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Problem 1. A function f : R→ R is said to be upper semicontinuous (or u.s.c) if for
all x ∈ R and all ε > 0 there exists δ > 0 such that f(y) < f(x) + ε whenever |y− x| < δ.

(a) Show that every u.s.c. function is Borel measurable. HINT: Consider {x | f(x) < a}.

(b) Suppose µ is a finite measure on R and A is a closed subset of R. Using (a) or
otherwise, show that the function x 7→ µ(x + A) is measurable. Here x + A =
{x+ y | y ∈ A}.

Solution.

(a) Since
f−1((−∞, a)) = {x | f(x) < a} = A,

we check that f−1((−∞, a)) is open. Let x ∈ A. Then since f is usc, for all ε > 0 there
exists a δ such that

f(y)− ε < f(x) < a whenever |y − x| < δ.

Now, for ε = a− f(x), there is some δ where, for all |y − x| < δ we have that

f(y)− f(x) < ε = a− f(x) =⇒ f(y) < a.

Thus, B(δ, x) ⊂ A.
Thus, A is open and since all open sets are Borel, we have that A is Borel.

(b) Since A is closed, Ac is open and so A is a Borel set. Thus, there exists some E, which
is a union of finitely many open intervals such that µ(A∆E) < ε.

Thus, it suffices to check the statement holds for x 7→ µ(x+ E).
Let

f(x) :R→ R
x 7→ µ(x+ E)

We would like to show that f is usc. Let ε > 0 be given and x be fixed. WLOG, let

E =
N⋃

i=1
(ai, bi) x+ E =

N⋃
i=1

(ai + x, bi + x).
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Now, fix b ∈ R. Let Bn = (b, b + 1
n
). Then B1 ⊃ B2 ⊃ · · · and since µ(X) < ∞, by

continuity
0 = µ(

∞⋂
Bn) = lim

n→∞
µ(b, b+ 1

n
).

Since, b was arbitrary, this implies that for all ε > 0 there exists some δ such that for
all x < y < x+ δ, µ(b+ x, b+ y) < ε.
Let δi be such that µ(ai + x, bi + x+ δi) < ε.

Now, let
δ = 1

N
max

i
{µ(bi + x, bi + x+ δi)}.

Then, for all x < y < x+ δ, we have that

f(y) = µ(y + E) ≤ m(x+ E) + µ(∪N
i=1µ(bi + x, bi + y)

≤ µ(x+ E) +
N∑

i=1
µ(bi + x, bi + y)

< µ(x+ E) +
N∑

i=1
δ

< µ(x+ E) + ε = f(x) + ε

Thus, f is usc and so it is measurable by (a).

�
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Problem 2. Suppose {fn} and f are measurable functions on (X,M, µ) and fn → f in
measure. Is it necessarily true that f 2

n → f 2 in measure if

(a) µ(X) <∞

(b) µ(X) =∞

Solution.

(a) Let
En = {x | |f 2

n(x)− f 2(x)| ≥ ε}

Then

µ(En) = µ({x | |fn(x)− f(x)||fn(x) + f(x)| ≥ ε})
= µ({x | |fn(x)− f(x)||fn(x) + f(x)| ≥ ε and |fn(x) + f(x)| ≥ k})
+ µ({x | |fn(x)− f(x)||fn(x) + f(x)| ≥ ε and |fn(x) + f(x)| < k})

≤ µ({x | |fn(x) + f(x)| ≥ k}) + µ({x | |fn(x)− f(x)| ≥ ε

k
)

Now, we assume that f(x) <∞ a.e. which is safe it is not specified that f is defined
over the extended reals.
Thus,

µ(En) ≤ lim
k→∞

lim
n→∞

µ({x | |fn(x) + f(x)| ≥ k}) + µ({x | |fn(x)− f(x)| ≥ ε

k
) = 0.

(b) Let fn(x) = x+ 1
n
then |fn − x| = | 1n | and since for all ε > 0, there exists an N such

that
1
n
≤ ε

for all n ≥ N , we have that

µ({x | |fn(x)− x| ≥ ε})→ 0 as n→∞.

However, assuming µ = m, and X = [0,∞), we have that f 2
n = x2 + 2x

n
+ 1

n2 and

|f 2
n − f 2| ≥ ε =⇒

∣∣∣∣2xn + 1
n2

∣∣∣∣ ≥ ε =⇒ x ≥ nε

2 −
1
2 .

Thus,

m({x | |fn − f | ≥ ε}) = m
(
{x |x ≥ nε

2 −
1
2

)
= m

(
nε

2 −
1
2 ,∞

)
=∞ for all n.

Thus, f 2
n 6→ f 2 in measure.

�
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Problem 3. Suppose f : [0, 1] → R is as strictly increasing absolutely continuous
function. Let m denote the Lebesgue measure. If m(E) = 0 show that m(f(E)) = 0.

Solution. Let E ⊂ [0, 1] with m(E) = 0.
Now, since f is absolutely continuous and strictly increasing we have that f is one-to-one

on [0, 1]. Thus, if y ∈ f(E), then y = f(x) for exactly one x ∈ E and similarly, if x ∈ E then
there is one y = f(x) ∈ f(E). Thus,

χE(x) = χf(E)(y).

Furthermore, f ′ exists a.e. by the Fundamental Theorem of Lebesgue Integrals.
Thus,

m(f(E)) =
∫
χf(E)(y)dy =

∫
χE(u)f ′du = 0

u = y = f(x) du = f ′(x)dx

�
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Problem 4. For n ≥ 1 define hn on [0, 1] by

hn =
n∑

j=1
(−1)jχ( j−1

n
, j

n
].

Here χE denotes the characteristic function of E. If f is Lebesgue integrable on [0, 1],
show that

lim
n→∞

∫
[0,1]

fhndm = 0.

HINT: First consider f in a suitably smaller function space.

Solution. Let f(x) = χE(x) with E ⊂ [0, 1]. Then for fixed n, hn ∈ L1([0, 1]) since
|hn| = (0, 1] so we can apply Fubini to fhn on m × ν with ν the counting measure on N.
Thus,

∫
[0,1]

fhndm =
∫

[0,1]

n∑
j=1

(−1)jχ( j−1
n

, j
n

]∩E)dm

=
n∑

j=1
(−1)j

∫
[0,1]

χ( j−1
n

, j
n

]∩E)dm

=
n∑

even j

∫
[0,1]

χ( j−1
n

, j
n

]∩E)dm−
n∑

odd j

∫
[0,1]

χ( j−1
n

, j
n

]∩E)dm

=
n∑

even j
m
((

j − 1
n

,
j

n

]
∩ E

)
−

n∑
odd j

m
((

j − 1
n

,
j

n

]
∩ E

)

= m

 n⋃
even j

(
j − 1
n

,
j

n

]
∩ E

−m
 n⋃

odd j

(
j − 1
n

,
j

n

]
∩ E


Let

An =
n⋃

even j

(
j − 1
n

,
j

n

]
so Ac

n =
n⋃

odd j

(
j − 1
n

,
j

n

]
.

Let E = (a, b) ⊂ [0, 1]. Then for all ε > 0 there exists N such that for some j, k
|j/N − a| < ε and |k/n− b| < ε. Then E will be almost perfectly partitioned. Specifically,

|m(An ∩ E)−m(Ac ∩ E)| ≤ 1
N

+ 2ε.

Thus,
m(An ∩ E)−m(Ac ∩ E)→ 0 as n→∞.

Therefore, the same is true for finite unions of open intervals.
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Now, for all E, and for all ε there exists F , a finite union of open intervals such that

m(E∆F ) < ε.

Thus,

|m(An ∩ E)−m(Ac
n ∩ E)| = |m(An ∩ E)−m(Ac

n ∩ E) +m(An ∩ F )
−m(Ac

n ∩ F ) +m(Ac
n ∩ F )−m(An ∩ F )|

≤ |(m(An ∩ E)−m(An ∩ F ))− (m(Ac
n ∩ E)−m(Ac

n ∩ F ))|
+ |m(An ∩ F )−m(Ac

n ∩ F )|
= |m(An ∩ (E\F ))−m(Ac

n ∩ (E\F ))|+ |m(An ∩ F )−m(Ac
n ∩ F )|

≤ 2ε+ |m(An ∩ F )−m(Ac
n ∩ F )|

And since we have already seen that

|m(An ∩ F )−m(Ac
n ∩ F )| → 0

for F , we have that the same holds for E and so

lim
n→∞

∫
[0,1]

χEhndm = 0.

Thus, the above holds for all simple functions f by linearity of the integral.
Finally, since for all ε > 0 there exists a simple function φ such that

∫
|f − φ|dm < ε,

we have that∣∣∣∣∣
∫

[0,1]
fhndm−

∫
[0,1]

φhndm

∣∣∣∣∣ =
∣∣∣∣∣
∫

[0,1]
(f − φ)hndm

∣∣∣∣∣ ≤
∫

[0,1]
|f −φ||hn|dm =

∫
[0,1]
|f −φ|dm < ε

so, tending ε to 0 we have our result. �
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