Kayla Orlinsky
 Real Analysis Exam Fall 2010

Problem 1. Let \mathcal{A} be a collection of pairwise disjoint subsets of a σ-finite measure space, and suppose each set in \mathcal{A} has strictly positive measure. Show that \mathcal{A} is at most countable.

Solution. Because X is σ-finite, let $X=\bigcup_{i=1}^{\infty} E_{i}$ with $\mu\left(E_{i}\right)<\infty$ for all i. Furthermore, we can let E_{i} be disjoint by letting $F_{1}=E_{1}, F_{2}=E_{2} \backslash E_{1}, \ldots, F_{i}=E_{i} \backslash \cup_{j=1}^{i-1}$.

Now, let $\mathcal{A}=\left\{A_{\alpha}\right\}_{\alpha \in I}$ for some indexing set I.
We now prove a claim:
Claim 1. The an uncountable sum of strictly positive numbers is infinite.

Proof. Let $\mathcal{K}=\left\{K_{\kappa}\right\}_{\kappa \in P}$ be an uncountable collection of strictly positive real numbers. Then

$$
\sum_{\kappa \in P} K_{\kappa}=\sup \left\{\sum_{i=1}^{N} K_{\kappa_{i}} \mid \text { all finite subcollections of } P\right\} .
$$

Now, let

$$
S_{n}=\left\{\kappa_{i} \left\lvert\, K_{\kappa_{i}}>\frac{1}{n}\right.\right\} .
$$

Then

$$
\sum_{\kappa \in P} K_{\kappa} \geq \sup _{\kappa_{i} \in S_{n}} K_{\kappa_{i}}>\sum_{\kappa_{i} \in S_{n}} \frac{1}{n} .
$$

Thus, if the sum is to be finite, it must be the case that S_{n} is finite for all n since $\frac{1}{n}$ is a positive constant.

Therefore, for the sum to be finite

$$
S=\bigcup_{n \in \mathbb{N}} S_{n}=\left\{\kappa_{i} \mid K_{\kappa_{i}}>0\right\}
$$

is at most countable.
However, by assumption, all of the $K_{\kappa}>0$ and so it must be that the sum is infinite.

Assume that A is uncountable. Then since the $A_{\alpha} \in \mathcal{A}$ are uncountable and we can write

$$
\mu\left(A_{\alpha}\right)=\mu\left(\bigcup_{i=1}^{\infty}\left(A_{\alpha} \cap E_{i}\right)\right)=\sum_{i=1}^{\infty} \mu\left(A_{\alpha} \cap E_{i}\right)>0
$$

it must be that there exist i such that $\mu\left(A_{\alpha} \cap E_{i}\right)>0$ for an uncountable number of α.
Index this set of α as $\left\{A_{\beta}\right\}_{\beta \in J}$ with J uncountable.
Then,

$$
\begin{aligned}
\sum_{\beta \in J} \mu\left(A_{\beta} \cap E_{i}\right) & =\sup _{\beta \in J}\left\{\sum_{j=1}^{n} \mu\left(A_{\beta_{j}} \cap E_{i}\right) \mid \text { finite subcollections of } J\right\} \\
& \leq \mu\left(E_{i}\right) \\
& <\infty \text { since } A_{\beta_{j}} \text { are disjoint. }
\end{aligned}
$$

However, from the claim and since $\mu\left(A_{\beta_{j}} \cap E_{i}\right)>0$ for all $\beta_{j} \in J$, this sup must be infinite, which contradicts that it is bounded by $\mu\left(E_{i}\right)$.

Thus, \mathcal{A} is at most countable.

Problem 2.

(a) Let m denote the Lebesgue measure on \mathbb{R} and let f be an integrable function. Show that for $a>0$,

$$
\int f(a x) m(d x)=\frac{1}{a} \int f(x) m(d x) .
$$

HINT: Consider a restricted class of functions f first.
(b) Let F be a measurable function on \mathbb{R} satisfying $|F(x)| \leq C|x|$ for all x, and suppose F is differentiable at 0 . Show that

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} \frac{n F(x)}{x\left(1+n^{2} x^{2}\right)} m(d x)=\pi F^{\prime}(0)
$$

HINT: Use (a).

Solution.

(a) Let $f(x)=\chi_{E}(x)$ for E measurable. Now, if $a x \in E$ then $x \in \frac{E}{a}\left\{\left.\frac{e}{a} \right\rvert\, e \in E\right\}$. Thus, $\chi_{E}(a x)=\chi_{E / a}(x)$ and so

$$
\int \chi_{E}(x) d m=\int \chi_{E / a}(x) d m=m(E / a)=\frac{1}{a} m(E)
$$

since $a>0$ by the scaling property of Lebesgue measure.
Thus, by linearity, the above property holds for simple functions.
Now, for all $\varepsilon>0$ there exists some ϕ simple function such that $\int|f-\phi| d m<\varepsilon$. Thus,

$$
\begin{aligned}
\left|\int f(a x) d m-\int \frac{1}{a} f(x) d m\right| & =\left|\int f(a x) d m-\int \frac{1}{a} f(x) d m+\int \phi(a x) d m-\int \phi(a x) d m\right| \\
& \leq\left|\int f(a x)-\phi(a x) d m\right|+\left|\frac{1}{a} \int \phi(x)-f(x) d m\right| \\
& \leq \int|f(a x)-\phi(a x)| d m+\frac{1}{a} \int|f(x)-\phi(x)| d m \\
& <\varepsilon+\frac{\varepsilon}{a}
\end{aligned}
$$

and since ϕ and ε were arbitrary, we are done.
(b) Note that

$$
F^{\prime}(0)=\lim _{x \rightarrow 0} \frac{F(x)-F(0)}{x}=\lim _{x \rightarrow 0} \frac{F(X)}{X}=\lim _{n \rightarrow \infty} \frac{F(u / n)}{u / n}=\lim _{n \rightarrow \infty} \frac{n F(u / n)}{u}
$$

for fixed u and $x=\frac{u}{n}$.
Note that $F(0)=0$ since $|F(0)| \leq C|0|=0$.

Now, from (a), we use u-substitution $u=n x, d u=n d x$.
Then

$$
\int \frac{n F(x)}{x\left(1+n^{2} x^{2}\right)} d x=\int \frac{F(u / n)}{(u / n)\left(1+u^{2}\right)} d u=\int \frac{n F(u / n)}{u} \frac{1}{1+u^{2}} d u
$$

Now, we apply Dominated Convergence Theorem.
(i)

$$
\lim _{n \rightarrow \infty} \frac{n F(u / n)}{u} \frac{1}{1+u^{2}}=\frac{F^{\prime}(0)}{1+u^{2}}
$$

for a.e. u.
(ii)

$$
\left|\frac{n F(u / n)}{u} \frac{1}{1+u^{2}}\right| \leq \frac{C|u / n||n / u|}{1+u^{2}}=\frac{C}{1+u^{2}} \in L^{1}
$$

$$
\text { so } \frac{n F(u / n)}{u} \frac{1}{1+u^{2}} \in L^{1} .
$$

Thus, by DCT,
$\lim _{n \rightarrow \infty} \int \frac{n F(u / n)}{u} \frac{1}{1+u^{2}} d u=\int_{-\infty}^{\infty} \frac{F^{\prime}(0)}{1+u^{2}} d u=\left.F^{\prime}(0) \tan ^{-1}(u)\right|_{-\infty} ^{\infty}=F^{\prime}(0)\left(\frac{\pi}{2}-\frac{-\pi}{2}\right)=\pi F^{\prime}(0)$.

Problem 3. Let (X, \mathcal{M}, μ) be a measure space with $\mu(X)<\infty$ and let f be a measurable function with $|f|<1$. Prove that

$$
\lim _{n \rightarrow \infty} \int_{X}\left(1+f+\cdots+f^{n}\right) d \mu
$$

exists (it may be ∞). HINT: First consider $f \geq 0$.

Solution. We note that

$$
1+f+\cdots+f^{n}=\frac{f^{n+1}-1}{f-1} \quad \text { for }|f|<1
$$

Let

$$
f_{n}(x)=\frac{f^{n+1}-1}{f-1}
$$

Note that $f_{n} \rightarrow \frac{1}{1-f}$ a.e. since $|f|<1$.
$f \geq 0$ Then

$$
\lim _{n \rightarrow \infty} \int_{X} \sum_{k=0}^{n} f^{k} d \mu=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \int_{X} f^{k} d \mu=\sum_{k=0}^{\infty} \int_{X} f^{k} d \mu=\int_{X} \sum_{k=0}^{\infty} f^{k} d \mu=\int_{X} \frac{1}{1-f} d \mu
$$

since $f \in L^{+}$and $|f|<1$.
Alternatively, we could use monotone convergence theorem. Since $0 \leq f<1$ we have that $f^{n+1} \leq f^{n}$ for all n so $f_{n+1}(x) \leq f_{n}(x)$ for all x.

Let

$$
g_{n}(x)=\frac{1}{1-f}-f_{n}(x)
$$

1. g_{n} is measurable since f is and because $f^{n}-1 \leq 1$ for all $n, g_{n}(x) \geq 0$ for all n. Thus, $\left\{g_{n}\right\} \subset L^{+}$.
2. $g_{n} \rightarrow 0$ a.e.
3. $g_{n} \leq g_{n+1}$ for all n.

Thus, by the Monotone Convergence Theorem,

$$
\lim _{n \rightarrow \infty} \int g_{n}(x) d \mu=0 \Longrightarrow \lim _{n \rightarrow \infty} \int f_{n} d \mu=\int \frac{1}{1-f} d \mu
$$

NOTE: This integral depends entirely on f. If $f(x)=0$ a.e., then the integral is $\int 1 d \mu=\mu(X)<\infty$.

If $\mu=m$, and $X=(0,1)$ and $f(x)=x$, then $x<1$ and

$$
\int_{0}^{1} \frac{1}{1-x} d m=-\left.\log |1-x|\right|_{0} ^{1}=\infty
$$

arbitrary f We let $f_{n}(x)$ be as before. now, by the geometric series test, $f_{n} \rightarrow \frac{1}{1-f}$ uniformly.

Thus, for all $\varepsilon>0$ and a.e. x, there exists an $N \in \mathbb{N}$ such that $\left|f_{n}(x)-\frac{1}{1-f}\right|<\varepsilon$ for all $n \geq N$. Thus,

$$
\left|\int \frac{1}{1-f}-f_{n} d \mu\right| \leq \int\left|\frac{1}{1-f}-f_{n}\right| d \mu \leq \int \varepsilon d \mu=\varepsilon \mu(X)
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \int f_{n} d \mu=\int \frac{1}{1-f} d \mu
$$

Problem 4. Let $\left\{F_{j}\right\}$ be a sequence of nonnegative nondecreasing right-continuous functions on $[a, b]$ and suppose $F(x)=\sum_{j=1}^{\infty} F_{j}(x)$ is finite for all $x \in[a, b]$. Show that

$$
F^{\prime}(x)=\sum_{j=1}^{\infty} F_{j}^{\prime}(x) \quad \text { for } m \text {-a.e. } x \in[a, b] .
$$

HINT: Consider the corresponding measures μ_{F} and $\mu_{F_{j}}$.

Solution. First, we let ν be the counting measure on \mathbb{N}.

1. $F_{i} \in L^{1}(\nu)$ since $F(x)<\infty$.
2. $\lim _{x \rightarrow y^{+}} F_{i}(x)=F_{i}(y)$ by right continuity.
3. $F_{i}(x) \leq F_{i}(b) \in L^{1}(\nu)$ since $F(b)<\infty$ and since F_{i} are increasing on $[a, b]$.

Thus, by Dominated Convergence Theorem,

$$
\lim _{x \rightarrow y^{+}} F(x)=\lim _{x \rightarrow y^{+}} \sum_{i=1}^{\infty} F_{i}(x)=\sum_{i=1}^{\infty} F_{i}(y)=F(y)
$$

so F is also right continuous. Furthermore, clearly F is also increasing and nonnegative since the F_{i} are so μ_{F} makes sense.

Therefore,

$$
\begin{aligned}
\mu_{F}([a, b]) & =F(b)-F(a) \\
& =\sum_{i=1}^{\infty} F_{i}(b)-\sum_{i=1}^{\infty} F_{i}(a) \\
& =\sum_{i=1}^{\infty}\left(F_{i}(b)-F_{i}(a)\right) \\
& =\sum_{i=1}^{\infty} \mu_{F_{i}}([a, b]) .
\end{aligned}
$$

Thus, clearly $\mu_{F_{i}} \ll \mu_{F}$ for all i.
Now, by Lebesgue-RN, there exists some $f \in L^{1}(m)$ and λ complex measure with $\lambda \perp m$ and $d \mu_{F}=d \lambda+f d m$.

We apply the same theorem to the μ_{i} with λ_{i}, f_{i} such that $d \mu_{F_{i}}=d \lambda_{i}+f_{i} d m$.
Thus,

$$
\mu_{F}(E)=\lambda(E)+\int_{E} f d m
$$

and similarly,

$$
\mu_{F_{i}}(E)=\lambda_{i}(E)+\int_{E} f_{i} d m .
$$

Now, since $[x, x+h]$ shrinks nicely to x as $h \rightarrow 0$ by the Lebesgue Differentiation Theorem

$$
\lim _{h \rightarrow 0} \frac{\mu_{F}([x, x+h])}{m([x, x+h])}=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}=f(x) \quad m \text {-.a.e. }
$$

Thus, $f(x)=F^{\prime}(x)$ a.e.. Similarly, $f_{i}=F_{i}^{\prime}(x) m$-a.e. for all i.
Now, we have already used the Dominated Convergence Theorem to swap the integral with the sum and so using what we have so far,

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h} & =\lim _{h \rightarrow 0} \frac{\sum F_{i}(x+h)-\sum F_{i}(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sum\left(F_{i}(x+h)-F_{i}(x)\right)}{h} \\
& =\sum_{h \rightarrow 0} \frac{F_{i}(x+h)-F_{i}(x)}{h} \\
& =\sum_{i} f_{i}(x) \\
& =\sum_{i=1}^{\infty} F_{i}^{\prime}(x) \quad m \text {-a.e. }
\end{aligned}
$$

