
USC Qualifying Exams – Real analysis Alec Sahakian

Intro

Here are my solutions to some of USC’s qualifying exams. A lot of the solutions here are ones I
came up with myself, but many other ones are adapted from ideas that I found either online or
in textbooks, so I definitely don’t claim all of the credit for everything here. I’ve put a question
mark (?) next to solutions I didn’t feel completely confident in; and although I’ve done my best
to avoid this, some of the other solutions may contain mistakes too, so please keep that in mind.
Thanks and good luck! – Alec.

Notation

Below is a guide of notation and terminology you’ll find throughout my solutions. If a problem
uses the symbols below to mean something else, then I’ll do the same for that problem.

• 1E denotes the indicator function of a measurable set E.

• BX denotes the Borel σ-algebra of a topological space X.
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2006, Spring

Problem 1.

• No. Consider the function f : R → R consisting of symmetric triangular spikes of height j
and base 2j−3 at each integer j ≥ 2 along R. Explicitly, f is given by

f(x) :=


j4(x− j) j ≥ 2, x ∈ [j, j + j−3),

j4[(j + 2j−3)− x] j ≥ 2, x ∈ [j + j−3, j + 2j−3),

0 else.

The L1(R)-norm of f is given by the sum of the areas of the triangles,

‖f‖L1(R) =

∞∑
j=2

j · 1

j3
=

∞∑
j=2

1

j2
<∞.

However, f isn’t bounded and limx→∞ f(x) is nonexistent, so neither (i) nor (ii) hold. �

• Both (i) and (ii) hold if f ′ exists everywhere and |f ′| ≤ C for some C > 0.

Assume first that f(x) 6→ 0 as x → ∞. Then there’s some ε > 0 for which we can find a
sequence {xj}∞j=1 ⊂ R with xj →∞ and f(xj) ≥ ε for each j ∈ N. We may assume w.l.o.g.
that x1 ≤ x2 ≤ · · · and |xj+1 − xj | > 2ε/C for all j ∈ N. Fix some j ∈ N; then |f(xj)| ≥ ε,
so assume w.l.o.g. that f(xj) ≥ ε. For any y ∈ (xj − (ε/C), xj), we have by the mean value
theorem that

f(xj)− f(y)

x− y
≤ C =⇒ ε ≤ f(xj) ≤ C(xj − y) + f(y) =⇒ C(y − xj) + ε ≤ f(y),

and similarly C(xj − y) + ε ≤ f(y) for any y ∈ (xj , xj + (ε/C)). Then∫ xj+(ε/C)

xj−(ε/C)

f(y)dy ≥
∫ xj

xj−(ε/C)

[C(y − xj) + ε]dy +

∫ xj+(ε/C)

xj

[C(xj − y) + ε]dy =
2ε2

C
,

and so ∫
R
|f | ≥

∞∑
j=1

∫ xj+(ε/C)

xj−(ε/C)

|f(y)|dy ≥
∞∑
j=1

2ε2

C
=∞,

contradicting f ∈ L1(R).

Assume next that f is unbounded. If f(x) → 0 as x → ∞, then there some M > 0 large
enough so that |f(x)| ≤ 1 for all x ∈ R with |x| > M . Thus f must be unbounded on the
compact set [−M,M ], which is impossible since f is continuous. Hence f(x) 6→ 0 as x→∞,
which leads to a contradiction as above. �

Problem 2.

(a) For any x, y > 0,

1− e−yx2

x2
=

1

x2

1−
∞∑
j=0

(−1)jyjx2j

j!

 = −
∞∑
j=1

(−1)jyjx2(j−1)

j!
= −

∞∑
j=0

(−1)j+1yj+1x2j

(j + 1)!

≤ y
∞∑
j=0

(−1)jyjx2j

j!
= ye−yx

2
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and hence by the substitution s :=
√
yx,

0 ≤ G(y) ≤
∫ ∞
0

ye−yx
2

dx =
√
y

∫ ∞
0

e−s
2

ds =

√
πy

2
<∞.

�

(b) For any y > 0,

G′(y) = lim
z→y

G(y)−G(z)

y − z
= lim
z→y

∫ ∞
0

−e−yx2

+ e−zx
2

(y − z)x2
dx = − lim

z→y

∫ ∞
0

e−yx
2 − e−zx2

y − z
· 1

x2
dx.

Provided that we can justify moving the limit inside the integral, then

G′(y) = −
∫ ∞
0

lim
z→y

e−yx
2 − e−zx2

y − z
dx

x2
=

∫ ∞
0

de−zx
2

dz

∣∣∣
z=y

dx

x2
=

∫ ∞
0

−x2e−yx2

x2
dx =

∫ ∞
0

e−yx
2

dx,

and by the substitution s :=
√
yx,

G′(y) =
1
√
y

∫ ∞
0

e−s
2

ds =
1

2

√
π

y
,

and taking the antiderivative gives G(y) =
√
πy + c for some c ∈ R. From the definition of G

we see that G(0) = 0 and now that G(0) = c, whereby c = 0 and so G(y) =
√
πy. To justify

exchanging the limit and integration above, it suffices by dominated convergence to bound the
integrand by an integrable function. Assume w.l.o.g. that y < z. By the mean value theorem,
there’s some z0 ∈ (y, z) with∣∣∣∣∣−e−yx

2

+ e−zx
2

(y − z)x2

∣∣∣∣∣ =

∣∣∣∣∣∂e−zx
2

∂z

∣∣∣
z=z0

· 1

x2

∣∣∣∣∣ ≤ sup
z1∈(y,z)

∣∣∣∣∣∂e−zx
2

∂z

∣∣∣
z=z1

· 1

x2

∣∣∣∣∣ = sup
z1∈(y,z)

∣∣∣∣∣−x2e−z1x
2

x2

∣∣∣∣∣
= sup
z1∈(y,z)

∣∣∣∣1 + z1x+
(z1x)2

2!
+

(z1x)3

3!
+

(z1x)4

4!
+ · · ·

∣∣∣∣−1 ≤ sup
z1∈(y,z)

2

z21x
2
≤ 2

y2x2
,

and the right-hand side, when regarded as a function of x on (0,∞), is integrable. �

Problem 3.

Since (X,M, µ) is σ-finite, then X =
⊔
j∈J Xj for some countable collection {Xj}j∈J ⊂ M with

µ(Xj) < ∞ for each j ∈ J . Fix some j ∈ J . By Egoroff, for each k ∈ N, there’s a subset
Yj,k ⊂ Xj in M with µ(Xj \ Yj,k) < k−1 and with fn → f uniformly on Yj,k. We may assume
w.l.o.g. that Yj,1 ⊂ Yj,2 ⊂ · · · , so by construction, Yj,k ↗ Xj (up to a null set) as k →∞. Setting
Fj,k := Yj,k \ Yj,k−1 for each k ∈ N, we still have fn → f uniformly on Fj,k, and furthermore the
collection {Fj,k}k∈N is disjoint, so we may write X as the disjoint union

X = E0 t
⊔
j∈J
k∈N

Fj,k,

where E0 is the null set
⋂∞
k=1

⋃
j∈J(Xj \Yj,k). Letting {E`}∞`=1 be an enumeration of the countable

collection {Fj,k}j∈J,k∈N, we obtain the desired partition. �
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Problem 4.

(a) An equivalent definition for a function g : R → R to be l.s.c. is that {x ∈ R | a < f(x)} is
an open set for all a ∈ R (see (b)). To see that f has this property, let a ∈ R and suppose
a < f(x) = supj∈N fj(x) for some x ∈ R. Then by definition of sup, there’s some k ∈ N with
a < fk(x). But fk is continuous, so there’s some δ > 0 such that for all y ∈ R with |x− y| < δ,
we have a < fk(y) ≤ supj∈N fj(y) = f(y).

(Note that we in fact only need the fj ’s to be l.s.c.) �

(b) This is very similar to problem 1 of 2010, Spring.
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2006, Fall

Problem 1.

Let S be the collection of all 1-point subsets of R, and σ(S) the σ-algebra generated by S. Now let
F := {E ⊂ R | E is countable or cocountable} (it’s easy to show that F is a σ-algebra). We claim
that E ∈ σ(S) if and only if E ∈ F. The inclusion S ⊂ F is immediate, so σ(S) ⊂ F. Conversely
if E ∈ F is countable (resp. cocountable), then it’s a countable union (resp. complement of a
countable union) of 1-point subsets, and hence E ∈ σ(S); so F ⊂ σ(S). �

Problem 2.

(a) True. By Hölder, ‖f‖L1(µ) ≤ ‖f‖L2(µ)‖1‖L2(µ) = ‖f‖L2(µ)µ(X)1/2 <∞. �

(b) False. Set X := (1,∞) with Lebesgue measure µ, and f(x) := x−1. Then

‖f‖L1(µ) =

∫ ∞
1

x−1dx =∞, ‖f‖L2(µ) =

(∫ ∞
1

x−2dx

)1/2

= 1 <∞.

�

(c) False. Set X := (0, 1) with Lebesgue measure µ, and f(x) := x−1/2. Then

‖f‖L1(µ) =

∫ 1

0

x−1/2dx = 2 <∞, ‖f‖L2(µ) =

(∫ 1

0

x−1dx

)1/2

=∞.

�

(d) False. Extend the function f in (c) to all of X := R by setting f :≡ 0 outside of (0, 1). �

Problem 3 (?).

(a) No. We have |f(x, y)| = |f(y, x)| for any (x, y) ∈ R2, and so by symmetry

‖f‖L1(R2) =

∫∫
R2

|f | = 2

∫∫
{x>y}

|f(x, y)|dydx = 2

∫ ∞
−∞

∫ x

−∞
e−(x−y)dy︸ ︷︷ ︸
=1

dx =∞

(the inner integral is equal to 1 by an easy computation). �

(b) Yes. Both integrals are equal to 0 by substitution. �

Problem 4.

The function |f | is in L1(R), and for each n ∈ N we have |fn| = |f | · |sin(x)|n ≤ |f |, hence

‖fn‖L1(R) =

∫
R
|fn| ≤

∫
R
|f | = ‖f‖L1(R) <∞.

Now |sin(x)| < 1 for a.e. x ∈ R, so limn→∞ fn = 0 a.e. Then

lim
n→∞

∫ ∞
−∞

fn(x)dx =

∫ ∞
−∞

0 dx = 0

by dominated convergence. �
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2007, Spring

Problem 1.

Firstly, µ() = limn→∞ µn() = limn→∞ 0 = 0. Now let {Ej}j∈J ⊂M be a disjoint collection indexed
by a countable set J ⊂ N, and for each n ∈ N, let fn : N → R be given by fn(j) := µn(Ej). By
assumption, f1 ≤ f2 ≤ · · · , and fn ↗ f for f(j) := µ(Ej). If ν is the counting measure on N, then

µ
( ⋃
j∈J

Ej

)
= lim
n→∞

µn

( ⋃
j∈J

Ej

)
= lim
n→∞

∑
j∈J

µn(Ej) = lim
n→∞

∫
N
fndν =

∫
N
fdν =

∑
j∈J

µ(Ej)

by monotone convergence. �

Problem 2.

(a) Let 0 < α < µ(X), and assume the inf in question is 0. Then we can find a sequence
{Ej}∞j=1 ⊂M such that µ(Ej) ≥ α and

∫
X
f1Ej

=
∫
Ej
f < j−1. Then the sequence {f1Ej

}∞j=1

converges to 0 in measure, so there’s some subsequence {f1Ejk
}∞k=1 converging to 0 a.e. In

this case,

0 = µ

(
lim sup
k→∞

Ejk

)
= µ

( ∞⋂
`=1

∞⋃
k=`

Ejk

)
so for any ε > 0 there must be some ` ∈ N satisfying the last inequality below,

α ≤ µ(Ej`) ≤ µ
( ∞⋃
k=`

Ejk

)
< ε.

Choosing ε < α gives a contradiction. �

(b) Let X := (1,∞) with Lebesgue measure µ. The function f(x) := x−2 is strictly positive on
(1,∞) and

∫
(1,∞)

f = 1, so f ∈ L1(µ). However for α := 1, the intervals (j, j + 1) for j ∈ N
satisfy µ((j, j + 1)) = 1, and for any ε > 0, we can choose j large enough so that∫

(j,j+1)

f =

∫ j+1

j

dx

x2
=

1

j2 + j
< ε.

Thus the inf in question must be 0. �

Problem 3.

Denote by µ the Lebesgue measure on R2, and let ε > 0. Since [0, 1] is compact, f is uniformly
continuous, so there’s some 0 < δ < 1 so that |f(x)− f(y)| < ε/4 whenever |x− y| < δ. Let
0 = x0 < x1 < · · · < xm−1 < xm = 1 be a partition with |xj − xj+1| < δ for each 0 ≤ j ≤ m − 1
and with m ∈ N the smallest integer satisfying mδ > 1. Then (m−1)δ ≤ 1 and so mδ ≤ 1 + δ < 2.
Our choice of δ yields

graph(f) ⊂
m−1⋃
j=0

[xj , xj+1]×
[
f(xj)−

ε

4
, f(xj) +

ε

4

]
=⇒ µ(graph(f)) ≤

m−1∑
j=0

δ · 2ε

4
= mδ · ε

2
< ε.

Therefore µ(graph(f)) = 0. �
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Problem 4 (?).

Fix u ∈ (0, 1). Provided we may exchange the order of differentiation and integration, then

g′(u) =

∫ ∞
−∞

d

du

(
xneux

ex + 1

)
dx =

∫ ∞
−∞

xn+1eux

ex + 1
dx.

This exchange is valid if the integrand on the right-hand side is bounded (in magnitude) a.e. by
an integrable function. To see this, let ε > 0 be such that u ∈ (0, 1− ε). Then for x > 0, we have

1 < ex =⇒ eux = (ex)u < (ex)1−ε = e(1−ε)x

and for x < 0 we have ex < 1. So for any x ∈ R, we have eux < 1 + e(1−ε)x, whereby∣∣∣∣xn+1eux

ex + 1

∣∣∣∣ ≤ ∣∣∣∣xn+1(1 + e(1−ε)x)

ex + 1

∣∣∣∣ ≤ ∣∣∣∣ xn+1

ex + 1

∣∣∣∣+

∣∣∣∣xn+1e(1−ε)x

ex+1

∣∣∣∣ ≤ ∣∣∣∣ xn+1

ex + 1

∣∣∣∣+

∣∣∣∣ xn+1

e1+εx

∣∣∣∣.
Both summands on the right are integrable, so this completes the proof. �
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2007, Fall

Problem 1.

Let n ∈ N and t > 0. Choose ε > 0 small enough so that t > ε. By dominated convergence, we
may move the operator dn/dtn inside the given integral since∣∣∣∣ dndtn e−tx2

∣∣∣∣ =
∣∣∣(−1)nx2ne−tx

2
∣∣∣ ≤ ∣∣∣x2ne−εx2

∣∣∣,
and the right-hand side, regarded as a function of x on R, is integrable. Hence∫ ∞

−∞
(−1)nx2ne−tx

2

dx =

∫ ∞
−∞

dn

dtn
e−tx

2

dx =
dn

dtn

√
π

t
=
√
π · (−1)n(2n)!

4nn!
t−(2n+1)/2,

whereby setting t := 1 gives ∫ ∞
−∞

x2ne−x
2

dx =
(2n)!

√
π

4nn!
,

as desired. �

Problem 2.

(a) Set fj := j21(0,j−1) for each j ∈ N. Then

lim
j→∞

∫
(0,1)

fj = lim
j→∞

∫
(0,j−1)

j2 = lim
j→∞

j =∞.

However, for any fixed x ∈ (0, 1), for all j ∈ N sufficiently large, we have j−1 < x and so
fj(x) = 0. Thus limj→∞ fj(x) = 0. �

(b) Let f : [0, 1] → [0, 1] be the well-known Devil’s staircase function. Then f increases contin-
uously from f(0) = 0 to f(1) = 1. But outside of the measure-0 Cantor set, f ′ exists and is

identically 0, so f(1)− f(0) = 1 6= 0 =
∫ 1

0
f ′(x)dx. �

Problem 3.

Set Ej := {gj > 2−j} for each j ∈ N. If x ∈ Ej for only finitely many j ∈ N, then there’s some
N ∈ N so that x ∈ Ec

j for all j ≥ N , and hence the sum converges for this x,

∞∑
j=1

gj(x) =

N−1∑
j=1

gj(x) +

∞∑
j=N

gj(x) <

N−1∑
j=1

gj(x)︸ ︷︷ ︸
<∞

+

∞∑
j=N

1

2j︸ ︷︷ ︸
<∞

<∞.

Hence we’re done if we can show that the set of those x’s belonging to infinitely many Ej ’s is a
null set. This is precisely the set lim supj→∞Ej , and we have

µ

(
lim sup
j→∞

Ej

)
= µ

( ∞⋂
k=1

∞⋃
j=k

Ej

)
= lim
k→∞

µ
( ∞⋃
j=k

Ej

)
≤ lim
k→∞

∞∑
j=k

µ(Ej).

But each summand on the right is bounded above by 2−j , and the sum
∑∞
j=1 2−j is convergent,

whereby the limit on the right is 0. �
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Problem 4 (?).

Set Et := µ({|g| > t}). Integrating by parts,∫ ∞
0

µ(t)d(tp) +

∫ ∞
0

tpdµ(t) = µ(t)tp
∣∣∣∣∞
0

= lim
t→∞

µ(t)tp.

By Fubini, the first integral is equal to∫ ∞
0

(∫
Rd

1Et
dx

)
ptp−1dt =

∫
Rd

∫ ∞
0

1Et
ptp−1dtdx =

∫
Rd

∫ |g(x)|
0

ptp−1dt =

∫
Rd

|g(x)|pdx.

Thus the result follows if we can show that limt→∞ µ(t)tp = 0. Let {ϕj}∞j=1 ⊂ Lp(Rd) be a sequence
of nonnegative simple functions approaching g with |ϕ1| ≤ |ϕ2| ≤ · · · ≤ |g| a.e. Then for any t ≥ 0,

{|ϕ1| > t} ⊂ {|ϕ2| > t} ⊂ · · · ⊂ {|g| > t} = Et, Et =
∞⋃
j=1

{|ϕj | > t}.

For any j ∈ N, writing ϕj =
∑m
k=1 ak1Ak

for some ak ≥ 0 and Ak ∈ M, the set {|ϕj | > t} has
measure 0 as soon as t > max1≤k≤m ak, whereby

lim
t→∞

µ(t)tp = lim
t→∞

lim
j→∞

µ({|ϕj | > t})tp = 0.

�
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2008, Spring

Incomplete: 4.

Problem 1 (?).

(i) No. Suppose the integral exists. Then by Fubini,∫
E

1

x− y
dm(x, y) =

∫ 1

0

∫ 1

0

1

x− y
dxdy =

∫ 1

0

log

(
1− 1

y

)
dy

is well defined. But this is impossible since whenever y belongs to the measure-1 set [0, 1) ⊂
[0, 1], we have 1− 1

y < 0 and so log
(

1− 1
y

)
isn’t even defined. �

(ii) Yes. The integrand is in L+(E,m) so by Tonelli,∫
E

1

x+ y
dm(x, y) =

∫ 1

0

∫ 1

0

1

x+ y
dxdy =

∫ 1

0

log

(
1 +

1

y

)
dy = log(4)

after a routine computation. �

Problem 2.

Let S := {E ⊂ [0, 1] | E compact and µ(E) = 1}. Firstly if E1, E2 ∈ S, then certainly E1 ∪ E2 ⊂
[0, 1]; so 1 = µ(E1) ≤ µ(E1 ∪ E2) ≤ 1, whereby

µ(E1 ∪ E2) = 1 =⇒ µ(E1 ∩ E2) = µ(E1) + µ(E2)− µ(E1 ∪ E2) = 1 + 1− 1 = 1.

Then inductively, any finite collection {Ej}mj=1 ⊂ S has measure-1 intersection. We now claim
that µ(K) = 1, where K is the (potentially uncountable) intersection

⋂
E∈SE. To see this, let

U ⊂ [0, 1] be an open set with U ⊃ K. Then the family of closed sets T := {E \ U | E ∈ S}
must satisfy

⋂
E\U∈T(E \ U) = . This means that T doesn’t have the finite intersection property,

since any family of closed subsets of the compact space [0, 1] with this property has nonempty
intersection. Thus there’s a finite collection {Ej \ U}mj=1 ⊂ T with empty intersection, giving

m⋂
j=1

(Ej \ U) = =⇒
m⋂
j=1

Ej ⊂ U =⇒ 1 = µ
( m⋂
j=1

Ej

)
≤ µ(U).

Since U ⊃ K was an arbitrary open set, we have that

1 ≤ inf{µ(U) | U ⊂ [0, 1] open and U ⊃ K} = µ(K) ≤ 1

by outer regularity of µ. Therefore µ(K) = 1. �

Problem 3.

Neither implication holds.

• Let f := 1(1/2,1], which is continuous a.e. on [0, 1], and suppose that there’s some continuous
g : [0, 1] → R with g = f a.e. For all j ≥ 3, the sets (1/2 − 1/j, 1/2), (1/2, 1/2 + 1/j) have
positive measure, and thus contain some xj , yj , respectively, with g(xj) = f(xj) = 0 and
g(yj) = f(yj) = 1. Moreover, xj ↗ 1/2 and yj ↘ 1/2 as j →∞, so by continuity of g,

g

(
1

2
−
)

= lim
j→∞

g(xj) = lim
j→∞

0 = 0, g

(
1

2
+

)
= lim
j→∞

g(yj) = lim
j→∞

1 = 1,

which is impossible since g is continuous at 1/2. �

• Let f := 1Q∩[0,1] and g :≡ 0. Then f = 0 = g outside of the null set Q ∩ [0, 1], but f is
nowhere continuous on [0, 1]. �
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2008, Fall

Incomplete: 4(b).

Problem 1.

It’s enough to show that µ and ν agree on open rectangles, since these generate BR2 . So, suppose
R = (x1, x2)× (y1, y2) is such a rectangle, and define the vectors a := (x1, y1), b := (x2, y2). Let L
be the segment {ta+ (1− t)b | t ∈ (0, 1)}, let R1 be the open triangle with endpoints a, (x1, y2), b,
and let R2 be the open triangle with endpoints a, (x2, y1), b. Then R = L tR1 tR2, and

µ(R) = µ(L) + µ(R1) + µ(R2), ν(R) = ν(L) + ν(R1) + ν(R2).

But µ and ν agree on the open triangles R1, R2, so we’re done if we can show that µ(L) = ν(L).
Let u be a unit vector orthogonal to b − a, and for any ε > 0, let Lε be the open triangle
with endpoints a − εu,a + εu, b. Hence we obtain a family of open triangles {L1/j}∞j=1 with⋂∞
j=1 L1/j = L. Moreover, µ(L1) ≤ µ(R2) < ∞ and ν(L1) ≤ ν(R2) < ∞, so by continuity from

above of the measures µ and ν,

µ(L) = µ
( ∞⋂
j=1

L1/j

)
= lim
j→∞

µ(L1/j) = lim
j→∞

ν(L1/j) = ν
( ∞⋂
j=1

L1/j

)
= ν(L),

since µ and ν agree on each of the open triangles {L1/j}∞j=1. �

Problem 2.

For fixed x > 0, we have

lim
n→∞

1 + nx2 + n2x4

(1 + x2)n
= lim
n→∞

1

(1 + x2)n
+ lim
n→∞

nx2

(1 + x2)n
+ lim
n→∞

n2x4

(1 + x2)n
.

The first limit is clearly 0. The second and third limits are evaluated via L’Hôspital,

lim
n→∞

nx2

(1 + x2)n
= lim
n→∞

x2

exp(nlog(1 + x2))log(1 + x2)
= 0,

lim
n→∞

n2x4

(1 + x2)n
= lim
n→∞

2nx4

exp(nlog(1 + x2))log(1 + x2)
= 0.

Then provided that we can justify exchanging the limit and the integral, we have

lim
n→∞

∫ ∞
0

1 + nx2 + n2x4

(1 + x2)n
dx =

∫ ∞
0

lim
n→∞

1 + nx2 + n2x4

(1 + x2)n
dx = 0.

To see that this is indeed justified, note that for any x > 0, we have

1 + nx2 + n2x4

(1 + x2)n
=

1 + nx2 + n2x4∑n
j=0

(
n
j

)
x2j

≤ 1 + nx2 + n2x4(
n
3

)
x2·3

≤ n

(n− 1)(n− 2)
· 6(1 + x2 + x4)

x6

by expanding and rearranging as necessary. Now when n ≥ 3, we have

d

dn

n

(n− 1)(n− 2)
=

2− n2

(n− 1)2(n− 2)2
≤ 0,

10
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whereby the function n/(n− 1)(n− 2) starts to decrease at n = 3, yielding

1 + nx2 + n2x4

(1 + x2)n
≤ 3

(3− 1)(3− 2)
· 6(1 + x2 + x4)

x6
=

9(1 + x2 + x4)

x6
.

Regarded as a function of x, the right-hand side is integrable on (0,∞), and thus we may apply
dominated convergence to exchange the limit and integral above as we wished. �

Problem 3.

Let C > 0 be such that |f | ≤ C a.e. Then using Fubini,

‖f‖L1(R) =

∫
R
|f(x)|dx =

∫
R

∫ |f(x)|
0

dtdx =

∫
R

∫ C

0

1{|f |≥t}dtdx =

∫ C

0

∫
R
1{|f |≥t}dxdt

=

∫ C

0

m(|f | ≥ t)dt ≤
∫ C

0

M

tc
dt =

MC1−c

1− c
<∞,

as desired. �

Problem 4.

(a) For any {xj}mj=0 ⊂ [0, 1] with 0 = x0 < x1 < · · · < xm = 1,

m∑
j=1

|f(xj)− f(xj−1)| = lim inf
n→∞

m∑
j=1

|fn(xj)− fn(xj−1)| ≤ lim inf
n→∞

T 1
0 (fn).

It follows that the desired inequality holds for T 1
0 (f), the supremum of the left-hand side over

all partitions {xj}mj=0 ⊂ [0, 1] as above. �

11
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2009, Spring

Incomplete: 3, 4.

Problem 1.

(a) We consider the cases of finite and infinite countable unions separately.

• Suppose {Ej}mj=1 ⊂ C and let ε > 0. For each 1 ≤ j ≤ m, there’s a set Aj ∈ A such that

Aj ⊂ Ej and µ(Ej \Aj) < ε/m. Note that A :=
⋃m
j=1Aj ∈ A since A is an algebra, and

we have A ⊂ E :=
⋃m
j=1Ej . Then

µ(E \A) = µ
( m⋃
j=1

(Ej \A)
)
≤ µ

( m⋃
j=1

(Ej \Aj)
)
≤

m∑
j=1

µ(Ej \Aj) <
m∑
j=1

ε

m
= ε,

so E ∈ C.

• Now suppose {Ej}∞j=1 ⊂ C and let ε > 0. Letting Fm :=
⋃m
j=1Ej for each m ∈ N, we

have an increasing sequence F1 ⊂ F2 ⊂ · · · with Fm ↗ E :=
⋃∞
j=1Ej as m → ∞, so by

continuity from below, µ(Fm) → µ(E) as m → ∞. Because µ(E) ≤ µ(X) < ∞, we can
choose m ∈ N large enough so that µ(E)− µ(Fm) < ε/2, whereby

µ(E) = µ(E \ Fm) + µ(Fm) =⇒ µ(E \ Fm) = µ(E)− µ(Fm) < ε/2,

the first equality holding since Fm ⊂ E. Moreover, Fm ∈ C by the above argument, so
we can find some A ∈ A with A ⊂ Fm ⊂ E and µ(Fm \A) < ε/2. Then

µ(E) = µ(E \ Fm) + µ(Fm) =⇒ µ(E \A) ≤ µ(E \ Fm) + µ(Fm \A) <
ε

2
+
ε

2
= ε,

and thus E ∈ C.

�

(b) Let X := [0, 1] with σ-algebra B[0,1] and Lebesgue measure µ. Let A ⊂ B[0,1] be the algebra
generated by all singletons {q}, q ∈ E := Q ∩ [0, 1], using complements and finite unions.
Then A ∈ A if and only if A is a finite collection {qj}mj=1 ⊂ E or A is the complement of
such a set. Note that {0} ∈ A, {0} ⊂ E, and µ(E \ {0}) ≤ µ(E) = 0 < ε for any ε > 0, so
E is approximable from inside by A. But observe that any element A ∈ A contains at least
one rational, while E contains only irrationals, so we can’t have A ⊂ Ec, and thus Ec isn’t
approximable from inside by A.

Problem 2.

(a) Both f, g are continuous on the compact set [a, b], so there’s some M > 0 large enough so that
|f |, |g| ≤M on all of [a, b]. Now let ε > 0 and choose δ > 0 such that for any disjoint collection
{(aj , bj) ⊂ [a, b]}Nj=1, we have

N∑
j=1

(bj − aj) < δ =⇒
N∑
j=1

|f(bj)− f(aj)|,
N∑
j=1

|g(bj)− g(aj)| <
ε

2M
.

12
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Then for any such collection,

N∑
j=1

|f(bj)g(bj)− f(aj)g(aj)| ≤
N∑
j=1

[|f(bj)g(bj)− f(bj)g(aj)|+ |f(bj)g(aj)− f(aj)g(aj)|]

≤M

(
N∑
j=1

|g(bj)− g(aj)|︸ ︷︷ ︸
<ε/2M

+

N∑
j=1

|f(bj)− f(aj)|︸ ︷︷ ︸
<ε/2M

)
< M

( ε

2M
+

ε

2M

)
= ε.

�

(b) We’ve just seen that fg is absolutely continuous, so we have

f(b)g(b)− f(a)g(a) =

∫ b

a

(fg)′ =

∫ b

a

(f ′g + fg′) =

∫ b

a

f ′g +

∫ b

a

fg′

by the fundamental theorem for Lebesgue integrals. �

(c) Take some [a, b] ⊂ R with b−a 6= 2, and let f, g : [a, b]→ R be given by f(x) := (x−a)/(b−a)
and g(x) := 1

21[ b−a
2 ,b](x). Then f ′ = 1 and g′ = 0 a.e. on [a, b], but g isn’t continuous (in

particular, g isn’t absolutely continuous). We have∫ b

a

f ′︸︷︷︸
=1

g +

∫ b

a

f g′︸︷︷︸
=0

=

∫ b

a

g =
b− a

4
6= 1

2
= f(b)︸︷︷︸

=1

g(b)︸︷︷︸
=1/2

− f(a)g(a)︸ ︷︷ ︸
=0

.

�
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2010, Spring

Problem 1.

(i) Let f be u.s.c. and a ∈ R. If x0 ∈ f−1((−∞, a)) = {x ∈ R | f(x) < a}, then f(x0) + ε < a
for some ε > 0. Then there’s some δ > 0 so that f(x) < f(x0) + ε < a whenever |x− x0| < δ.
Thus f−1((−∞, a)) is open, and in particular Borel. Since sets of the form (−∞, a) for a ∈ R
generate BR, this shows that f is measurable. �

(ii) We first claim that a map f : R→ R is u.s.c. if for each x ∈ R we have lim supj→∞ f(xj) ≤
f(x) whenever {xj}∞j=1 ⊂ R satisfies limj→∞ xj = x. (In fact, this is an equivalent definition
of upper semicontinuity.)

To establish this, suppose f is u.s.c., but there’s some x ∈ R and a sequence {xj}∞j=1 ⊂ R
converging to x, with f(x) < a := lim supj→∞ f(xj). Let ε > 0 be such that f(x) < a− ε. By
definition of a, there’s a subsequence {xjk}∞k=1 of {xj}∞j=1 converging to a, so all but finitely
many of the xjk ’s belong to E := {y ∈ R | f(y) ≥ a− (ε/2)}. By inspection, E is closed, so
x = limk→∞ xjk ∈ E, and hence a− (ε/2) ≤ f(x) < a− ε, which is impossible.

Now, define f : R → R by f(x) := µ(x + A). It’s enough to show that f satisfies the above
condition. Let {xj}∞j=1 ⊂ R converge to some x ∈ R. Since |f | ≤ µ(R) <∞ on all of R, then

lim sup
j→∞

f(xj) = lim sup
j→∞

µ(xj +A) ≤ µ
(
lim sup
j→∞

(xj +A)
)

by reverse Fatou’s lemma. By definition of lim sup, if y ∈ lim supj→∞(xj + A), then y ∈
xj + A for infinitely many j ∈ N. Passing to a subsequence of {xj}∞j=1 if necessary, w.l.o.g.
y = xj + aj , for some aj ∈ A, for all j ∈ N, and passing to another subsequence if necessary,
w.l.o.g. limj→∞ aj exists and belongs to A since A is closed. Then y = x+ limj→∞ aj ∈ x+A,
whereby we’ve shown that lim supj→∞(xj +A) ⊂ x+A. So

lim sup
j→∞

f(xj) ≤ µ
(
lim sup
j→∞

(xj +A)
)
≤ µ(x+A) = f(x),

and this completes the proof. �

Problem 2.

(a) True. Let δ, ε > 0. Since µ(X) <∞, there’s M > 0 large enough so that if E := {|f | < M},
then µ(Ec) < ε/3. Now

∣∣f2n − f2∣∣ ≤ ∣∣f2n − fnf ∣∣ +
∣∣fnf − f2∣∣ = |fn| · |fn − fn| + |f | · |fn − f |,

so {∣∣f2n − f2∣∣ > δ
}
⊂
{
|fn| · |fn − f | >

δ

2

}
∪
{
|f | · |fn − f | >

δ

2

}
.

Thus µ
(
E ∩

{∣∣f2n − f2∣∣ > δ
})

is bounded above by

µ

(
E ∩

{
|fn| · |fn − f | >

δ

2

})
+ µ

(
E ∩

{
|f | · |fn − f | >

δ

2

})
+ µ(Ec)︸ ︷︷ ︸

<ε/3

.

For large enough n the second term gives

µ

(
E ∩

{
|f | · |fn − f | >

δ

2

})
< µ

({
M |fn − f | >

δ

2

})
<
ε

3
.

14



USC Qualifying Exams – Real analysis Alec Sahakian

Moreover |fn| · |fn − f | ≤ (|f |+ |f − fn|) |f − fn| = |f | · |fn − f | + |fn − f |2 and so for large
enough n the first term gives

µ

(
E ∩

{
|fn| · |fn − f | >

δ

2

})
≤ µ

(
E ∩

{
|f | · |f · fn| >

δ

4

})
+ µ

({
|fn − f |2 >

δ

4

})
≤ µ

({
M |f − fn| >

δ

4

})
+ µ

({
|fn − f | >

δ1/2

2

})
<
ε

6
+
ε

6
=
ε

3
.

Hence µ
(
E ∩

{∣∣f2n − f2∣∣ > δ
})

< ε. �

(b) False. Set X := (0,∞) with Lebesgue measure µ. If fn(x) := x − n−1 and f(x) := x, then
for any δ > 0, we have µ({|fn(x)− f(x)| > δ}) = µ({n−1 > δ}) → 0 and hence fn → f in
measure. However for any n ∈ N and any x in the measure-∞ set [n,∞),∣∣f2n(x)− f2(x)

∣∣ =

∣∣∣∣(x2 − 2x

n
+

1

n2

)
− x2

∣∣∣∣ =
2x

n
− 1

n

2

≥ 2,

whereby f2n 6→ f2 in measure. �

Problem 3.

Let E ⊂ [0, 1] have m(E) = 0, and let ε > 0. Since f is absolutely continuous, there’s some δ > 0
such that for any disjoint collection {(aj , bj)}Nj=1, we have

N∑
j=1

(bj − aj) < δ =⇒
N∑
j=1

[f(bj)− f(aj)] < ε.

By outer regularity of m, there’s an open set U ⊂ [0, 1] with E ⊂ U and m(U) < δ. We may write
U as a disjoint union U =

⊔
j∈J(aj , bj) for some countable set J . Then for any N ≤ |J |,

N∑
j=1

(bj − aj) ≤
∑
j∈J

(bj − aj) = m(U) < δ =⇒
N∑
j=1

[f(bj)− f(aj)] < ε,

and hence it follows that

m(f(E)) = m
( ⋃
j∈J

(f(aj), f(bj))
)

=
∑
j∈J

[f(bj)− f(aj)] ≤ ε,

where the first inequality used that f was strictly increasing. Hence m(f(E)) = 0. �

Problem 4.

• Let f ∈ L1([0, 1]) and choose any ε > 0. We may find a simple function ϕ =
∑m
k=1 ak1Ek

with ‖f − ϕ‖L1([0,1]) < ε, where {ak}mk=1 ⊂ R and {Ek}mk=1 ⊂ B[0,1] is a disjoint collection of
sets. By discarding countably many singletons if necessary, w.l.o.g. Ek is a disjoint union of
intervals for each 1 ≤ k ≤ m. We further assume w.l.o.g. that Ek is a single interval for each
1 ≤ k ≤ m. For each n ∈ N,∣∣∣∣∣∣∣∣∫ hnf

∣∣∣∣− ∣∣∣∣∫ hnϕ

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∫ hn(f − ϕ)

∣∣∣∣ ≤ ∫ |hn|︸︷︷︸
=1

|f − ϕ| < ε,

so if the result holds for simple functions which are linear combinations of indicators of
intervals, then taking the limit as n→∞ on each side gives limn→∞

∣∣∫ hnf ∣∣ < ε. Thus we’ve
reduced to the case of simple functions of this form.
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• Now suppose ϕ =
∑m
k=1 ak1Ek

is a linear combination of indicators of intervals Ek ∈ B[0,1],
1 ≤ k ≤ m. If the result holds for indicators of intervals, then

lim
n→∞

∫
hnϕ =

m∑
k=1

ak lim
n→∞

∫
hn1Ek︸ ︷︷ ︸

=0

= 0,

so we’ve further reduced to the case of indicators of intervals.

• Finally, let E ∈ B[0,1] be an arbitrary interval, fix n ∈ N, and let Fj1 , . . . , Fj` be those

intervals Fj := ( j−1n , jn ] with Fj ⊂ E (w.l.o.g. j1 < · · · < j`). Setting G0 := Fj1−1 and
G1 := Fj`+1, then E ⊂ G0 ∪ Fj1 ∪ · · · ∪ Fj` ∪G1, so∣∣∣∣∣

∫
[0,1]

hn1E

∣∣∣∣∣ =

∣∣∣∣∫
E

hn

∣∣∣∣ ≤ ∫
G0

1︸ ︷︷ ︸
=1/n

+

∣∣∣∣∣∑̀
r=1

∫
Fjr

hn

∣∣∣∣∣+

∫
G1

1︸ ︷︷ ︸
=1/n

=
2

n
+

∣∣∣∣∣∑̀
r=1

(−1)jr

n

∣∣∣∣∣.
The summands on the right alternate signs as r increases, so the entire sum is either 0 or
±1/n depending on the parity of `. Whichever is the case,

lim
n→∞

∣∣∣∣∣
∫
[0,1]

hn1E

∣∣∣∣∣ ≤ lim
n→∞

(
2

n
+

1

n

)
= 0.

This completes the proof. �
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2010, Fall

Problem 1.

Denote by (X,M, µ) the measure space, and write X as a countable disjoint union X =
⊔
j∈J Xj

with µ(Xj) < ∞ for each j ∈ J . Suppose A = {Aα}α∈I is uncountable. Each Aα has positive
measure, so it has µ(Xj ∩ Aα) > 0 for some collection of j’s in J . Since there are uncountable
many α ∈ I but only countably many j ∈ J , by the pigeonhole principle there must be some j ∈ J
and some uncountable subcollection I ′ ⊂ I with µ(Xj ∩Aα) > 0 for all α ∈ I ′. But then

∞ > µ(Xj) ≥ µ
( ⊔
α∈I′

(Xj ∩Aα)
)

=
∑
α∈I′

µ(Xj ∩Aα)︸ ︷︷ ︸
>0

,

which is impossible since any uncountable sum of positive numbers in infinite. �

Problem 2.

(a) Let a > 0. Consider a simple function ϕ =
∑n
j=1 aj1Ej , with {aj}nj=1 ⊂ R and {Ej}nj=1 ⊂ BR

a disjoint collection. Observe that 1Ej (ax) = 1a−1Ej
(x) for any 1 ≤ j ≤ n, whereby∫

ϕ(ax)dx =

n∑
j=1

ajm(a−1Ej) =
1

a

n∑
j=1

ajm(Ej) =
1

a

∫
ϕ(x)dx.

Now suppose f ∈ L1(R) is arbitrary. By decomposing f = f+−f−, it’s enough to consider the
case f ∈ L+(R). Let {ϕj}∞j=1 ⊂ L+(R) be a sequence of simple functions with ϕ1 ≤ ϕ2 ≤ · · ·
and limj→∞ ϕj = f . Then∫

f(ax)dx = lim
j→∞

∫
ϕj(ax)dx = lim

j→∞

1

a

∫
ϕj(x)dx =

1

a

∫
f(x)dx

by applying monotone convergence twice. �

(b) Set f(x) := nF (x)/x(1 + n2x2). Then by (a),∫
f(x)dx =

1

n

∫
f
(x
n

)
dx =

1

n

∫
nF (x/n)

(x/n)(1 + n2(x/n)2)
dx =

∫
1

1 + x2
· F (x/n)

x/n
dx

for any n ∈ N. Now taking the limit as n → ∞, we may apply dominated convergence since
the integrand on the right satisfies∣∣∣∣ 1

1 + x2
· F (x/n)

x/n

∣∣∣∣ ≤ 1

1 + x2
· nC|x/n|
|x|

=
C

1 + x2

and the right-hand side is integrable. Then

lim
n→∞

∫
f(x)dx = lim

n→∞

∫
1

1 + x2
· F (x/n)

x/n
dx =

∫
1

1 + x2
· lim
n→∞

F (x/n)− F (0)

(x/n)− 0︸ ︷︷ ︸
=F ′(0)

dx = πF ′(0),

where we used that F (0) = 0 since |F (x)| ≤ C|x| for all x ∈ R. �
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Problem 3.

Assume first that f ≥ 0. Clearly 1 + f + · · · + fn ≤ 1 + f + · · · + fn + fn+1 for all n ∈ N, so by
monotone convergence and the geometric series formula,

lim
n→∞

∫
X

(1 + f + · · ·+ fn) =

∫
X

lim
n→∞

(1 + f + · · ·+ fn) =

∫
X

1

1− f
.

The right-hand side always exists since µ(X) <∞ and |f | < 1. Now consider a general measurable
function f = f+ − f− with |f | < 1. We have that f j = (f+ − f−)j = (f+)j + (−1)j(f−)j for any
j ≥ 0 since the product f+f− appearing in the cross terms is always 0. Then

lim
n→∞

∫
X

(1 + f + · · ·+ fn) = lim
n→∞

∫
X

[1 + f+ + · · ·+ (f+)n] + lim
n→∞

∫
X

[1− f− + · · ·+ (−1)n(f−)n]

≤ lim
n→∞

∫
X

[1 + f+ + · · ·+ (f+)n] + lim
n→∞

∫
X

[1 + f− + · · ·+ (f−)n] =

∫
X

1

1− f+
+

∫
X

1

1− f−
,

and we’re done by the nonnegative case since f+, f− ≥ 0. �

Problem 4.

For simplicity, denote F0 := F , and let j ≥ 0. We may write dµFj
= dνj +F ′jdm, where m denotes

the Lebesgue measure and νj ⊥ m, by Lebesgue-Radon-Nikodym. Thus there is some m-null
Nj ⊂ [a, b] with νj([a, b] \ Nj) = 0. Then N :=

⋃∞
j=0Nj is also m-null, and for any E ∈ B[a,b]

disjoint from N , we have by monotone convergence that∫
E

∞∑
j=1

F ′jdm =

∞∑
j=1

∫
E

F ′jdm =

∞∑
j=1

∫
E

dµFj =

∞∑
j=1

µFj (E) = µF (E) =

∫
E

dµF =

∫
E

F ′dm.

Since E was arbitrary and N is m-null, we conclude that
∑∞
j=1 F

′
j = F ′ m-a.e on [a, b]. �
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2011, Spring

Incomplete: 2, 3.

Problem 1.

For each j ∈ N, choose Ej , Fj ∈ BR so m(A \ Ej) ≤ m(Fj \ Ej) ≤ j−1, and set E :=
⋃∞
j=1Ej .

Then

m(A \ E) = m
( ∞⋃
j=1

(A \ Ej)
)

= lim
j→∞

m(A \ Ej) ≤ lim
j→∞

1

j
= 0.

Hence A = Et (A\E), with E ∈ BR and A\E being m-null. So since m is complete, then A ∈ BR
as well. �

Problem 4.

(a) Suppose (w.l.o.g.) that F1 ∩ F2 ∩ F3 ∩ F4 = . Then
∑7
j=1 1Fj ≤ 3 on all of [0, 1], whereby

3.5 =

7∑
j=1

1

2
≤

7∑
j=1

m(Fj) =

∫
[0,1]

7∑
j=1

1Fj
≤ 3m([0, 1]) = 3,

a contradiction. �

(b) Suppose
∫
[0,1]

supn∈N fn <∞. Since fn ≥ 0 for each n ∈ N, we have

∞ >

∫
[0,1]

sup
n∈N

fn =

∞∑
j=1

∫
[ 1
j+1 ,

1
j ]

sup
n∈N

fn.

Then because the sum on the right-hand side is convergent, we must have

0 = lim
N→∞

∞∑
j=N

∫
[ 1
j+1 ,

1
j ]

sup
n∈N

fn = lim
N→∞

∫
[0, 1

N ]

sup
n∈N

fn ≥ lim
N→∞

∫
[0, 1

N ]

fN ≥ lim
N→∞

1

2
=

1

2
,

a contradiction. �
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