Kayla Orlinsky
 Real Analysis Exam Spring 2010

Problem 1. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be upper semicontinuous (or u.s.c) if for all $x \in \mathbb{R}$ and all $\varepsilon>0$ there exists $\delta>0$ such that $f(y)<f(x)+\varepsilon$ whenever $|y-x|<\delta$.
(a) Show that every u.s.c. function is Borel measurable. HINT: Consider $\{x \mid f(x)<a\}$.
(b) Suppose μ is a finite measure on \mathbb{R} and A is a closed subset of \mathbb{R}. Using (a) or otherwise, show that the function $x \mapsto \mu(x+A)$ is measurable. Here $x+A=$ $\{x+y \mid y \in A\}$.

Solution.

(a) Since

$$
f^{-1}((-\infty, a))=\{x \mid f(x)<a\}=A
$$

we check that $f^{-1}((-\infty, a))$ is open. Let $x \in A$. Then since f is usc, for all $\varepsilon>0$ there exists a δ such that

$$
f(y)-\varepsilon<f(x)<a \quad \text { whenever }|y-x|<\delta
$$

Now, for $\varepsilon=a-f(x)$, there is some δ where, for all $|y-x|<\delta$ we have that

$$
f(y)-f(x)<\varepsilon=a-f(x) \Longrightarrow f(y)<a
$$

Thus, $B(\delta, x) \subset A$.
Thus, A is open and since all open sets are Borel, we have that A is Borel.
(b) Since A is closed, A^{c} is open and so A is a Borel set. Thus, there exists some E, which is a union of finitely many open intervals such that $\mu(A \Delta E)<\varepsilon$.
Thus, it suffices to check the statement holds for $x \mapsto \mu(x+E)$.
Let

$$
\begin{aligned}
f(x): \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto \mu(x+E)
\end{aligned}
$$

We would like to show that f is usc. Let $\varepsilon>0$ be given and x be fixed. WLOG, let

$$
E=\bigcup_{i=1}^{N}\left(a_{i}, b_{i}\right) \quad x+E=\bigcup_{i=1}^{N}\left(a_{i}+x, b_{i}+x\right) .
$$

Now, fix $b \in \mathbb{R}$. Let $B_{n}=\left(b, b+\frac{1}{n}\right)$. Then $B_{1} \supset B_{2} \supset \cdots$ and since $\mu(X)<\infty$, by continuity

$$
0=\mu\left(\bigcap^{\infty} B_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(b, b+\frac{1}{n}\right)
$$

Since, b was arbitrary, this implies that for all $\varepsilon>0$ there exists some δ such that for all $x<y<x+\delta, \mu(b+x, b+y)<\varepsilon$.
Let δ_{i} be such that $\mu\left(a_{i}+x, b_{i}+x+\delta_{i}\right)<\varepsilon$.
Now, let

$$
\delta=\frac{1}{N} \max _{i}\left\{\mu\left(b_{i}+x, b_{i}+x+\delta_{i}\right)\right\}
$$

Then, for all $x<y<x+\delta$, we have that

$$
\begin{aligned}
f(y)=\mu(y+E) & \leq m(x+E)+\mu\left(\cup_{i=1}^{N} \mu\left(b_{i}+x, b_{i}+y\right)\right. \\
& \leq \mu(x+E)+\sum_{i=1}^{N} \mu\left(b_{i}+x, b_{i}+y\right) \\
& <\mu(x+E)+\sum_{i=1}^{N} \delta \\
& <\mu(x+E)+\varepsilon=f(x)+\varepsilon
\end{aligned}
$$

Thus, f is usc and so it is measurable by (a).

Problem 2. Suppose $\left\{f_{n}\right\}$ and f are measurable functions on (X, \mathcal{M}, μ) and $f_{n} \rightarrow f$ in measure. Is it necessarily true that $f_{n}^{2} \rightarrow f^{2}$ in measure if
(a) $\mu(X)<\infty$
(b) $\mu(X)=\infty$

Solution.

(a) Let

$$
E_{n}=\left\{x| | f_{n}^{2}(x)-f^{2}(x) \mid \geq \varepsilon\right\}
$$

Then

$$
\begin{aligned}
\mu\left(E_{n}\right) & =\mu\left(\left\{x| | f_{n}(x)-f(x)| | f_{n}(x)+f(x) \mid \geq \varepsilon\right\}\right) \\
& =\mu\left(\left\{x| | f_{n}(x)-f(x)| | f_{n}(x)+f(x) \mid \geq \varepsilon \text { and }\left|f_{n}(x)+f(x)\right| \geq k\right\}\right) \\
& +\mu\left(\left\{x| | f_{n}(x)-f(x)| | f_{n}(x)+f(x) \mid \geq \varepsilon \text { and }\left|f_{n}(x)+f(x)\right|<k\right\}\right) \\
& \leq \mu\left(\left\{x| | f_{n}(x)+f(x) \mid \geq k\right\}\right)+\mu\left(\left\{x| | f_{n}(x)-f(x) \left\lvert\, \geq \frac{\varepsilon}{k}\right.\right)\right.
\end{aligned}
$$

Now, we assume that $f(x)<\infty$ a.e. which is safe it is not specified that f is defined over the extended reals.
Thus,

$$
\mu\left(E_{n}\right) \leq \lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \mu\left(\left\{x| | f_{n}(x)+f(x) \mid \geq k\right\}\right)+\mu\left(\left\{x| | f_{n}(x)-f(x) \left\lvert\, \geq \frac{\varepsilon}{k}\right.\right)=0\right.
$$

(b) Let $f_{n}(x)=x+\frac{1}{n}$ then $\left|f_{n}-x\right|=\left|\frac{1}{n}\right|$ and since for all $\varepsilon>0$, there exists an N such that

$$
\frac{1}{n} \leq \varepsilon
$$

for all $n \geq N$, we have that

$$
\mu\left(\left\{x\left|\left|f_{n}(x)-x\right| \geq \varepsilon\right\}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty\right.
$$

However, assuming $\mu=m$, and $X=[0, \infty)$, we have that $f_{n}^{2}=x^{2}+\frac{2 x}{n}+\frac{1}{n^{2}}$ and

$$
\left|f_{n}^{2}-f^{2}\right| \geq \varepsilon \Longrightarrow\left|\frac{2 x}{n}+\frac{1}{n^{2}}\right| \geq \varepsilon \Longrightarrow x \geq \frac{n \varepsilon}{2}-\frac{1}{2} .
$$

Thus,

$$
m\left(\left\{x\left|\left|f_{n}-f\right| \geq \varepsilon\right\}\right)=m\left(\left\{x \left\lvert\, x \geq \frac{n \varepsilon}{2}-\frac{1}{2}\right.\right)=m\left(\frac{n \varepsilon}{2}-\frac{1}{2}, \infty\right)=\infty \quad \text { for all } n .\right.\right.
$$

Thus, $f_{n}^{2} \nrightarrow f^{2}$ in measure.

Problem 3. Suppose $f:[0,1] \rightarrow \mathbb{R}$ is as strictly increasing absolutely continuous function. Let m denote the Lebesgue measure. If $m(E)=0$ show that $m(f(E))=0$.

Solution. Let $E \subset[0,1]$ with $m(E)=0$.
Now, since f is absolutely continuous and strictly increasing we have that f is one-to-one on $[0,1]$. Thus, if $y \in f(E)$, then $y=f(x)$ for exactly one $x \in E$ and similarly, if $x \in E$ then there is one $y=f(x) \in f(E)$. Thus,

$$
\chi_{E}(x)=\chi_{f(E)}(y)
$$

Furthermore, f^{\prime} exists a.e. by the Fundamental Theorem of Lebesgue Integrals. Thus,

$$
\begin{aligned}
m(f(E)) & =\int \chi_{f(E)}(y) d y=\int \chi_{E}(u) f^{\prime} d u=0 \\
u & =y=f(x) \quad d u=f^{\prime}(x) d x
\end{aligned}
$$

Problem 4. For $n \geq 1$ define h_{n} on $[0,1]$ by

$$
h_{n}=\sum_{j=1}^{n}(-1)^{j} \chi_{\left(\frac{j-1}{n}, \frac{j}{n}\right]} .
$$

Here χ_{E} denotes the characteristic function of E. If f is Lebesgue integrable on $[0,1]$, show that

$$
\lim _{n \rightarrow \infty} \int_{[0,1]} f h_{n} d m=0
$$

HINT: First consider f in a suitably smaller function space.

Solution. Let $f(x)=\chi_{E}(x)$ with $E \subset[0,1]$. Then for fixed $n, h_{n} \in L^{1}([0,1])$ since $\left|h_{n}\right|=(0,1]$ so we can apply Fubini to $f h_{n}$ on $m \times \nu$ with ν the counting measure on \mathbb{N}. Thus,

$$
\begin{aligned}
\int_{[0,1]} f h_{n} d m & =\int_{[0,1]} \sum_{j=1}^{n}(-1)^{j} \chi_{\left.\left(\frac{j-1}{n}, \frac{j}{n}\right] \cap E\right)} d m \\
& =\sum_{j=1}^{n}(-1)^{j} \int_{[0,1]} \chi_{\left.\left(\frac{j-1}{n}, \frac{j}{n}\right] \cap E\right)} d m \\
& =\sum_{\text {even } \mathrm{j}}^{n} \int_{[0,1]} \chi_{\left.\left(\frac{j-1}{n}, \frac{j}{n}\right] \cap E\right)} d m-\sum_{\text {odd } \mathrm{j}}^{n} \int_{[0,1]} \chi_{\left.\left(\frac{j-1}{n}, \frac{j}{n}\right] \cap E\right)} d m \\
& =\sum_{\text {even } \mathrm{j}}^{n} m\left(\left(\frac{j-1}{n}, \frac{j}{n}\right] \cap E\right)-\sum_{\text {odd } \mathrm{j}}^{n} m\left(\left(\frac{j-1}{n}, \frac{j}{n}\right] \cap E\right) \\
& =m\left(\bigcup_{\text {even } \mathrm{j}}^{n}\left(\frac{j-1}{n}, \frac{j}{n}\right] \cap E\right)-m\left(\bigcup_{\text {odd } \mathrm{j}}^{n}\left(\frac{j-1}{n}, \frac{j}{n}\right] \cap E\right)
\end{aligned}
$$

Let

$$
A_{n}=\bigcup_{\text {even } j}^{n}\left(\frac{j-1}{n}, \frac{j}{n}\right] \quad \text { so } \quad A_{n}^{c}=\bigcup_{\text {odd } j}^{n}\left(\frac{j-1}{n}, \frac{j}{n}\right] .
$$

Let $E=(a, b) \subset[0,1]$. Then for all $\varepsilon>0$ there exists N such that for some j, k $|j / N-a|<\varepsilon$ and $|k / n-b|<\varepsilon$. Then E will be almost perfectly partitioned. Specifically,

$$
\left|m\left(A_{n} \cap E\right)-m\left(A^{c} \cap E\right)\right| \leq \frac{1}{N}+2 \varepsilon
$$

Thus,

$$
m\left(A_{n} \cap E\right)-m\left(A^{c} \cap E\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Therefore, the same is true for finite unions of open intervals.

Now, for all E, and for all ε there exists F, a finite union of open intervals such that

$$
m(E \Delta F)<\varepsilon .
$$

Thus,

$$
\begin{aligned}
\left|m\left(A_{n} \cap E\right)-m\left(A_{n}^{c} \cap E\right)\right|= & \mid m\left(A_{n} \cap E\right)-m\left(A_{n}^{c} \cap E\right)+m\left(A_{n} \cap F\right) \\
& \quad-m\left(A_{n}^{c} \cap F\right)+m\left(A_{n}^{c} \cap F\right)-m\left(A_{n} \cap F\right) \mid \\
\leq & \left|\left(m\left(A_{n} \cap E\right)-m\left(A_{n} \cap F\right)\right)-\left(m\left(A_{n}^{c} \cap E\right)-m\left(A_{n}^{c} \cap F\right)\right)\right| \\
& \quad+\left|m\left(A_{n} \cap F\right)-m\left(A_{n}^{c} \cap F\right)\right| \\
= & \left|m\left(A_{n} \cap(E \backslash F)\right)-m\left(A_{n}^{c} \cap(E \backslash F)\right)\right|+\left|m\left(A_{n} \cap F\right)-m\left(A_{n}^{c} \cap F\right)\right| \\
\leq & 2 \varepsilon+\left|m\left(A_{n} \cap F\right)-m\left(A_{n}^{c} \cap F\right)\right|
\end{aligned}
$$

And since we have already seen that

$$
\left|m\left(A_{n} \cap F\right)-m\left(A_{n}^{c} \cap F\right)\right| \rightarrow 0
$$

for F, we have that the same holds for E and so

$$
\lim _{n \rightarrow \infty} \int_{[0,1]} \chi_{E} h_{n} d m=0
$$

Thus, the above holds for all simple functions f by linearity of the integral.
Finally, since for all $\varepsilon>0$ there exists a simple function ϕ such that $\int|f-\phi| d m<\varepsilon$, we have that

$$
\left|\int_{[0,1]} f h_{n} d m-\int_{[0,1]} \phi h_{n} d m\right|=\left|\int_{[0,1]}(f-\phi) h_{n} d m\right| \leq \int_{[0,1]}|f-\phi|\left|h_{n}\right| d m=\int_{[0,1]}|f-\phi| d m<\varepsilon
$$

so, tending ε to 0 we have our result.

