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Problem 1. Let A be a collection of pairwise disjoint subsets of a σ-finite measure
space, and suppose each set in A has strictly positive measure. Show that A is at most
countable.

Solution. Because X is σ-finite, let X = ⋃∞
i=1 Ei with µ(Ei) < ∞ for all i. Furthermore,

we can let Ei be disjoint by letting F1 = E1, F2 = E2\E1, ... , Fi = Ei\
⋃i−1
j=1 .

Now, let A = {Aα}α∈I for some indexing set I.
We now prove a claim:

Claim 1. The an uncountable sum of strictly positive numbers is infinite.

Proof. Let K = {Kκ}κ∈P be an uncountable collection of strictly positive real
numbers. Then

∑
κ∈P

Kκ = sup
{

N∑
i=1

Kκi
| all finite subcollections of P

}
.

Now, let
Sn = {κi |Kκi

>
1
n
}.

Then ∑
κ∈P

Kκ ≥ sup
κi∈Sn

Kκi
>

∑
κi∈Sn

1
n
.

Thus, if the sum is to be finite, it must be the case that Sn is finite for all n
since 1

n
is a positive constant.

Therefore, for the sum to be finite

S =
⋃
n∈N

Sn = {κi |Kκi
> 0}

is at most countable.
However, by assumption, all of the Kκ > 0 and so it must be that the sum

is infinite. �
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Assume that A is uncountable. Then since the Aα ∈ A are uncountable and we can
write

µ(Aα) = µ(
∞⋃
i=1

(Aα ∩ Ei)) =
∞∑
i=1

µ(Aα ∩ Ei) > 0,

it must be that there exist i such that µ(Aα ∩ Ei) > 0 for an uncountable number of α.
Index this set of α as {Aβ}β∈J with J uncountable.
Then,

∑
β∈J

µ(Aβ ∩ Ei) = sup
β∈J


n∑
j=1

µ(Aβj
∩ Ei) | finite subcollections of J


≤ µ(Ei)
<∞ since Aβj

are disjoint.

However, from the claim and since µ(Aβj
∩ Ei) > 0 for all βj ∈ J , this sup must be

infinite, which contradicts that it is bounded by µ(Ei).
Thus, A is at most countable. �
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Problem 2.

(a) Let m denote the Lebesgue measure on R and let f be an integrable function. Show
that for a > 0, ∫

f(ax)m(dx) = 1
a

∫
f(x)m(dx).

HINT: Consider a restricted class of functions f first.

(b) Let F be a measurable function on R satisfying |F (x)| ≤ C|x| for all x, and suppose
F is differentiable at 0. Show that

lim
n→∞

∫
R

nF (x)
x(1 + n2x2)m(dx) = πF ′(0).

HINT: Use (a).

Solution.

(a) Let f(x) = χE(x) for E measurable. Now, if ax ∈ E then x ∈ E
a
{ e
a
| e ∈ E}. Thus,

χE(ax) = χE/a(x) and so∫
χE(x)dm =

∫
χE/a(x)dm = m(E/a) = 1

a
m(E)

since a > 0 by the scaling property of Lebesgue measure.
Thus, by linearity, the above property holds for simple functions.
Now, for all ε > 0 there exists some φ simple function such that

∫
|f − φ|dm < ε. Thus,∣∣∣∣∫ f(ax)dm−

∫ 1
a
f(x)dm

∣∣∣∣ =
∣∣∣∣∫ f(ax)dm−

∫ 1
a
f(x)dm+

∫
φ(ax)dm−

∫
φ(ax)dm

∣∣∣∣
≤
∣∣∣∣∫ f(ax)− φ(ax)dm

∣∣∣∣+ ∣∣∣∣1a
∫
φ(x)− f(x)dm

∣∣∣∣
≤
∫
|f(ax)− φ(ax)|dm+ 1

a

∫
|f(x)− φ(x)|dm

< ε+ ε

a

and since φ and ε were arbitrary, we are done.

(b) Note that

F ′(0) = lim
x→0

F (x)− F (0)
x

= lim
x→0

F (X)
X

= lim
n→∞

F (u/n)
u/n

= lim
n→∞

nF (u/n)
u

for fixed u and x = u
n
.

Note that F (0) = 0 since |F (0)| ≤ C|0| = 0.
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Now, from (a), we use u-substitution u = nx, du = ndx.
Then ∫ nF (x)

x(1 + n2x2)dx =
∫ F (u/n)

(u/n)(1 + u2)du =
∫ nF (u/n)

u

1
1 + u2du.

Now, we apply Dominated Convergence Theorem.

(i)

lim
n→∞

nF (u/n)
u

1
1 + u2 = F ′(0)

1 + u2

for a.e. u.
(ii) ∣∣∣∣∣nF (u/n)

u

1
1 + u2

∣∣∣∣∣ ≤ C|u/n||n/u|
1 + u2 = C

1 + u2 ∈ L
1

so nF (u/n)
u

1
1+u2 ∈ L1.

Thus, by DCT,

lim
n→∞

∫ nF (u/n)
u

1
1 + u2du =

∫ ∞
−∞

F ′(0)
1 + u2du = F ′(0) tan−1(u)

∣∣∣∣∣
∞

−∞
= F ′(0)(π2−

−π
2 ) = πF ′(0).

�
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Problem 3. Let (X,M, µ) be a measure space with µ(X) <∞ and let f be a measurable
function with |f | < 1. Prove that

lim
n→∞

∫
X

(1 + f + · · ·+ fn)dµ

exists (it may be ∞). HINT: First consider f ≥ 0.

Solution. We note that

1 + f + · · ·+ fn = fn+1 − 1
f − 1 for |f | < 1.

Let
fn(x) = fn+1 − 1

f − 1 .

Note that fn → 1
1−f a.e. since |f | < 1.

f ≥ 0 Then

lim
n→∞

∫
X

n∑
k=0

fkdµ = lim
n→∞

n∑
k=0

∫
X
fkdµ =

∞∑
k=0

∫
X
fkdµ =

∫
X

∞∑
k=0

fkdµ =
∫
X

1
1− f dµ

since f ∈ L+ and |f | < 1.
Alternatively, we could use monotone convergence theorem. Since 0 ≤ f < 1 we have

that fn+1 ≤ fn for all n so fn+1(x) ≤ fn(x) for all x.
Let

gn(x) = 1
1− f − fn(x).

1. gn is measurable since f is and because fn − 1 ≤ 1 for all n, gn(x) ≥ 0 for all n. Thus,
{gn} ⊂ L+.

2. gn → 0 a.e.

3. gn ≤ gn+1 for all n.

Thus, by the Monotone Convergence Theorem,

lim
n→∞

∫
gn(x)dµ = 0 =⇒ lim

n→∞

∫
fndµ =

∫ 1
1− f dµ.

NOTE: This integral depends entirely on f . If f(x) = 0 a.e., then the integral is∫
1dµ = µ(X) <∞.
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If µ = m, and X = (0, 1) and f(x) = x, then x < 1 and

∫ 1

0

1
1− xdm = − log |1− x|

∣∣∣∣∣
1

0
=∞.

arbitrary f We let fn(x) be as before. now, by the geometric series test, fn → 1
1−f

uniformly.
Thus, for all ε > 0 and a.e. x, there exists an N ∈ N such that |fn(x)− 1

1−f | < ε for all
n ≥ N . Thus, ∣∣∣∣∣

∫ 1
1− f − fndµ

∣∣∣∣∣ ≤
∫ ∣∣∣∣∣ 1

1− f − fn
∣∣∣∣∣ dµ ≤

∫
εdµ = εµ(X).

Therefore,
lim
n→∞

∫
fndµ =

∫ 1
1− f dµ.

�
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Problem 4. Let {Fj} be a sequence of nonnegative nondecreasing right-continuous
functions on [a, b] and suppose F (x) = ∑∞

j=1 Fj(x) is finite for all x ∈ [a, b]. Show that

F ′(x) =
∞∑
j=1

F ′j(x) for m-a.e. x ∈ [a, b].

HINT: Consider the corresponding measures µF and µFj
.

Solution. First, we let ν be the counting measure on N.

1. Fi ∈ L1(ν) since F (x) <∞.

2. lim
x→y+

Fi(x) = Fi(y) by right continuity.

3. Fi(x) ≤ Fi(b) ∈ L1(ν) since F (b) <∞ and since Fi are increasing on [a, b].

Thus, by Dominated Convergence Theorem,

lim
x→y+

F (x) = lim
x→y+

∞∑
i=1

Fi(x) =
∞∑
i=1

Fi(y) = F (y)

so F is also right continuous. Furthermore, clearly F is also increasing and nonnegative since
the Fi are so µF makes sense.

Therefore,

µF ([a, b]) = F (b)− F (a)

=
∞∑
i=1

Fi(b)−
∞∑
i=1

Fi(a)

=
∞∑
i=1

(Fi(b)− Fi(a))

=
∞∑
i=1

µFi
([a, b]).

Thus, clearly µFi
<< µF for all i.

Now, by Lebesgue-RN, there exists some f ∈ L1(m) and λ complex measure with λ ⊥ m
and dµF = dλ+ fdm.

We apply the same theorem to the µi with λi, fi such that dµFi
= dλi + fidm.

Thus,
µF (E) = λ(E) +

∫
E
fdm

and similarly,
µFi

(E) = λi(E) +
∫
E
fidm.
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Now, since [x, x + h] shrinks nicely to x as h → 0 by the Lebesgue Differentiation
Theorem

lim
h→0

µF ([x, x+ h])
m([x, x+ h]) = lim

h→0

F (x+ h)− F (x)
h

= f(x) m-.a.e.

Thus, f(x) = F ′(x) a.e.. Similarly, fi = F ′i (x) m-a.e. for all i.
Now, we have already used the Dominated Convergence Theorem to swap the integral

with the sum and so using what we have so far,

lim
h→0

F (x+ h)− F (x)
h

= lim
h→0

∑
Fi(x+ h)−∑Fi(x)

h

= lim
h→0

∑(Fi(x+ h)− Fi(x))
h

=
∑

lim
h→0

Fi(x+ h)− Fi(x)
h

=
∑

fi(x)

=
∞∑
i=1

F ′i (x) m-a.e.

�
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