}\left(\mathbb{R}^{n}\right), f \neq 0$, there exist $C, C^{\prime}, R>0$ such that $\operatorname{Hf}(x) \geq C|x|^{-n}$ for all $|x|>R$ and

$$
m(\{x \mid H f(x)>\alpha\}) \geq \frac{C^{\prime}}{\alpha} \quad \text { for all sufficiently small } \alpha
$$

(b) Define the function $H^{*} f$ by

$$
H^{*} f(x)=\sup \left\{\left.\frac{1}{m(B)} \int_{B}|f(y)| d y \right\rvert\, B \text { is a ball containing } x\right\}
$$

Show that $H f \leq H^{*} f \leq 2^{n} H f$. (Note that unlike $H f$, in the definition of $H^{*} f$ the ball B need not be centered at x.)

Solution.

(a) Let $f \in L^{1}, f \emptyset$. Let

$$
M=\int_{B(r, 0)}|f(x)| d x<\infty
$$

Then there exists some $R>0$ such that

$$
\int_{B(R, 0)}|f(x)| d x \geq \frac{M}{2}
$$

Since $|x|>R, B(R, 0) \subset B(2|x|, x)$,

$$
\begin{aligned}
\sup _{r>0} \frac{1}{m(B(r, x))} \int_{B(r, x)}|f(y)| d y & \geq \frac{1}{m(B(2|x|, x)} \int_{B(2|x|, x)}|f(y)| d y \\
& =\frac{1}{2^{n}|x|^{n}} \int_{B(2|x|, x)}|f(y)| d y \\
& \geq \frac{1}{2^{n}|x|^{n}} \int_{B(R, 0)}|f(y)| d y \\
& \geq \frac{M}{2^{n+1}|x|^{n}}
\end{aligned}
$$

Letting $C=\frac{M}{2^{n+1}}$ we are done.

Now, for all $\alpha \in\left(0, \frac{C}{2 R^{n}}\right)$ and for all $x \in \mathbb{R}^{n}$ with $R<|x|<\left(\frac{C}{\alpha}\right)^{1 / n}$,

$$
H f(x) \geq C|x|^{-n}>C \frac{\alpha}{C}>\alpha
$$

Thus

$$
\begin{aligned}
m(\{x \mid H f(x)>\alpha\}) & \geq m\left(\left\{\left.x|C| x\right|^{-n}>\alpha\right\}\right) \\
& =m\left(\left\{x\left|\frac{C}{\alpha}>|x|^{n}\right\}\right)\right. \\
& =m\left(\left\{x\left|\left(\frac{C}{\alpha}\right)^{1 / n}>|x|>R\right\}\right)\right. \\
& m\left(B\left((C / \alpha)^{1 / n}, x\right)\right)-m(B(R, x)) \\
& =\left(\frac{C}{\alpha}-R^{n}\right) m(B(1, x))>\frac{C m(B(1, x))}{2 \alpha}
\end{aligned}
$$

Letting $C^{\prime}=\frac{C m(B(1, x))}{2}$ we are done.
(b) Let B_{r} be a ball containing x of radius r. Then certainly $B_{r} \subset B(2 r, x)$ and so

$$
\frac{1}{m\left(B_{r}\right)} \int_{B_{r}}|f(y)| d y \leq \frac{2^{n}}{m(B(2 r, x))} \int_{B(2 r, x)}|f(y)| d y \leq 2^{n} H f(x)
$$

so

$$
H^{*} f \leq 2^{n} H f
$$

It is immediate that $H f \leq H^{*} f$ since any ball centered at x is also a ball containing x. Thus,

$$
H f \leq H^{*} f \leq 2^{n} H f
$$

