## Intro

Here are my solutions to some of USC's qualifying exams. A lot of the solutions here are ones I came up with myself, but many other ones are adapted from ideas that I found either online or in textbooks, so I definitely don't claim all of the credit for everything here. I've put a question mark (?) next to solutions I didn't feel completely confident in; and although I've done my best to avoid this, some of the other solutions may contain mistakes too, so please keep that in mind. Thanks and good luck! - Alec.

## Notation

Below is a guide of notation and terminology you'll find throughout my solutions. If a problem uses the symbols below to mean something else, then I'll do the same for that problem.

- $\mathbb{1}_{E}$ denotes the indicator function of a measurable set $E$.
- $\mathcal{B}_{X}$ denotes the Borel $\sigma$-algebra of a topological space $X$.


## Exams

2006, Spring ..... 1
2006, Fall ..... 4
2007, Spring ..... 5
2007, Fall ..... 7
2008, Spring ..... 9
2008, Fall ..... 10
2009, Spring ..... 12
2010, Spring ..... 14
2010, Fall ..... 17
2011, Spring ..... 19

## 2006, Spring

## Problem 1.

- No. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ consisting of symmetric triangular spikes of height $j$ and base $2 j^{-3}$ at each integer $j \geq 2$ along $\mathbb{R}$. Explicitly, $f$ is given by

$$
f(x):= \begin{cases}j^{4}(x-j) & j \geq 2, x \in\left[j, j+j^{-3}\right) \\ j^{4}\left[\left(j+2 j^{-3}\right)-x\right] & j \geq 2, x \in\left[j+j^{-3}, j+2 j^{-3}\right) \\ 0 & \text { else }\end{cases}
$$

The $\mathrm{L}^{1}(\mathbb{R})$-norm of $f$ is given by the sum of the areas of the triangles,

$$
\|f\|_{L^{1}(\mathbb{R})}=\sum_{j=2}^{\infty} j \cdot \frac{1}{j^{3}}=\sum_{j=2}^{\infty} \frac{1}{j^{2}}<\infty
$$

However, $f$ isn't bounded and $\lim _{x \rightarrow \infty} f(x)$ is nonexistent, so neither (i) nor (ii) hold.

- Both (i) and (ii) hold if $f^{\prime}$ exists everywhere and $\left|f^{\prime}\right| \leq C$ for some $C>0$.

Assume first that $f(x) \nrightarrow 0$ as $x \rightarrow \infty$. Then there's some $\epsilon>0$ for which we can find a sequence $\left\{x_{j}\right\}_{j=1}^{\infty} \subset \mathbb{R}$ with $x_{j} \rightarrow \infty$ and $f\left(x_{j}\right) \geq \epsilon$ for each $j \in \mathbb{N}$. We may assume w.l.o.g. that $x_{1} \leq x_{2} \leq \cdots$ and $\left|x_{j+1}-x_{j}\right|>2 \epsilon / C$ for all $j \in \mathbb{N}$. Fix some $j \in \mathbb{N}$; then $\left|f\left(x_{j}\right)\right| \geq \epsilon$, so assume w.l.o.g. that $f\left(x_{j}\right) \geq \epsilon$. For any $y \in\left(x_{j}-(\epsilon / C), x_{j}\right)$, we have by the mean value theorem that

$$
\frac{f\left(x_{j}\right)-f(y)}{x-y} \leq C \Longrightarrow \epsilon \leq f\left(x_{j}\right) \leq C\left(x_{j}-y\right)+f(y) \Longrightarrow C\left(y-x_{j}\right)+\epsilon \leq f(y)
$$

and similarly $C\left(x_{j}-y\right)+\epsilon \leq f(y)$ for any $y \in\left(x_{j}, x_{j}+(\epsilon / C)\right)$. Then

$$
\int_{x_{j}-(\epsilon / C)}^{x_{j}+(\epsilon / C)} f(y) \mathrm{d} y \geq \int_{x_{j}-(\epsilon / C)}^{x_{j}}\left[C\left(y-x_{j}\right)+\epsilon\right] \mathrm{d} y+\int_{x_{j}}^{x_{j}+(\epsilon / C)}\left[C\left(x_{j}-y\right)+\epsilon\right] \mathrm{d} y=\frac{2 \epsilon^{2}}{C}
$$

and so

$$
\int_{\mathbb{R}}|f| \geq \sum_{j=1}^{\infty} \int_{x_{j}-(\epsilon / C)}^{x_{j}+(\epsilon / C)}|f(y)| \mathrm{d} y \geq \sum_{j=1}^{\infty} \frac{2 \epsilon^{2}}{C}=\infty
$$

contradicting $f \in \mathrm{~L}^{1}(\mathbb{R})$.
Assume next that $f$ is unbounded. If $f(x) \rightarrow 0$ as $x \rightarrow \infty$, then there some $M>0$ large enough so that $|f(x)| \leq 1$ for all $x \in \mathbb{R}$ with $|x|>M$. Thus $f$ must be unbounded on the compact set $[-M, M]$, which is impossible since $f$ is continuous. Hence $f(x) \nrightarrow 0$ as $x \rightarrow \infty$, which leads to a contradiction as above.

## Problem 2.

(a) For any $x, y>0$,

$$
\begin{aligned}
& \frac{1-e^{-y x^{2}}}{x^{2}}=\frac{1}{x^{2}}\left[1-\sum_{j=0}^{\infty} \frac{(-1)^{j} y^{j} x^{2 j}}{j!}\right]=-\sum_{j=1}^{\infty} \frac{(-1)^{j} y^{j} x^{2(j-1)}}{j!}=-\sum_{j=0}^{\infty} \frac{(-1)^{j+1} y^{j+1} x^{2 j}}{(j+1)!} \\
& \leq y \sum_{j=0}^{\infty} \frac{(-1)^{j} y^{j} x^{2 j}}{j!}=y e^{-y x^{2}}
\end{aligned}
$$

and hence by the substitution $s:=\sqrt{y} x$,

$$
0 \leq G(y) \leq \int_{0}^{\infty} y e^{-y x^{2}} \mathrm{~d} x=\sqrt{y} \int_{0}^{\infty} e^{-s^{2}} \mathrm{~d} s=\frac{\sqrt{\pi y}}{2}<\infty
$$

(b) For any $y>0$,

$$
G^{\prime}(y)=\lim _{z \rightarrow y} \frac{G(y)-G(z)}{y-z}=\lim _{z \rightarrow y} \int_{0}^{\infty} \frac{-e^{-y x^{2}}+e^{-z x^{2}}}{(y-z) x^{2}} \mathrm{~d} x=-\lim _{z \rightarrow y} \int_{0}^{\infty} \frac{e^{-y x^{2}}-e^{-z x^{2}}}{y-z} \cdot \frac{1}{x^{2}} \mathrm{~d} x
$$

Provided that we can justify moving the limit inside the integral, then

$$
G^{\prime}(y)=-\int_{0}^{\infty} \lim _{z \rightarrow y} \frac{e^{-y x^{2}}-e^{-z x^{2}}}{y-z} \frac{\mathrm{~d} x}{x^{2}}=\left.\int_{0}^{\infty} \frac{\mathrm{d} e^{-z x^{2}}}{\mathrm{~d} z}\right|_{z=y} \frac{\mathrm{~d} x}{x^{2}}=\int_{0}^{\infty} \frac{-x^{2} e^{-y x^{2}}}{x^{2}} \mathrm{~d} x=\int_{0}^{\infty} e^{-y x^{2}} \mathrm{~d} x
$$

and by the substitution $s:=\sqrt{y} x$,

$$
G^{\prime}(y)=\frac{1}{\sqrt{y}} \int_{0}^{\infty} e^{-s^{2}} \mathrm{~d} s=\frac{1}{2} \sqrt{\frac{\pi}{y}},
$$

and taking the antiderivative gives $G(y)=\sqrt{\pi y}+c$ for some $c \in \mathbb{R}$. From the definition of $G$ we see that $G(0)=0$ and now that $G(0)=c$, whereby $c=0$ and so $G(y)=\sqrt{\pi y}$. To justify exchanging the limit and integration above, it suffices by dominated convergence to bound the integrand by an integrable function. Assume w.l.o.g. that $y<z$. By the mean value theorem, there's some $z_{0} \in(y, z)$ with

$$
\begin{aligned}
& \left.\left|\frac{-e^{-y x^{2}}+e^{-z x^{2}}}{(y-z) x^{2}}\right|=\left.\left|\frac{\partial e^{-z x^{2}}}{\partial z}\right|_{z=z_{0}} \cdot \frac{1}{x^{2}}\left|\leq \sup _{z_{1} \in(y, z)}\right| \frac{\partial e^{-z x^{2}}}{\partial z}\right|_{z=z_{1}} \cdot \frac{1}{x^{2}}\left|=\sup _{z_{1} \in(y, z)}\right| \frac{-x^{2} e^{-z_{1} x^{2}}}{x^{2}} \right\rvert\, \\
& =\sup _{z_{1} \in(y, z)}\left|1+z_{1} x+\frac{\left(z_{1} x\right)^{2}}{2!}+\frac{\left(z_{1} x\right)^{3}}{3!}+\frac{\left(z_{1} x\right)^{4}}{4!}+\cdots\right|^{-1} \leq \sup _{z_{1} \in(y, z)} \frac{2}{z_{1}^{2} x^{2}} \leq \frac{2}{y^{2} x^{2}}
\end{aligned}
$$

and the right-hand side, when regarded as a function of $x$ on $(0, \infty)$, is integrable.

## Problem 3.

Since $(X, \mathcal{M}, \mu)$ is $\sigma$-finite, then $X=\bigsqcup_{j \in J} X_{j}$ for some countable collection $\left\{X_{j}\right\}_{j \in J} \subset \mathcal{M}$ with $\mu\left(X_{j}\right)<\infty$ for each $j \in J$. Fix some $j \in J$. By Egoroff, for each $k \in \mathbb{N}$, there's a subset $Y_{j, k} \subset X_{j}$ in $\mathcal{M}$ with $\mu\left(X_{j} \backslash Y_{j, k}\right)<k^{-1}$ and with $f_{n} \rightarrow f$ uniformly on $Y_{j, k}$. We may assume w.l.o.g. that $Y_{j, 1} \subset Y_{j, 2} \subset \cdots$, so by construction, $Y_{j, k} \nearrow X_{j}$ (up to a null set) as $k \rightarrow \infty$. Setting $F_{j, k}:=Y_{j, k} \backslash Y_{j, k-1}$ for each $k \in \mathbb{N}$, we still have $f_{n} \rightarrow f$ uniformly on $F_{j, k}$, and furthermore the collection $\left\{F_{j, k}\right\}_{k \in \mathbb{N}}$ is disjoint, so we may write $X$ as the disjoint union

$$
X=E_{0} \sqcup \bigsqcup_{\substack{j \in J \\ k \in \mathbb{N}}} F_{j, k},
$$

where $E_{0}$ is the null set $\bigcap_{k=1}^{\infty} \bigcup_{j \in J}\left(X_{j} \backslash Y_{j, k}\right)$. Letting $\left\{E_{\ell}\right\}_{\ell=1}^{\infty}$ be an enumeration of the countable collection $\left\{F_{j, k}\right\}_{j \in J, k \in \mathbb{N}}$, we obtain the desired partition.

## Problem 4.

(a) An equivalent definition for a function $g: \mathbb{R} \rightarrow \mathbb{R}$ to be l.s.c. is that $\{x \in \mathbb{R} \mid a<f(x)\}$ is an open set for all $a \in \mathbb{R}$ (see (b)). To see that $f$ has this property, let $a \in \mathbb{R}$ and suppose $a<f(x)=\sup _{j \in \mathbb{N}} f_{j}(x)$ for some $x \in \mathbb{R}$. Then by definition of sup, there's some $k \in \mathbb{N}$ with $a<f_{k}(x)$. But $f_{k}$ is continuous, so there's some $\delta>0$ such that for all $y \in \mathbb{R}$ with $|x-y|<\delta$, we have $a<f_{k}(y) \leq \sup _{j \in \mathbb{N}} f_{j}(y)=f(y)$.
(Note that we in fact only need the $f_{j}$ 's to be l.s.c.)
(b) This is very similar to problem 1 of 2010, Spring.

## 2006, Fall

## Problem 1.

Let $S$ be the collection of all 1-point subsets of $\mathbb{R}$, and $\sigma(S)$ the $\sigma$-algebra generated by $S$. Now let $\mathcal{F}:=\{E \subset \mathbb{R} \mid E$ is countable or cocountable $\}$ (it's easy to show that $\mathcal{F}$ is a $\sigma$-algebra). We claim that $E \in \sigma(S)$ if and only if $E \in \mathcal{F}$. The inclusion $S \subset \mathcal{F}$ is immediate, so $\sigma(S) \subset \mathcal{F}$. Conversely if $E \in \mathcal{F}$ is countable (resp. cocountable), then it's a countable union (resp. complement of a countable union) of 1-point subsets, and hence $E \in \sigma(S)$; so $\mathcal{F} \subset \sigma(S)$.

## Problem 2.

(a) True. By Hölder, $\|f\|_{\mathbf{L}^{1}(\mu)} \leq\|f\|_{\mathbf{L}^{2}(\mu)}\|1\|_{\mathrm{L}^{2}(\mu)}=\|f\|_{\mathrm{L}^{2}(\mu)} \mu(X)^{1 / 2}<\infty$.
(b) False. Set $X:=(1, \infty)$ with Lebesgue measure $\mu$, and $f(x):=x^{-1}$. Then

$$
\|f\|_{\mathrm{L}^{1}(\mu)}=\int_{1}^{\infty} x^{-1} \mathrm{~d} x=\infty, \quad\|f\|_{\mathrm{L}^{2}(\mu)}=\left(\int_{1}^{\infty} x^{-2} \mathrm{~d} x\right)^{1 / 2}=1<\infty
$$

(c) False. Set $X:=(0,1)$ with Lebesgue measure $\mu$, and $f(x):=x^{-1 / 2}$. Then

$$
\|f\|_{L^{1}(\mu)}=\int_{0}^{1} x^{-1 / 2} \mathrm{~d} x=2<\infty, \quad\|f\|_{L^{2}(\mu)}=\left(\int_{0}^{1} x^{-1} \mathrm{~d} x\right)^{1 / 2}=\infty .
$$

(d) False. Extend the function $f$ in (c) to all of $X:=\mathbb{R}$ by setting $f: \equiv 0$ outside of $(0,1)$.

Problem 3 (?).
(a) No. We have $|f(x, y)|=|f(y, x)|$ for any $(x, y) \in \mathbb{R}^{2}$, and so by symmetry

$$
\|f\|_{L^{1}\left(\mathbb{R}^{2}\right)}=\iint_{\mathbb{R}^{2}}|f|=2 \iint_{\{x>y\}}|f(x, y)| \mathrm{d} y \mathrm{~d} x=2 \int_{-\infty}^{\infty} \underbrace{\int_{-\infty}^{x} e^{-(x-y)} \mathrm{d} y}_{=1} \mathrm{~d} x=\infty
$$

(the inner integral is equal to 1 by an easy computation).
(b) Yes. Both integrals are equal to 0 by substitution.

## Problem 4.

The function $|f|$ is in $L^{1}(\mathbb{R})$, and for each $n \in \mathbb{N}$ we have $\left|f_{n}\right|=|f| \cdot|\sin (x)|^{n} \leq|f|$, hence

$$
\left\|f_{n}\right\|_{\mathrm{L}^{1}(\mathbb{R})}=\int_{\mathbb{R}}\left|f_{n}\right| \leq \int_{\mathbb{R}}|f|=\|f\|_{\mathrm{L}^{1}(\mathbb{R})}<\infty
$$

Now $|\sin (x)|<1$ for a.e. $x \in \mathbb{R}$, so $\lim _{n \rightarrow \infty} f_{n}=0$ a.e. Then

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f_{n}(x) \mathrm{d} x=\int_{-\infty}^{\infty} 0 \mathrm{~d} x=0
$$

by dominated convergence.

## 2007, Spring

## Problem 1.

Firstly, $\mu()=\lim _{n \rightarrow \infty} \mu_{n}()=\lim _{n \rightarrow \infty} 0=0$. Now let $\left\{E_{j}\right\}_{j \in J} \subset \mathcal{M}$ be a disjoint collection indexed by a countable set $J \subset \mathbb{N}$, and for each $n \in \mathbb{N}$, let $f_{n}: \mathbb{N} \rightarrow \mathbb{R}$ be given by $f_{n}(j):=\mu_{n}\left(E_{j}\right)$. By assumption, $f_{1} \leq f_{2} \leq \cdots$, and $f_{n} \nearrow f$ for $f(j):=\mu\left(E_{j}\right)$. If $\nu$ is the counting measure on $\mathbb{N}$, then

$$
\mu\left(\bigcup_{j \in J} E_{j}\right)=\lim _{n \rightarrow \infty} \mu_{n}\left(\bigcup_{j \in J} E_{j}\right)=\lim _{n \rightarrow \infty} \sum_{j \in J} \mu_{n}\left(E_{j}\right)=\lim _{n \rightarrow \infty} \int_{\mathbb{N}} f_{n} \mathrm{~d} \nu=\int_{\mathbb{N}} f \mathrm{~d} \nu=\sum_{j \in J} \mu\left(E_{j}\right)
$$

by monotone convergence.

## Problem 2.

(a) Let $0<\alpha<\mu(X)$, and assume the inf in question is 0 . Then we can find a sequence $\left\{E_{j}\right\}_{j=1}^{\infty} \subset \mathcal{M}$ such that $\mu\left(E_{j}\right) \geq \alpha$ and $\int_{X} f \mathbb{1}_{E_{j}}=\int_{E_{j}} f<j^{-1}$. Then the sequence $\left\{f \mathbb{1}_{E_{j}}\right\}_{j=1}^{\infty}$ converges to 0 in measure, so there's some subsequence $\left\{f \mathbb{1}_{E_{j_{k}}}\right\}_{k=1}^{\infty}$ converging to 0 a.e. In this case,

$$
0=\mu\left(\limsup _{k \rightarrow \infty} E_{j_{k}}\right)=\mu\left(\bigcap_{\ell=1}^{\infty} \bigcup_{k=\ell}^{\infty} E_{j_{k}}\right)
$$

so for any $\epsilon>0$ there must be some $\ell \in \mathbb{N}$ satisfying the last inequality below,

$$
\alpha \leq \mu\left(E_{j_{\ell}}\right) \leq \mu\left(\bigcup_{k=\ell}^{\infty} E_{j_{k}}\right)<\epsilon
$$

Choosing $\epsilon<\alpha$ gives a contradiction.
(b) Let $X:=(1, \infty)$ with Lebesgue measure $\mu$. The function $f(x):=x^{-2}$ is strictly positive on $(1, \infty)$ and $\int_{(1, \infty)} f=1$, so $f \in \mathrm{~L}^{1}(\mu)$. However for $\alpha:=1$, the intervals $(j, j+1)$ for $j \in \mathbb{N}$ satisfy $\mu((j, j+1))=1$, and for any $\epsilon>0$, we can choose $j$ large enough so that

$$
\int_{(j, j+1)} f=\int_{j}^{j+1} \frac{\mathrm{~d} x}{x^{2}}=\frac{1}{j^{2}+j}<\epsilon
$$

Thus the inf in question must be 0 .

## Problem 3.

Denote by $\mu$ the Lebesgue measure on $\mathbb{R}^{2}$, and let $\epsilon>0$. Since $[0,1]$ is compact, $f$ is uniformly continuous, so there's some $0<\delta<1$ so that $|f(x)-f(y)|<\epsilon / 4$ whenever $|x-y|<\delta$. Let $0=x_{0}<x_{1}<\cdots<x_{m-1}<x_{m}=1$ be a partition with $\left|x_{j}-x_{j+1}\right|<\delta$ for each $0 \leq j \leq m-1$ and with $m \in \mathbb{N}$ the smallest integer satisfying $m \delta>1$. Then $(m-1) \delta \leq 1$ and so $m \delta \leq 1+\delta<2$. Our choice of $\delta$ yields

$$
\operatorname{graph}(f) \subset \bigcup_{j=0}^{m-1}\left[x_{j}, x_{j+1}\right] \times\left[f\left(x_{j}\right)-\frac{\epsilon}{4}, f\left(x_{j}\right)+\frac{\epsilon}{4}\right] \Longrightarrow \mu(\operatorname{graph}(f)) \leq \sum_{j=0}^{m-1} \delta \cdot \frac{2 \epsilon}{4}=m \delta \cdot \frac{\epsilon}{2}<\epsilon
$$

Therefore $\mu(\operatorname{graph}(f))=0$.

## Problem 4 (?).

Fix $u \in(0,1)$. Provided we may exchange the order of differentiation and integration, then

$$
g^{\prime}(u)=\int_{-\infty}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} u}\left(\frac{x^{n} e^{u x}}{e^{x}+1}\right) \mathrm{d} x=\int_{-\infty}^{\infty} \frac{x^{n+1} e^{u x}}{e^{x}+1} \mathrm{~d} x
$$

This exchange is valid if the integrand on the right-hand side is bounded (in magnitude) a.e. by an integrable function. To see this, let $\epsilon>0$ be such that $u \in(0,1-\epsilon)$. Then for $x>0$, we have

$$
1<e^{x} \Longrightarrow e^{u x}=\left(e^{x}\right)^{u}<\left(e^{x}\right)^{1-\epsilon}=e^{(1-\epsilon) x}
$$

and for $x<0$ we have $e^{x}<1$. So for any $x \in \mathbb{R}$, we have $e^{u x}<1+e^{(1-\epsilon) x}$, whereby

$$
\left|\frac{x^{n+1} e^{u x}}{e^{x}+1}\right| \leq\left|\frac{x^{n+1}\left(1+e^{(1-\epsilon) x}\right)}{e^{x}+1}\right| \leq\left|\frac{x^{n+1}}{e^{x}+1}\right|+\left|\frac{x^{n+1} e^{(1-\epsilon) x}}{e^{x+1}}\right| \leq\left|\frac{x^{n+1}}{e^{x}+1}\right|+\left|\frac{x^{n+1}}{e^{1+\epsilon x}}\right|
$$

Both summands on the right are integrable, so this completes the proof.

## 2007, Fall

## Problem 1.

Let $n \in \mathbb{N}$ and $t>0$. Choose $\epsilon>0$ small enough so that $t>\epsilon$. By dominated convergence, we may move the operator $\mathrm{d}^{n} / \mathrm{d} t^{n}$ inside the given integral since

$$
\left|\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}} e^{-t x^{2}}\right|=\left|(-1)^{n} x^{2 n} e^{-t x^{2}}\right| \leq\left|x^{2 n} e^{-\epsilon x^{2}}\right|,
$$

and the right-hand side, regarded as a function of $x$ on $\mathbb{R}$, is integrable. Hence

$$
\int_{-\infty}^{\infty}(-1)^{n} x^{2 n} e^{-t x^{2}} \mathrm{~d} x=\int_{-\infty}^{\infty} \frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}} e^{-t x^{2}} \mathrm{~d} x=\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}} \sqrt{\frac{\pi}{t}}=\sqrt{\pi} \cdot \frac{(-1)^{n}(2 n)!}{4^{n} n!} t^{-(2 n+1) / 2},
$$

whereby setting $t:=1$ gives

$$
\int_{-\infty}^{\infty} x^{2 n} e^{-x^{2}} \mathrm{~d} x=\frac{(2 n)!\sqrt{\pi}}{4^{n} n!}
$$

as desired.

## Problem 2.

(a) Set $f_{j}:=j^{2} \mathbb{1}_{\left(0, j^{-1}\right)}$ for each $j \in \mathbb{N}$. Then

$$
\lim _{j \rightarrow \infty} \int_{(0,1)} f_{j}=\lim _{j \rightarrow \infty} \int_{\left(0, j^{-1}\right)} j^{2}=\lim _{j \rightarrow \infty} j=\infty .
$$

However, for any fixed $x \in(0,1)$, for all $j \in \mathbb{N}$ sufficiently large, we have $j^{-1}<x$ and so $f_{j}(x)=0$. Thus $\lim _{j \rightarrow \infty} f_{j}(x)=0$.
(b) Let $f:[0,1] \rightarrow[0,1]$ be the well-known Devil's staircase function. Then $f$ increases continuously from $f(0)=0$ to $f(1)=1$. But outside of the measure- 0 Cantor set, $f^{\prime}$ exists and is identically 0 , so $f(1)-f(0)=1 \neq 0=\int_{0}^{1} f^{\prime}(x) \mathrm{d} x$.

## Problem 3.

Set $E_{j}:=\left\{g_{j}>2^{-j}\right\}$ for each $j \in \mathbb{N}$. If $x \in E_{j}$ for only finitely many $j \in \mathbb{N}$, then there's some $N \in \mathbb{N}$ so that $x \in E_{j}^{\mathrm{c}}$ for all $j \geq N$, and hence the sum converges for this $x$,

$$
\sum_{j=1}^{\infty} g_{j}(x)=\sum_{j=1}^{N-1} g_{j}(x)+\sum_{j=N}^{\infty} g_{j}(x)<\underbrace{\sum_{j=1}^{N-1} g_{j}(x)}_{<\infty}+\underbrace{\sum_{j=N}^{\infty} \frac{1}{2^{j}}}_{<\infty}<\infty .
$$

Hence we're done if we can show that the set of those $x$ 's belonging to infinitely many $E_{j}$ 's is a null set. This is precisely the set $\lim \sup _{j \rightarrow \infty} E_{j}$, and we have

$$
\mu\left(\limsup _{j \rightarrow \infty} E_{j}\right)=\mu\left(\bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} E_{j}\right)=\lim _{k \rightarrow \infty} \mu\left(\bigcup_{j=k}^{\infty} E_{j}\right) \leq \lim _{k \rightarrow \infty} \sum_{j=k}^{\infty} \mu\left(E_{j}\right) .
$$

But each summand on the right is bounded above by $2^{-j}$, and the sum $\sum_{j=1}^{\infty} 2^{-j}$ is convergent, whereby the limit on the right is 0 .

## Problem 4 (?).

Set $E_{t}:=\mu(\{|g|>t\})$. Integrating by parts,

$$
\int_{0}^{\infty} \mu(t) \mathrm{d}\left(t^{p}\right)+\int_{0}^{\infty} t^{p} \mathrm{~d} \mu(t)=\left.\mu(t) t^{p}\right|_{0} ^{\infty}=\lim _{t \rightarrow \infty} \mu(t) t^{p}
$$

By Fubini, the first integral is equal to

$$
\int_{0}^{\infty}\left(\int_{\mathbb{R}^{d}} \mathbb{1}_{E_{t}} \mathrm{~d} x\right) p t^{p-1} \mathrm{~d} t=\int_{\mathbb{R}^{d}} \int_{0}^{\infty} \mathbb{1}_{E_{t}} p t^{p-1} \mathrm{~d} t \mathrm{~d} x=\int_{\mathbb{R}^{d}} \int_{0}^{|g(x)|} p t^{p-1} \mathrm{~d} t=\int_{\mathbb{R}^{d}}|g(x)|^{p} \mathrm{~d} x
$$

Thus the result follows if we can show that $\lim _{t \rightarrow \infty} \mu(t) t^{p}=0$. Let $\left\{\varphi_{j}\right\}_{j=1}^{\infty} \subset \mathrm{L}^{p}\left(\mathbb{R}^{d}\right)$ be a sequence of nonnegative simple functions approaching $g$ with $\left|\varphi_{1}\right| \leq\left|\varphi_{2}\right| \leq \cdots \leq|g|$ a.e. Then for any $t \geq 0$,

$$
\left\{\left|\varphi_{1}\right|>t\right\} \subset\left\{\left|\varphi_{2}\right|>t\right\} \subset \cdots \subset\{|g|>t\}=E_{t}, \quad E_{t}=\bigcup_{j=1}^{\infty}\left\{\left|\varphi_{j}\right|>t\right\}
$$

For any $j \in \mathbb{N}$, writing $\varphi_{j}=\sum_{k=1}^{m} a_{k} \mathbb{1}_{A_{k}}$ for some $a_{k} \geq 0$ and $A_{k} \in \mathcal{M}$, the set $\left\{\left|\varphi_{j}\right|>t\right\}$ has measure 0 as soon as $t>\max _{1 \leq k \leq m} a_{k}$, whereby

$$
\lim _{t \rightarrow \infty} \mu(t) t^{p}=\lim _{t \rightarrow \infty} \lim _{j \rightarrow \infty} \mu\left(\left\{\left|\varphi_{j}\right|>t\right\}\right) t^{p}=0
$$

## 2008, Spring

Incomplete: 4.
Problem 1 (?).
(i) No. Suppose the integral exists. Then by Fubini,

$$
\int_{E} \frac{1}{x-y} \mathrm{~d} m(x, y)=\int_{0}^{1} \int_{0}^{1} \frac{1}{x-y} \mathrm{~d} x \mathrm{~d} y=\int_{0}^{1} \log \left(1-\frac{1}{y}\right) \mathrm{d} y
$$

is well defined. But this is impossible since whenever $y$ belongs to the measure- 1 set $[0,1) \subset$ $[0,1]$, we have $1-\frac{1}{y}<0$ and so $\log \left(1-\frac{1}{y}\right)$ isn't even defined.
(ii) Yes. The integrand is in $\mathrm{L}^{+}(E, m)$ so by Tonelli,

$$
\int_{E} \frac{1}{x+y} \mathrm{~d} m(x, y)=\int_{0}^{1} \int_{0}^{1} \frac{1}{x+y} \mathrm{~d} x \mathrm{~d} y=\int_{0}^{1} \log \left(1+\frac{1}{y}\right) \mathrm{d} y=\log (4)
$$

after a routine computation.

## Problem 2.

Let $\mathcal{S}:=\{E \subset[0,1] \mid E$ compact and $\mu(E)=1\}$. Firstly if $E_{1}, E_{2} \in \mathcal{S}$, then certainly $E_{1} \cup E_{2} \subset$ $[0,1]$; so $1=\mu\left(E_{1}\right) \leq \mu\left(E_{1} \cup E_{2}\right) \leq 1$, whereby

$$
\mu\left(E_{1} \cup E_{2}\right)=1 \Longrightarrow \mu\left(E_{1} \cap E_{2}\right)=\mu\left(E_{1}\right)+\mu\left(E_{2}\right)-\mu\left(E_{1} \cup E_{2}\right)=1+1-1=1
$$

Then inductively, any finite collection $\left\{E_{j}\right\}_{j=1}^{m} \subset \mathcal{S}$ has measure- 1 intersection. We now claim that $\mu(K)=1$, where $K$ is the (potentially uncountable) intersection $\bigcap_{E \in \mathcal{S}} E$. To see this, let $U \subset[0,1]$ be an open set with $U \supset K$. Then the family of closed sets $\mathcal{T}:=\{E \backslash U \mid E \in \mathcal{S}\}$ must satisfy $\bigcap_{E \backslash U \in \mathcal{T}}(E \backslash U)=$. This means that $\mathcal{T}$ doesn't have the finite intersection property, since any family of closed subsets of the compact space $[0,1]$ with this property has nonempty intersection. Thus there's a finite collection $\left\{E_{j} \backslash U\right\}_{j=1}^{m} \subset \mathcal{T}$ with empty intersection, giving

$$
\bigcap_{j=1}^{m}\left(E_{j} \backslash U\right)=\Longrightarrow \bigcap_{j=1}^{m} E_{j} \subset U \Longrightarrow 1=\mu\left(\bigcap_{j=1}^{m} E_{j}\right) \leq \mu(U)
$$

Since $U \supset K$ was an arbitrary open set, we have that

$$
1 \leq \inf \{\mu(U) \mid U \subset[0,1] \text { open and } U \supset K\}=\mu(K) \leq 1
$$

by outer regularity of $\mu$. Therefore $\mu(K)=1$.

## Problem 3.

Neither implication holds.

- Let $f:=\mathbb{1}_{(1 / 2,1]}$, which is continuous a.e. on $[0,1]$, and suppose that there's some continuous $g:[0,1] \rightarrow \mathbb{R}$ with $g=f$ a.e. For all $j \geq 3$, the sets $(1 / 2-1 / j, 1 / 2),(1 / 2,1 / 2+1 / j)$ have positive measure, and thus contain some $x_{j}, y_{j}$, respectively, with $g\left(x_{j}\right)=f\left(x_{j}\right)=0$ and $g\left(y_{j}\right)=f\left(y_{j}\right)=1$. Moreover, $x_{j} \nearrow 1 / 2$ and $y_{j} \searrow 1 / 2$ as $j \rightarrow \infty$, so by continuity of $g$,

$$
g\left(\frac{1}{2}-\right)=\lim _{j \rightarrow \infty} g\left(x_{j}\right)=\lim _{j \rightarrow \infty} 0=0, \quad g\left(\frac{1}{2}+\right)=\lim _{j \rightarrow \infty} g\left(y_{j}\right)=\lim _{j \rightarrow \infty} 1=1
$$

which is impossible since $g$ is continuous at $1 / 2$.

- Let $f:=\mathbb{1}_{\mathbb{Q} \cap[0,1]}$ and $g: \equiv 0$. Then $f=0=g$ outside of the null set $\mathbb{Q} \cap[0,1]$, but $f$ is nowhere continuous on $[0,1]$.


## 2008, Fall

Incomplete: 4(b).

## Problem 1.

It's enough to show that $\mu$ and $\nu$ agree on open rectangles, since these generate $\mathcal{B}_{\mathbb{R}^{2}}$. So, suppose $R=\left(x_{1}, x_{2}\right) \times\left(y_{1}, y_{2}\right)$ is such a rectangle, and define the vectors $\boldsymbol{a}:=\left(x_{1}, y_{1}\right), \boldsymbol{b}:=\left(x_{2}, y_{2}\right)$. Let $L$ be the segment $\{t \boldsymbol{a}+(1-t) \boldsymbol{b} \mid t \in(0,1)\}$, let $R_{1}$ be the open triangle with endpoints $\boldsymbol{a},\left(x_{1}, y_{2}\right), \boldsymbol{b}$, and let $R_{2}$ be the open triangle with endpoints $\boldsymbol{a},\left(x_{2}, y_{1}\right), \boldsymbol{b}$. Then $R=L \sqcup R_{1} \sqcup R_{2}$, and

$$
\mu(R)=\mu(L)+\mu\left(R_{1}\right)+\mu\left(R_{2}\right), \quad \nu(R)=\nu(L)+\nu\left(R_{1}\right)+\nu\left(R_{2}\right)
$$

But $\mu$ and $\nu$ agree on the open triangles $R_{1}, R_{2}$, so we're done if we can show that $\mu(L)=\nu(L)$. Let $\boldsymbol{u}$ be a unit vector orthogonal to $\boldsymbol{b}-\boldsymbol{a}$, and for any $\epsilon>0$, let $L_{\epsilon}$ be the open triangle with endpoints $\boldsymbol{a}-\epsilon \boldsymbol{u}, \boldsymbol{a}+\epsilon \boldsymbol{u}, \boldsymbol{b}$. Hence we obtain a family of open triangles $\left\{L_{1 / j}\right\}_{j=1}^{\infty}$ with $\bigcap_{j=1}^{\infty} L_{1 / j}=L$. Moreover, $\mu\left(L_{1}\right) \leq \mu\left(\mathbb{R}^{2}\right)<\infty$ and $\nu\left(L_{1}\right) \leq \nu\left(\mathbb{R}^{2}\right)<\infty$, so by continuity from above of the measures $\mu$ and $\nu$,

$$
\mu(L)=\mu\left(\bigcap_{j=1}^{\infty} L_{1 / j}\right)=\lim _{j \rightarrow \infty} \mu\left(L_{1 / j}\right)=\lim _{j \rightarrow \infty} \nu\left(L_{1 / j}\right)=\nu\left(\bigcap_{j=1}^{\infty} L_{1 / j}\right)=\nu(L)
$$

since $\mu$ and $\nu$ agree on each of the open triangles $\left\{L_{1 / j}\right\}_{j=1}^{\infty}$.

## Problem 2.

For fixed $x>0$, we have

$$
\lim _{n \rightarrow \infty} \frac{1+n x^{2}+n^{2} x^{4}}{\left(1+x^{2}\right)^{n}}=\lim _{n \rightarrow \infty} \frac{1}{\left(1+x^{2}\right)^{n}}+\lim _{n \rightarrow \infty} \frac{n x^{2}}{\left(1+x^{2}\right)^{n}}+\lim _{n \rightarrow \infty} \frac{n^{2} x^{4}}{\left(1+x^{2}\right)^{n}}
$$

The first limit is clearly 0 . The second and third limits are evaluated via L'Hôspital,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n x^{2}}{\left(1+x^{2}\right)^{n}} & =\lim _{n \rightarrow \infty} \frac{x^{2}}{\exp \left(n \log \left(1+x^{2}\right)\right) \log \left(1+x^{2}\right)}=0 \\
\lim _{n \rightarrow \infty} \frac{n^{2} x^{4}}{\left(1+x^{2}\right)^{n}} & =\lim _{n \rightarrow \infty} \frac{2 n x^{4}}{\exp \left(n \log \left(1+x^{2}\right)\right) \log \left(1+x^{2}\right)}=0
\end{aligned}
$$

Then provided that we can justify exchanging the limit and the integral, we have

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{1+n x^{2}+n^{2} x^{4}}{\left(1+x^{2}\right)^{n}} \mathrm{~d} x=\int_{0}^{\infty} \lim _{n \rightarrow \infty} \frac{1+n x^{2}+n^{2} x^{4}}{\left(1+x^{2}\right)^{n}} \mathrm{~d} x=0
$$

To see that this is indeed justified, note that for any $x>0$, we have

$$
\frac{1+n x^{2}+n^{2} x^{4}}{\left(1+x^{2}\right)^{n}}=\frac{1+n x^{2}+n^{2} x^{4}}{\sum_{j=0}^{n}\binom{n}{j} x^{2 j}} \leq \frac{1+n x^{2}+n^{2} x^{4}}{\binom{n}{3} x^{2 \cdot 3}} \leq \frac{n}{(n-1)(n-2)} \cdot \frac{6\left(1+x^{2}+x^{4}\right)}{x^{6}}
$$

by expanding and rearranging as necessary. Now when $n \geq 3$, we have

$$
\frac{\mathrm{d}}{\mathrm{~d} n} \frac{n}{(n-1)(n-2)}=\frac{2-n^{2}}{(n-1)^{2}(n-2)^{2}} \leq 0
$$

whereby the function $n /(n-1)(n-2)$ starts to decrease at $n=3$, yielding

$$
\frac{1+n x^{2}+n^{2} x^{4}}{\left(1+x^{2}\right)^{n}} \leq \frac{3}{(3-1)(3-2)} \cdot \frac{6\left(1+x^{2}+x^{4}\right)}{x^{6}}=\frac{9\left(1+x^{2}+x^{4}\right)}{x^{6}}
$$

Regarded as a function of $x$, the right-hand side is integrable on $(0, \infty)$, and thus we may apply dominated convergence to exchange the limit and integral above as we wished.

## Problem 3.

Let $C>0$ be such that $|f| \leq C$ a.e. Then using Fubini,

$$
\begin{aligned}
& \|f\|_{\mathbb{L}^{1}(\mathbb{R})}=\int_{\mathbb{R}}|f(x)| \mathrm{d} x=\int_{\mathbb{R}} \int_{0}^{|f(x)|} \mathrm{d} t \mathrm{~d} x=\int_{\mathbb{R}} \int_{0}^{C} \mathbb{1}_{\{|f| \geq t\}} \mathrm{d} t \mathrm{~d} x=\int_{0}^{C} \int_{\mathbb{R}} \mathbb{1}_{\{|f| \geq t\}} \mathrm{d} x \mathrm{~d} t \\
& =\int_{0}^{C} m(|f| \geq t) \mathrm{d} t \leq \int_{0}^{C} \frac{M}{t^{c}} \mathrm{~d} t=\frac{M C^{1-c}}{1-c}<\infty
\end{aligned}
$$

as desired.

## Problem 4.

(a) For any $\left\{x_{j}\right\}_{j=0}^{m} \subset[0,1]$ with $0=x_{0}<x_{1}<\cdots<x_{m}=1$,

$$
\sum_{j=1}^{m}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right|=\liminf _{n \rightarrow \infty} \sum_{j=1}^{m}\left|f_{n}\left(x_{j}\right)-f_{n}\left(x_{j-1}\right)\right| \leq \liminf _{n \rightarrow \infty} T_{0}^{1}\left(f_{n}\right)
$$

It follows that the desired inequality holds for $T_{0}^{1}(f)$, the supremum of the left-hand side over all partitions $\left\{x_{j}\right\}_{j=0}^{m} \subset[0,1]$ as above.

## 2009, Spring

Incomplete: 3, 4 .

## Problem 1.

(a) We consider the cases of finite and infinite countable unions separately.

- Suppose $\left\{E_{j}\right\}_{j=1}^{m} \subset \mathcal{C}$ and let $\epsilon>0$. For each $1 \leq j \leq m$, there's a set $A_{j} \in \mathcal{A}$ such that $A_{j} \subset E_{j}$ and $\mu\left(E_{j} \backslash A_{j}\right)<\epsilon / m$. Note that $A:=\bigcup_{j=1}^{m} A_{j} \in \mathcal{A}$ since $\mathcal{A}$ is an algebra, and we have $A \subset E:=\bigcup_{j=1}^{m} E_{j}$. Then

$$
\mu(E \backslash A)=\mu\left(\bigcup_{j=1}^{m}\left(E_{j} \backslash A\right)\right) \leq \mu\left(\bigcup_{j=1}^{m}\left(E_{j} \backslash A_{j}\right)\right) \leq \sum_{j=1}^{m} \mu\left(E_{j} \backslash A_{j}\right)<\sum_{j=1}^{m} \frac{\epsilon}{m}=\epsilon,
$$

so $E \in \mathcal{C}$.

- Now suppose $\left\{E_{j}\right\}_{j=1}^{\infty} \subset \mathcal{C}$ and let $\epsilon>0$. Letting $F_{m}:=\bigcup_{j=1}^{m} E_{j}$ for each $m \in \mathbb{N}$, we have an increasing sequence $F_{1} \subset F_{2} \subset \cdots$ with $F_{m} \nearrow E:=\bigcup_{j=1}^{\infty} E_{j}$ as $m \rightarrow \infty$, so by continuity from below, $\mu\left(F_{m}\right) \rightarrow \mu(E)$ as $m \rightarrow \infty$. Because $\mu(E) \leq \mu(X)<\infty$, we can choose $m \in \mathbb{N}$ large enough so that $\mu(E)-\mu\left(F_{m}\right)<\epsilon / 2$, whereby

$$
\mu(E)=\mu\left(E \backslash F_{m}\right)+\mu\left(F_{m}\right) \Longrightarrow \mu\left(E \backslash F_{m}\right)=\mu(E)-\mu\left(F_{m}\right)<\epsilon / 2
$$

the first equality holding since $F_{m} \subset E$. Moreover, $F_{m} \in \mathcal{C}$ by the above argument, so we can find some $A \in \mathcal{A}$ with $A \subset F_{m} \subset E$ and $\mu\left(F_{m} \backslash A\right)<\epsilon / 2$. Then

$$
\mu(E)=\mu\left(E \backslash F_{m}\right)+\mu\left(F_{m}\right) \Longrightarrow \mu(E \backslash A) \leq \mu\left(E \backslash F_{m}\right)+\mu\left(F_{m} \backslash A\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

and thus $E \in \mathcal{C}$.
(b) Let $X:=[0,1]$ with $\sigma$-algebra $\mathcal{B}_{[0,1]}$ and Lebesgue measure $\mu$. Let $\mathcal{A} \subset \mathcal{B}_{[0,1]}$ be the algebra generated by all singletons $\{q\}, q \in E:=\mathbb{Q} \cap[0,1]$, using complements and finite unions. Then $A \in \mathcal{A}$ if and only if $A$ is a finite collection $\left\{q_{j}\right\}_{j=1}^{m} \subset E$ or $A$ is the complement of such a set. Note that $\{0\} \in \mathcal{A},\{0\} \subset E$, and $\mu(E \backslash\{0\}) \leq \mu(E)=0<\epsilon$ for any $\epsilon>0$, so $E$ is approximable from inside by $\mathcal{A}$. But observe that any element $A \in \mathcal{A}$ contains at least one rational, while $E$ contains only irrationals, so we can't have $A \subset E^{c}$, and thus $E^{c}$ isn't approximable from inside by $\mathcal{A}$.

## Problem 2.

(a) Both $f, g$ are continuous on the compact set $[a, b]$, so there's some $M>0$ large enough so that $|f|,|g| \leq M$ on all of $[a, b]$. Now let $\epsilon>0$ and choose $\delta>0$ such that for any disjoint collection $\left\{\left(a_{j}, b_{j}\right) \subset[a, b]\right\}_{j=1}^{N}$, we have

$$
\sum_{j=1}^{N}\left(b_{j}-a_{j}\right)<\delta \Longrightarrow \sum_{j=1}^{N}\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right|, \sum_{j=1}^{N}\left|g\left(b_{j}\right)-g\left(a_{j}\right)\right|<\frac{\epsilon}{2 M}
$$

Then for any such collection,

$$
\begin{aligned}
& \sum_{j=1}^{N}\left|f\left(b_{j}\right) g\left(b_{j}\right)-f\left(a_{j}\right) g\left(a_{j}\right)\right| \leq \sum_{j=1}^{N}\left[\left|f\left(b_{j}\right) g\left(b_{j}\right)-f\left(b_{j}\right) g\left(a_{j}\right)\right|+\left|f\left(b_{j}\right) g\left(a_{j}\right)-f\left(a_{j}\right) g\left(a_{j}\right)\right|\right] \\
& \leq M(\underbrace{\sum_{j=1}^{N}\left|g\left(b_{j}\right)-g\left(a_{j}\right)\right|}_{<\epsilon / 2 M}+\underbrace{\sum_{j=1}^{N}\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right|}_{<\epsilon / 2 M})<M\left(\frac{\epsilon}{2 M}+\frac{\epsilon}{2 M}\right)=\epsilon .
\end{aligned}
$$

(b) We've just seen that $f g$ is absolutely continuous, so we have

$$
f(b) g(b)-f(a) g(a)=\int_{a}^{b}(f g)^{\prime}=\int_{a}^{b}\left(f^{\prime} g+f g^{\prime}\right)=\int_{a}^{b} f^{\prime} g+\int_{a}^{b} f g^{\prime}
$$

by the fundamental theorem for Lebesgue integrals.
(c) Take some $[a, b] \subset \mathbb{R}$ with $b-a \neq 2$, and let $f, g:[a, b] \rightarrow \mathbb{R}$ be given by $f(x):=(x-a) /(b-a)$ and $g(x):=\frac{1}{2} \mathbb{1}_{\left[\frac{b-a}{2}, b\right]}(x)$. Then $f^{\prime}=1$ and $g^{\prime}=0$ a.e. on $[a, b]$, but $g$ isn't continuous (in particular, $g$ isn't absolutely continuous). We have

$$
\int_{a}^{b} \underbrace{f^{\prime}}_{=1} g+\int_{a}^{b} f \underbrace{g^{\prime}}_{=0}=\int_{a}^{b} g=\frac{b-a}{4} \neq \frac{1}{2}=\underbrace{f(b)}_{=1} \underbrace{g(b)}_{=1 / 2}-\underbrace{f(a) g(a)}_{=0}
$$

## 2010, Spring

## Problem 1.

(i) Let $f$ be u.s.c. and $a \in \mathbb{R}$. If $x_{0} \in f^{-1}((-\infty, a))=\{x \in \mathbb{R} \mid f(x)<a\}$, then $f\left(x_{0}\right)+\epsilon<a$ for some $\epsilon>0$. Then there's some $\delta>0$ so that $f(x)<f\left(x_{0}\right)+\epsilon<a$ whenever $\left|x-x_{0}\right|<\delta$. Thus $f^{-1}((-\infty, a))$ is open, and in particular Borel. Since sets of the form $(-\infty, a)$ for $a \in \mathbb{R}$ generate $\mathcal{B}_{\mathbb{R}}$, this shows that $f$ is measurable.
(ii) We first claim that a map $f: \mathbb{R} \rightarrow \mathbb{R}$ is u.s.c. if for each $x \in \mathbb{R}$ we have $\lim \sup _{j \rightarrow \infty} f\left(x_{j}\right) \leq$ $f(x)$ whenever $\left\{x_{j}\right\}_{j=1}^{\infty} \subset \mathbb{R}$ satisfies $\lim _{j \rightarrow \infty} x_{j}=x$. (In fact, this is an equivalent definition of upper semicontinuity.)
To establish this, suppose $f$ is u.s.c., but there's some $x \in \mathbb{R}$ and a sequence $\left\{x_{j}\right\}_{j=1}^{\infty} \subset \mathbb{R}$ converging to $x$, with $f(x)<a:=\lim \sup _{j \rightarrow \infty} f\left(x_{j}\right)$. Let $\epsilon>0$ be such that $f(x)<a-\epsilon$. By definition of $a$, there's a subsequence $\left\{x_{j_{k}}\right\}_{k=1}^{\infty}$ of $\left\{x_{j}\right\}_{j=1}^{\infty}$ converging to $a$, so all but finitely many of the $x_{j_{k}}$ 's belong to $E:=\{y \in \mathbb{R} \mid f(y) \geq a-(\epsilon / 2)\}$. By inspection, $E$ is closed, so $x=\lim _{k \rightarrow \infty} x_{j_{k}} \in E$, and hence $a-(\epsilon / 2) \leq f(x)<a-\epsilon$, which is impossible.
Now, define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x):=\mu(x+A)$. It's enough to show that $f$ satisfies the above condition. Let $\left\{x_{j}\right\}_{j=1}^{\infty} \subset \mathbb{R}$ converge to some $x \in \mathbb{R}$. Since $|f| \leq \mu(\mathbb{R})<\infty$ on all of $\mathbb{R}$, then

$$
\limsup _{j \rightarrow \infty} f\left(x_{j}\right)=\limsup _{j \rightarrow \infty} \mu\left(x_{j}+A\right) \leq \mu\left(\limsup _{j \rightarrow \infty}\left(x_{j}+A\right)\right)
$$

by reverse Fatou's lemma. By definition of limsup, if $y \in \lim \sup _{j \rightarrow \infty}\left(x_{j}+A\right)$, then $y \in$ $x_{j}+A$ for infinitely many $j \in \mathbb{N}$. Passing to a subsequence of $\left\{x_{j}\right\}_{j=1}^{\infty}$ if necessary, w.l.o.g. $y=x_{j}+a_{j}$, for some $a_{j} \in A$, for all $j \in \mathbb{N}$, and passing to another subsequence if necessary, w.l.o.g. $\lim _{j \rightarrow \infty} a_{j}$ exists and belongs to $A$ since $A$ is closed. Then $y=x+\lim _{j \rightarrow \infty} a_{j} \in x+A$, whereby we've shown that $\lim \sup _{j \rightarrow \infty}\left(x_{j}+A\right) \subset x+A$. So

$$
\limsup _{j \rightarrow \infty} f\left(x_{j}\right) \leq \mu\left(\limsup _{j \rightarrow \infty}\left(x_{j}+A\right)\right) \leq \mu(x+A)=f(x)
$$

and this completes the proof.

## Problem 2.

(a) True. Let $\delta, \epsilon>0$. Since $\mu(X)<\infty$, there's $M>0$ large enough so that if $E:=\{|f|<M\}$, then $\mu\left(E^{c}\right)<\epsilon / 3$. Now $\left|f_{n}^{2}-f^{2}\right| \leq\left|f_{n}^{2}-f_{n} f\right|+\left|f_{n} f-f^{2}\right|=\left|f_{n}\right| \cdot\left|f_{n}-f_{n}\right|+|f| \cdot\left|f_{n}-f\right|$, so

$$
\left\{\left|f_{n}^{2}-f^{2}\right|>\delta\right\} \subset\left\{\left|f_{n}\right| \cdot\left|f_{n}-f\right|>\frac{\delta}{2}\right\} \cup\left\{|f| \cdot\left|f_{n}-f\right|>\frac{\delta}{2}\right\}
$$

Thus $\mu\left(E \cap\left\{\left|f_{n}^{2}-f^{2}\right|>\delta\right\}\right)$ is bounded above by

$$
\mu\left(E \cap\left\{\left|f_{n}\right| \cdot\left|f_{n}-f\right|>\frac{\delta}{2}\right\}\right)+\mu\left(E \cap\left\{|f| \cdot\left|f_{n}-f\right|>\frac{\delta}{2}\right\}\right)+\underbrace{\mu\left(E^{c}\right)}_{<\epsilon / 3} .
$$

For large enough $n$ the second term gives

$$
\mu\left(E \cap\left\{|f| \cdot\left|f_{n}-f\right|>\frac{\delta}{2}\right\}\right)<\mu\left(\left\{M\left|f_{n}-f\right|>\frac{\delta}{2}\right\}\right)<\frac{\epsilon}{3}
$$

Moreover $\left|f_{n}\right| \cdot\left|f_{n}-f\right| \leq\left(|f|+\left|f-f_{n}\right|\right)\left|f-f_{n}\right|=|f| \cdot\left|f_{n}-f\right|+\left|f_{n}-f\right|^{2}$ and so for large enough $n$ the first term gives

$$
\begin{aligned}
& \mu\left(E \cap\left\{\left|f_{n}\right| \cdot\left|f_{n}-f\right|>\frac{\delta}{2}\right\}\right) \leq \mu\left(E \cap\left\{|f| \cdot\left|f \cdot f_{n}\right|>\frac{\delta}{4}\right\}\right)+\mu\left(\left\{\left|f_{n}-f\right|^{2}>\frac{\delta}{4}\right\}\right) \\
& \leq \mu\left(\left\{M\left|f-f_{n}\right|>\frac{\delta}{4}\right\}\right)+\mu\left(\left\{\left|f_{n}-f\right|>\frac{\delta^{1 / 2}}{2}\right\}\right)<\frac{\epsilon}{6}+\frac{\epsilon}{6}=\frac{\epsilon}{3}
\end{aligned}
$$

Hence $\mu\left(E \cap\left\{\left|f_{n}^{2}-f^{2}\right|>\delta\right\}\right)<\epsilon$.
(b) False. Set $X:=(0, \infty)$ with Lebesgue measure $\mu$. If $f_{n}(x):=x-n^{-1}$ and $f(x):=x$, then for any $\delta>0$, we have $\mu\left(\left\{\left|f_{n}(x)-f(x)\right|>\delta\right\}\right)=\mu\left(\left\{n^{-1}>\delta\right\}\right) \rightarrow 0$ and hence $f_{n} \rightarrow f$ in measure. However for any $n \in \mathbb{N}$ and any $x$ in the measure- $\infty$ set $[n, \infty)$,

$$
\left|f_{n}^{2}(x)-f^{2}(x)\right|=\left|\left(x^{2}-\frac{2 x}{n}+\frac{1}{n^{2}}\right)-x^{2}\right|=\frac{2 x}{n}-\frac{1}{n}^{2} \geq 2
$$

whereby $f_{n}^{2} \nrightarrow f^{2}$ in measure.

## Problem 3.

Let $E \subset[0,1]$ have $m(E)=0$, and let $\epsilon>0$. Since $f$ is absolutely continuous, there's some $\delta>0$ such that for any disjoint collection $\left\{\left(a_{j}, b_{j}\right)\right\}_{j=1}^{N}$, we have

$$
\sum_{j=1}^{N}\left(b_{j}-a_{j}\right)<\delta \Longrightarrow \sum_{j=1}^{N}\left[f\left(b_{j}\right)-f\left(a_{j}\right)\right]<\epsilon
$$

By outer regularity of $m$, there's an open set $U \subset[0,1]$ with $E \subset U$ and $m(U)<\delta$. We may write $U$ as a disjoint union $U=\bigsqcup_{j \in J}\left(a_{j}, b_{j}\right)$ for some countable set $J$. Then for any $N \leq|J|$,

$$
\sum_{j=1}^{N}\left(b_{j}-a_{j}\right) \leq \sum_{j \in J}\left(b_{j}-a_{j}\right)=m(U)<\delta \Longrightarrow \sum_{j=1}^{N}\left[f\left(b_{j}\right)-f\left(a_{j}\right)\right]<\epsilon
$$

and hence it follows that

$$
m(f(E))=m\left(\bigcup_{j \in J}\left(f\left(a_{j}\right), f\left(b_{j}\right)\right)\right)=\sum_{j \in J}\left[f\left(b_{j}\right)-f\left(a_{j}\right)\right] \leq \epsilon
$$

where the first inequality used that $f$ was strictly increasing. Hence $m(f(E))=0$.

## Problem 4.

- Let $f \in \mathrm{~L}^{1}([0,1])$ and choose any $\epsilon>0$. We may find a simple function $\varphi=\sum_{k=1}^{m} a_{k} \mathbb{1}_{E_{k}}$ with $\|f-\varphi\|_{L^{1}([0,1])}<\epsilon$, where $\left\{a_{k}\right\}_{k=1}^{m} \subset \mathbb{R}$ and $\left\{E_{k}\right\}_{k=1}^{m} \subset \mathcal{B}_{[0,1]}$ is a disjoint collection of sets. By discarding countably many singletons if necessary, w.l.o.g. $E_{k}$ is a disjoint union of intervals for each $1 \leq k \leq m$. We further assume w.l.o.g. that $E_{k}$ is a single interval for each $1 \leq k \leq m$. For each $n \in \mathbb{N}$,

$$
\| \int h_{n} f\left|-\left|\int h_{n} \varphi\right|\right| \leq\left|\int h_{n}(f-\varphi)\right| \leq \int \underbrace{\left|h_{n}\right|}_{=1}|f-\varphi|<\epsilon
$$

so if the result holds for simple functions which are linear combinations of indicators of intervals, then taking the limit as $n \rightarrow \infty$ on each side gives $\lim _{n \rightarrow \infty}\left|\int h_{n} f\right|<\epsilon$. Thus we've reduced to the case of simple functions of this form.

- Now suppose $\varphi=\sum_{k=1}^{m} a_{k} \mathbb{1}_{E_{k}}$ is a linear combination of indicators of intervals $E_{k} \in \mathcal{B}_{[0,1]}$, $1 \leq k \leq m$. If the result holds for indicators of intervals, then

$$
\lim _{n \rightarrow \infty} \int h_{n} \varphi=\sum_{k=1}^{m} a_{k} \underbrace{\lim _{n \rightarrow \infty} \int h_{n} \mathbb{1}_{E_{k}}}_{=0}=0
$$

so we've further reduced to the case of indicators of intervals.

- Finally, let $E \in \mathcal{B}_{[0,1]}$ be an arbitrary interval, fix $n \in \mathbb{N}$, and let $F_{j_{1}}, \ldots, F_{j_{\ell}}$ be those intervals $F_{j}:=\left(\frac{j-1}{n}, \frac{j}{n}\right]$ with $F_{j} \subset E$ (w.l.o.g. $j_{1}<\cdots<j_{\ell}$ ). Setting $G_{0}:=F_{j_{1}-1}$ and $G_{1}:=F_{j_{\ell}+1}$, then $E \subset G_{0} \cup F_{j_{1}} \cup \cdots \cup F_{j_{\ell}} \cup G_{1}$, so

$$
\left|\int_{[0,1]} h_{n} \mathbb{1}_{E}\right|=\left|\int_{E} h_{n}\right| \leq \underbrace{\int_{G_{0}} 1}_{=1 / n}+\left|\sum_{r=1}^{\ell} \int_{F_{j_{r}}} h_{n}\right|+\underbrace{\int_{G_{1}} 1}_{=1 / n}=\frac{2}{n}+\left|\sum_{r=1}^{\ell} \frac{(-1)^{j_{r}}}{n}\right| .
$$

The summands on the right alternate signs as $r$ increases, so the entire sum is either 0 or $\pm 1 / n$ depending on the parity of $\ell$. Whichever is the case,

$$
\lim _{n \rightarrow \infty}\left|\int_{[0,1]} h_{n} \mathbb{1}_{E}\right| \leq \lim _{n \rightarrow \infty}\left(\frac{2}{n}+\frac{1}{n}\right)=0
$$

This completes the proof.

## 2010, Fall

## Problem 1.

Denote by $(X, \mathcal{M}, \mu)$ the measure space, and write $X$ as a countable disjoint union $X=\bigsqcup_{j \in J} X_{j}$ with $\mu\left(X_{j}\right)<\infty$ for each $j \in J$. Suppose $\mathcal{A}=\left\{A_{\alpha}\right\}_{\alpha \in I}$ is uncountable. Each $A_{\alpha}$ has positive measure, so it has $\mu\left(X_{j} \cap A_{\alpha}\right)>0$ for some collection of $j$ 's in $J$. Since there are uncountable many $\alpha \in I$ but only countably many $j \in J$, by the pigeonhole principle there must be some $j \in J$ and some uncountable subcollection $I^{\prime} \subset I$ with $\mu\left(X_{j} \cap A_{\alpha}\right)>0$ for all $\alpha \in I^{\prime}$. But then

$$
\infty>\mu\left(X_{j}\right) \geq \mu\left(\bigsqcup_{\alpha \in I^{\prime}}\left(X_{j} \cap A_{\alpha}\right)\right)=\sum_{\alpha \in I^{\prime}} \underbrace{\mu\left(X_{j} \cap A_{\alpha}\right)}_{>0},
$$

which is impossible since any uncountable sum of positive numbers in infinite.

## Problem 2.

(a) Let $a>0$. Consider a simple function $\varphi=\sum_{j=1}^{n} a_{j} \mathbb{1}_{E_{j}}$, with $\left\{a_{j}\right\}_{j=1}^{n} \subset \mathbb{R}$ and $\left\{E_{j}\right\}_{j=1}^{n} \subset \mathcal{B}_{\mathbb{R}}$ a disjoint collection. Observe that $\mathbb{1}_{E_{j}}(a x)=\mathbb{1}_{a^{-1} E_{j}}(x)$ for any $1 \leq j \leq n$, whereby

$$
\int \varphi(a x) \mathrm{d} x=\sum_{j=1}^{n} a_{j} m\left(a^{-1} E_{j}\right)=\frac{1}{a} \sum_{j=1}^{n} a_{j} m\left(E_{j}\right)=\frac{1}{a} \int \varphi(x) \mathrm{d} x
$$

Now suppose $f \in \mathrm{~L}^{1}(\mathbb{R})$ is arbitrary. By decomposing $f=f^{+}-f^{-}$, it's enough to consider the case $f \in \mathrm{~L}^{+}(\mathbb{R})$. Let $\left\{\varphi_{j}\right\}_{j=1}^{\infty} \subset \mathrm{L}^{+}(\mathbb{R})$ be a sequence of simple functions with $\varphi_{1} \leq \varphi_{2} \leq \cdots$ and $\lim _{j \rightarrow \infty} \varphi_{j}=f$. Then

$$
\int f(a x) \mathrm{d} x=\lim _{j \rightarrow \infty} \int \varphi_{j}(a x) \mathrm{d} x=\lim _{j \rightarrow \infty} \frac{1}{a} \int \varphi_{j}(x) \mathrm{d} x=\frac{1}{a} \int f(x) \mathrm{d} x
$$

by applying monotone convergence twice.
(b) Set $f(x):=n F(x) / x\left(1+n^{2} x^{2}\right)$. Then by (a),

$$
\int f(x) \mathrm{d} x=\frac{1}{n} \int f\left(\frac{x}{n}\right) \mathrm{d} x=\frac{1}{n} \int \frac{n F(x / n)}{(x / n)\left(1+n^{2}(x / n)^{2}\right)} \mathrm{d} x=\int \frac{1}{1+x^{2}} \cdot \frac{F(x / n)}{x / n} \mathrm{~d} x
$$

for any $n \in \mathbb{N}$. Now taking the limit as $n \rightarrow \infty$, we may apply dominated convergence since the integrand on the right satisfies

$$
\left|\frac{1}{1+x^{2}} \cdot \frac{F(x / n)}{x / n}\right| \leq \frac{1}{1+x^{2}} \cdot \frac{n C|x / n|}{|x|}=\frac{C}{1+x^{2}}
$$

and the right-hand side is integrable. Then

$$
\lim _{n \rightarrow \infty} \int f(x) \mathrm{d} x=\lim _{n \rightarrow \infty} \int \frac{1}{1+x^{2}} \cdot \frac{F(x / n)}{x / n} \mathrm{~d} x=\int \frac{1}{1+x^{2}} \cdot \underbrace{\lim _{n \rightarrow \infty} \frac{F(x / n)-F(0)}{(x / n)-0}}_{=F^{\prime}(0)} \mathrm{d} x=\pi F^{\prime}(0)
$$

where we used that $F(0)=0$ since $|F(x)| \leq C|x|$ for all $x \in \mathbb{R}$.

## Problem 3.

Assume first that $f \geq 0$. Clearly $1+f+\cdots+f^{n} \leq 1+f+\cdots+f^{n}+f^{n+1}$ for all $n \in \mathbb{N}$, so by monotone convergence and the geometric series formula,

$$
\lim _{n \rightarrow \infty} \int_{X}\left(1+f+\cdots+f^{n}\right)=\int_{X} \lim _{n \rightarrow \infty}\left(1+f+\cdots+f^{n}\right)=\int_{X} \frac{1}{1-f}
$$

The right-hand side always exists since $\mu(X)<\infty$ and $|f|<1$. Now consider a general measurable function $f=f^{+}-f^{-}$with $|f|<1$. We have that $f^{j}=\left(f^{+}-f^{-}\right)^{j}=\left(f^{+}\right)^{j}+(-1)^{j}\left(f^{-}\right)^{j}$ for any $j \geq 0$ since the product $f^{+} f^{-}$appearing in the cross terms is always 0 . Then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{X}\left(1+f+\cdots+f^{n}\right)=\lim _{n \rightarrow \infty} \int_{X}\left[1+f^{+}+\cdots+\left(f^{+}\right)^{n}\right]+\lim _{n \rightarrow \infty} \int_{X}\left[1-f^{-}+\cdots+(-1)^{n}\left(f^{-}\right)^{n}\right] \\
& \leq \lim _{n \rightarrow \infty} \int_{X}\left[1+f^{+}+\cdots+\left(f^{+}\right)^{n}\right]+\lim _{n \rightarrow \infty} \int_{X}\left[1+f^{-}+\cdots+\left(f^{-}\right)^{n}\right]=\int_{X} \frac{1}{1-f^{+}}+\int_{X} \frac{1}{1-f^{-}}
\end{aligned}
$$

and we're done by the nonnegative case since $f^{+}, f^{-} \geq 0$.

## Problem 4.

For simplicity, denote $F_{0}:=F$, and let $j \geq 0$. We may write $\mathrm{d} \mu_{F_{j}}=\mathrm{d} \nu_{j}+F_{j}^{\prime} \mathrm{d} m$, where $m$ denotes the Lebesgue measure and $\nu_{j} \perp m$, by Lebesgue-Radon-Nikodym. Thus there is some $m$-null $N_{j} \subset[a, b]$ with $\nu_{j}\left([a, b] \backslash N_{j}\right)=0$. Then $N:=\bigcup_{j=0}^{\infty} N_{j}$ is also m-null, and for any $E \in \mathcal{B}_{[a, b]}$ disjoint from $N$, we have by monotone convergence that

$$
\int_{E} \sum_{j=1}^{\infty} F_{j}^{\prime} \mathrm{d} m=\sum_{j=1}^{\infty} \int_{E} F_{j}^{\prime} \mathrm{d} m=\sum_{j=1}^{\infty} \int_{E} \mathrm{~d} \mu_{F_{j}}=\sum_{j=1}^{\infty} \mu_{F_{j}}(E)=\mu_{F}(E)=\int_{E} \mathrm{~d} \mu_{F}=\int_{E} F^{\prime} \mathrm{d} m
$$

Since $E$ was arbitrary and $N$ is $m$-null, we conclude that $\sum_{j=1}^{\infty} F_{j}^{\prime}=F^{\prime} m$-a.e on $[a, b]$.

## 2011, Spring

Incomplete: 2, 3 .
Problem 1.
For each $j \in \mathbb{N}$, choose $E_{j}, F_{j} \in \mathcal{B}_{\mathbb{R}}$ so $m\left(A \backslash E_{j}\right) \leq m\left(F_{j} \backslash E_{j}\right) \leq j^{-1}$, and set $E:=\bigcup_{j=1}^{\infty} E_{j}$. Then

$$
m(A \backslash E)=m\left(\bigcup_{j=1}^{\infty}\left(A \backslash E_{j}\right)\right)=\lim _{j \rightarrow \infty} m\left(A \backslash E_{j}\right) \leq \lim _{j \rightarrow \infty} \frac{1}{j}=0
$$

Hence $A=E \sqcup(A \backslash E)$, with $E \in \mathcal{B}_{\mathbb{R}}$ and $A \backslash E$ being $m$-null. So since $m$ is complete, then $A \in \mathcal{B}_{\mathbb{R}}$ as well.

## Problem 4.

(a) Suppose (w.l.o.g.) that $F_{1} \cap F_{2} \cap F_{3} \cap F_{4}=$. Then $\sum_{j=1}^{7} \mathbb{1}_{F_{j}} \leq 3$ on all of $[0,1]$, whereby

$$
3.5=\sum_{j=1}^{7} \frac{1}{2} \leq \sum_{j=1}^{7} m\left(F_{j}\right)=\int_{[0,1]} \sum_{j=1}^{7} \mathbb{1}_{F_{j}} \leq 3 m([0,1])=3
$$

a contradiction.
(b) Suppose $\int_{[0,1]} \sup _{n \in \mathbb{N}} f_{n}<\infty$. Since $f_{n} \geq 0$ for each $n \in \mathbb{N}$, we have

$$
\infty>\int_{[0,1]} \sup _{n \in \mathbb{N}} f_{n}=\sum_{j=1}^{\infty} \int_{\left[\frac{1}{j+1}, \frac{1}{j}\right]} \sup _{n \in \mathbb{N}} f_{n} .
$$

Then because the sum on the right-hand side is convergent, we must have

$$
0=\lim _{N \rightarrow \infty} \sum_{j=N}^{\infty} \int_{\left[\frac{1}{j+1}, \frac{1}{j}\right]} \sup _{n \in \mathbb{N}} f_{n}=\lim _{N \rightarrow \infty} \int_{\left[0, \frac{1}{N}\right]} \sup _{n \in \mathbb{N}} f_{n} \geq \lim _{N \rightarrow \infty} \int_{\left[0, \frac{1}{N}\right]} f_{N} \geq \lim _{N \rightarrow \infty} \frac{1}{2}=\frac{1}{2}
$$

a contradiction.

