
Notation

• When I say Sn, I always mean
∑n

i=1Xn.

• If En are events (or sets), I write En ↗ E to mean En ⊂ En+1 and
⋃
En = E.

• The notation a ∧ b means min(a, b), while a ∨ b means max(a, b).

• X+ = max(X, 0) and X− = −min(−X, 0). Thus, X = X+ −X−, |X| = X+ +X−.

• Both 1A and 1(A) refer to the indicator function for the set A. Furthermore, E(X;A)
means E(X1A). I will often omit set braces, so for example, all of the below mean the
same:

E(X1{|X|≤M}) = E(X1|X|≤M) = E(X1(|X| ≤M)) = E(X; |X| ≤M)

• I use Xn =⇒ X to mean Xn convreges to X in distribution.

• o(f(t)) refers to some function g(t) for which limt→a
g(t)
f(t)
→ 0. The number a depends

on context, but is usually either 0 or ∞.

• Everyone, including qual writers, makes mistakes. These will be marked in red.

• Problems that I couldn’t do will be marked with a /, possibly with a partial solution.

1



Theorems to Know

In addition to all of the usual theorems (Monotone Convergence Thoerem, Fatou’s Lemma,
Dominated Convergence Theorem, Fubini’s Theorem, Chebyshev’s Inequality, Jensen’s In-
equality, Cauchy-Schwarz Inequality, Borel-Cantelli, Weak Law of Large Numbers, Strong
Law of Large Numbers, Kolmogorv’s Maximal Inequality, Kolmogorov Three-Series Test, In-
version Formula, Continuity Theorem, Central-Limit Theorem, Linberg Feller Central Limit
Theorem), these solutions will assume you know the following theorems:

Theorem 1 (Relations Between Convergence Concepts). If p > q, then

Lp−→ =⇒ Lq−→
⇓

a.s.−→ =⇒ P−→ =⇒ D−→

Any implication not pictured does not hold in general.

Theorem 2. If Xn → X in probability, then there is a subsequence Xnk → X a.s.

Theorem 3. Xn → X a.s. if and only if for all ε > 0,
∑∞

1 P (|Xn −X| > ε) <∞.

Theorem 4 (“Layer-Cake” Formula).

E|X| =
∫ ∞
0

P (|X| > t) dt

and more generally,

E|X|p =

∫ ∞
0

ptp−1P (|X| > t) dt

When p = 1, the above is used to prove the following very useful fact:

Theorem 5. If X1, X2, . . . i.i.d, then E|X1| <∞ if and only if Xn/n→ 0 a.s.

The next result is very useful for problems that involve max1≤k≤nXn:

Lemma 1. Let an, bn be sequences of numbers where bn → ∞, and mn = max1≤k≤n an. If
an
bn
→ 0, then mn

bn
→ 0.

You may not know the next theorem by this name, but it is taught in 507a:

Theorem 6 (Skorohod’s Reprentation Theorem). If Xn → X in distribution, then there
exists random variables X ′n, X

′ with the same distributions as Xn, X such that X ′n → X ′ a.s.
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Theorem 7 (Slutsky’s Theorem). If Xn =⇒ X and Yn =⇒ c, a constant, then Xn +
Yn =⇒ X + c and XnYn =⇒ Xc.

For a proof of Xn + Yn =⇒ X + c when c = 0, see Spring 2008 Problem 2.
For XnYn =⇒ Xc when c = 1, see Spring 1997 problem 2.

The next theorem is useful when you what to prove, for example,
∑n

1 Xk
np
→ 0.

Lemma 2 (Kronecker’s Lemma). If an →∞ and
∑∞

1
xn
an
, then

1

an

n∑
1

xk → 0

Theorem 8. If EX2 <∞, and ϕ(t) = EitX , then

ϕ(t) = 1 + i(EX)t− (EX2)t2/2 + o(t2) as t→ 0

To make this look cleaner, let µ = EX, σ2 = Var X = EX2 − µ2. Then

ϕ(t) = 1 + iµt− (σ2 + µ2)t2/2 + o(t2) as t→ 0
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1994 Fall

1. (a) Given ε > 0, there exists an M so that E[|Xn|1|Xn|>M ] < ε for all n.

(b) Let Xn = n with probability 1
n
, Xn = 0 with probability 1− 1

n
.

(c) First, realize that uniform integrability implies that EXn is bounded as n → ∞,
so by Fatou’s lemma, EX ≤ lim inf EXn <∞. In particular, E[X1|X|>M ]→ 0 as
M →∞ (by DCT).

Thus, given ε > 0, we can choose M so both E[Xn1Xn>M ] < ε/2 for all n and
E[X1X>M ] < ε/2. Let

Yn = Xn1Xn≤M Zn = Zn1Xn>M ,

so that Xn = Yn + Zn, and similarly write X = Y + Z.

Then |Yn| ≤M , and Yn → Y a.s, so by DCT, EYn → EY . Thus, as n→∞,

|EXn − EX| ≤ |EYn − EY |+ E|Zn|+ E|Z| ≤ |EYn − EY |+ ε/2 + ε/2→ ε

proving lim sup |EXn − EX| ≤ ε for all ε > 0, so EXn → EX.

(d) Impossible Problem! What they are asking you to prove is just plain wrong. Let
X1 be any variable with EX1 = ∞, and let Xn = X = 0, for n ≥ 2. Then
Xn → X a.s, and EXn → EX, but {X1, X2 . . . } is not uniformly integrable since
E[X11X1≥M ] =∞ for all M .

However, this problem does work with the additional assumptions that EXn <∞,
EX <∞, and E|Xn −X| → 0.

(e) Typo! They meant to say Ef(Xn) ≤ c <∞.

Given ε > 0, choose M so x > M implies x
f(x)

< ε/c. Then

E(Xn1Xn>M) = E
(
f(Xn) · Xn

f(Xn)
1Xn>M

)
≤ Ef(Xn) · ε/c ≤ c · ε/c = ε

proving uniform integrability.

2. (a) Typo! The phrase “show that Yn → Y ′n converges in distribution” is nonsesnse.
They probably meant “show that Yn − Y ′n converges in distribution.”

To see this, let ϕn(t) be the c.f. for Yn. Since Yn → Y in distribution, for some
Y , we have ϕn(t) → ϕ(t), where ϕ(t) = EitY . This implies ϕn(t)ϕn(−t) →
ϕ(t)ϕ(−t). Since ϕn(t)ϕn(−t) is the c.f. for Yn−Y ′n, and ϕ(t)ϕ(−t) is continuous
at zero, by the continuity theorem, we have that Yn − Y ′n → Z, where Z has c.f.
ϕ(t)ϕ(−t).

(b) The c.f. for anSn is exp(−c|ant|α)n = exp(−cn|an|α|t|α). If we let an = n−1/α, then
the c.f. for Sn/n

1/α becomes exp(−c|t|α). Thus, not only will Sn/n
1/α converge

in distribution, but it will be equal in distribution to X1 for each n. So, Z and
X1 have the same distribution.
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1995 Spring

1. Suppose Fn =⇒ F . Then there are r.v.’s Xn, X where Xn (resp. X) has distribution
Fn (resp. F ), and that Xn → X a.s. (Sorokhod’s representation theorem). Since h
is continuous, this means h(Xn) → h(X) a.s, and by bounded convergence theorem,
Eh(Xn)→ Eh(X), so that

∫
h dFn →

∫
h dF .

Suppose
∫
h dFn →

∫
h dF for all bounded, continuous h. Let x0 be a continuity point

of F . Given ε > 0, let

h(x) =


1 x ≤ x0

linear x0 ≤ x ≤ x0 + ε

0 x0 + ε ≤ x

Then 1x≤x0 ≤ h(x) ≤ 1x≤x0+ε, so

lim sup
n→∞

Fn(x0) = lim sup
n→∞

∫
1x≤x0 dFn ≤ lim sup

n→∞

∫
h dFn =

∫
h dF ≤

∫
1{x≤x0+ε}dF = F (x0 + ε)

As ε→ 0, this shows lim supn→∞ Fn(x0) ≤ F (x0). Doing a very similar argument using

h(x) =


1 x ≤ x0 − ε
linear x0 ≤ x− ε ≤ x0

0 x0 ≤ x

shows lim infn→∞ Fn(x0) ≥ F (x0). Thus, Fn(x0)→ F (x0), so Fn =⇒ F .

2. The condition E logX < ∞ is sufficient and necessary. Suppose E logX = ∞. First,
note that (X1 · · ·Xn)1/n converging a.s. is the same as Sn/n = 1

n
(logX1 + · · ·+logXn)

converging a.s, since the latter is the log of the former. Now, for M ≥ 0, let Y M
n =

(logXn) ∧M , and SMn = Y M
1 + · · ·+ Y M

n . Then Sn ≥ SMn , so

lim inf Sn/n ≥ lim inf SMn /n = EY M
1 (a.s.)

by SLLN. But asM →∞, EY M
1 → E logX =∞ by MCT, so for all k, P (lim inf Sn/n ≥

k) = 1. Thus, P (lim inf Sn/n =∞) = P (
⋂
k≥1{lim inf Sn/n ≥ k}) = 1, so Sn/n cannot

converge to a finite limit a.s.

5



1997 Spring

1. (a) First, we show |Xn|/n1/α → 0 a.s. We have

∞∑
1

P (|Xn|/n1/α > ε) =
∞∑
1

P ( |Xn|
α

εα
> n) ≤

∫ ∞
0

P (|Xn|α/εα > t) = E|X1|α/εα <∞

Thus, by Borel Cantelli, P (|Xn|/n1/α > ε i.o.) = 0, and intersecting these events
for ε↘ 0 proves |Xn|/n1/α → 0 a.s.

This means that |Xn|α/n → 0 a.s. as well. Applying the below Lemma, we see
that this implies max1≤k≤n |Xn|α/n→ 0 a.s, so that max1≤k≤n |Xn|/n1/α → 0

(b) Note that EX1 is finite implies E|X1| <∞, since E|X| = EX+ + EX−.

Since E|X1| <∞, we have that Xn/n→ 0 a.s.

Next, we prove that max1≤i≤n |Xn|/n→ 0 a.s. This follows from |Xn|/n→ 0 a.s,
and the following lemma:

Lemma: If a sequence an ≥ 0, and an/n→ 0, then 1
n

max1≤i≤n an → 0.

Proof. Given ε > 0, choose k so n > k implies an/n < ε. Then

lim sup
n

max1≤i≤n an
n

≤ lim sup
n

max(x1, . . . , xk)

n
+ max

k≤i≤n

ai
i
≤ 0 + ε

This holds for all ε > 0, so
max1≤i≤n an

n
→ 0.

Finally, let Mn = max1≤i≤n |Xn|. The previous lemma shows that

Mn

n
→ 0 a.s.

The SLLN implies Sn/n→ EX1 6= 0, so

n

|Sn|
→ 1

|EX1|
a.s.

Thus, the product of these sequences converges to the product of the limits a.s,
proving that Mn/|Sn| → 0 a.s.
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2. Lemma 1: Xn =⇒ X and Yn =⇒ 0 implies Xn + Yn =⇒ X.

Proof. Let x be a continuity point of FX , and ε > 0. Since {Xn + Yn ≤ x} ⊂ {Xn ≤
x+ ε} ∪ {|Yn| > ε} and {Xn ≤ x− ε} ⊂ {Xn + Yn ≤ x} ∪ {|Yn| > ε}, we have

P (Xn ≤ x− ε)− P (|Yn| > ε) ≤ P (Xn + Yn ≤ x) ≤ P (Xn ≤ x+ ε) + P (|Yn| > ε)

Assuming x± ε is also a contiuity point of FX , letting n→∞ above shows

F (x− ε) ≤ P (Xn + Yn ≤ x) ≤ F (x+ ε)

and letting ε→ 0 completes the proof.

Lemma 2: Xn =⇒ X and Yn =⇒ 0 implies XnYn =⇒ 0.

Proof. Let ε > 0, M ∈ N. Then {|XnYn| > ε} ⊂ {|Xn| > εM} ∪ {|Yn| > 1
M
}, so

P (|XnYn| > ε) ≤ P (|Xn| > εM) + P (|Yn| > 1
M

)

Letting n→∞, and assuming ±εM is a continuity point of FX , gives

lim sup
n

P (|XnYn| > ε) ≤ P (|X| > εM)

and letting M → ∞ gives lim supn P (|XnYn| > ε) = 0, so XnYn → 0 in probability,
and therefore in distribution.

Finally, assume Xn =⇒ X and Yn =⇒ 1, so that Yn − 1 =⇒ 0. Lemma 2 implies
that

Xn(Yn − 1) =⇒ 0.

This, combined with
Xn =⇒ X

and Lemma 1, gives that
Xn(Yn − 1) +Xn =⇒ X
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3. (a) The general inversion formula gives, for any a < b (and using the fact that Fn is
continuous, so P (Xn = a) = 0),

P (Xn ∈ (a, b)) = P (Xn ∈ (a, b)) +
1

2
P (Xn ∈ {a, b})

= lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
ϕn(t) dt

= lim
T→∞

1

2π

∫
1|t|≤T

e−ita − e−itb

it
ϕn(t) dt (?)

Since ∣∣∣∣e−ita − e−itbit

∣∣∣∣ =

∣∣∣∣∫ b

a

e−ity dy

∣∣∣∣ ≤ b− a

It follows that the integrand in (?) is dominated by (b− a)ϕn(t) ∈ L1, so by the
DCT,

P (X ∈ (a, b)) =
1

2π

∫
lim
T→∞

1|t|<T
e−ita − e−itb

it
ϕn(t) dt

=
1

2π

∫
e−ita − e−itb

it
ϕn(t) dt

=
1

2π

∫ (∫ b

a

e−ity dy

)
ϕn(t) dt

=

∫ b

a

1

2π

∫
e−ityϕn(t) dt dy

The last formula implies by definition that 1
2π

∫
e−ityϕn(t) dt is the density of Xn.

(b) We have that

|ϕn(t+ h)− ϕn(t)| = |E(ei(t+h)Xn − eitXn)| ≤ E|ei(t+h)Xn − eitXn| = E|eihXn − 1|

since |eitXn| = 1. As h→ 0, eihXn − 1→ 0, and is dominated by |eihXn − 1| ≤ 2,
so by the Dominated Convergence Theorem, E|eihXn − 1| → 0. Thus, for small
h, and all t, |ϕn(t+ h)− ϕn(t)| < ε, so supt |ϕn(t+ h)− ϕn(t)| < ε.
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(c) Typo They meant to say |ϕn(t)| ≤ g(t) for all n and t.

We have that

sup
x∈R
|fn(x)− f(x)| = sup

x∈R

∣∣∣∣∫ e−itxϕn(t) dt−
∫
e−itxϕ(t) dt

∣∣∣∣
≤ sup

x

∫
|e−itx(ϕn(t)− ϕ(t))| dt

=

∫
|ϕn(t)− ϕ(t)| dt

Noting that ϕn(t) → ϕ(t) and |ϕn(t)| ≤ g(t) implies |ϕ(t)| ≤ g(t), we get that
|ϕn − ϕ| ≤ |ϕn| + |ϕ| ≤ 2g ∈ L1. Since |ϕn(t) − ϕ(t)| → 0, by the dominated
convergence theorem,

lim sup
n→∞

(
sup
x
|fn(x)− f(x)|

)
≤ lim

n→∞

∫
|ϕn(t)− ϕ(t)| dt = 0

proving supx |fn(x)− f(x)| → 0, so fn → f uniformly. No need for Arzela-Ascoli.
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1997 Fall

1. (a) The first is Fatou’s Lemma applied to the sequence 1An . The middle is obvious,
and the last is Fatou’s applied to 1− 1An : by Fatou’s

E(lim inf 1− 1An) ≤ lim inf E(1− 1An) = lim inf 1− P (An) = 1− lim supP (An)

Then, notice that E(lim inf 1− 1An) = P ((lim sup 1An)c) = 1− P (lim sup 1An).

(b) Let (Ω,F , P ) be (0,1) with Lebesgue measure, A2k = (0, 1/3), and A2k+1 =
(1/3, 1), for all k ∈ N. Then 0 < 1/3 < 2/3 < 1.

(c) ( =⇒ ) Assume that P (An i.o.) = 1. Let B be an event where P (B) > 0. Then

1 = P (An i.o.)

= P ({An i.o.} ∩B) + P ({An i.o.} ∩Bc)

≤ P ({An i.o.} ∩B) + P (Bc)

so
P ({An i.o.} ∩B) ≥ 1− P (Bc) = P (B) > 0.

Since the event {An i.o.} ∩ B is the same as the event {An ∩ B i.o.}, the above
shows that P (An ∩ B i.o.) > 0. By the (contrapositive of the) Borel-Cantelli
lemma, this means that

∑
P (An ∩B) =∞.

(⇐=) Assume that, whenever P (B) > 0, we have
∑
P (An ∩ B) = ∞. Let

B = {An i.o.}c, and consider ∑
n≥1

P (An ∩B)

Notice that only finitely many of the above terms can be nonzero: if ω ∈ B,
then ω is in only finitely many An, so only finitely many An ∩ B are nonempty.
Thus, the above sum is finite. Since we assumed the sum would be infinite when
P (B) > 0, this means P (B) = 0, so that P (Bc) = P (An i.o.) = 1.
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2. (a) Var Sn = ES2
n =

∑
iEX

2
i +

∑
i 6=j EXiXj ≤ Kn+ 0 = O(n).

(b) By Chebychev’s, S2
n, P (|Sn| > nε) = P (S2

n > n2ε2) ≤ ES2
n

n2ε2
= O(n)

ε2n2 = O( 1
n
)

(c) Since
∑
P (Bn) =

∑
O( 1

n2 ) <∞, by Borel Cantelli, P (Bn i.o.) = 0.

(d) We will show that, for all ε > 0, P (Dn/n
2 > ε i.o.) = 0, which proves Dn/n

2 → 0
a.s. since {Dn/n

2 → 0} = ∩k≥1{D/n2 > 1
k

i.o.}c.
Note that {Dn > n2ε} =

⋃(n+1)2−1
k=n2+1 {|Sk − Sn2| > n2ε}, so

P (Dn > n2ε) <

(n+1)2−1∑
k=n2+1

P (|Sk − Sn2| > n2ε) <
2n∑
`=1

P (|Sn2+` − Sn2| > `2ε)

By the same reasoning as in part (a), we have that Var (Sn2+`−Sn2) = Var (Xn2+1+
· · ·+Xn2+`) = O(`), so using Chebychev’s,

P (|Sn2+` − Sn2| > `2ε) ≤ Var (Sn2+` − Sn2)

`4ε2
= O

(
1

`3

)
Thus,

P (Dn > n2ε) <
2n∑
`=1

O

(
1

`3

)
= O

(
1

`2

)
so by Borel-Cantelli, P (Dn > n2ε i.o.) = 0.

3. (a) Since φ′(0) = ia, we have that

lim
n→∞

φ(t/n)− 1

t/n
= ia

Furthermore, from calculus it is true that log(1+x)
x

→ 1 as x → 0, implying
log φ(t/n)
φ(t/n)−1 → 1 as n→∞. Multiplying these two limits, we get

lim
n→∞

log φ(t/n)

t/n
= ia

Taking exp of both sides, we get φ(t/n)n → eiat. But φ(t/n)n is the c.f. for Sn/n,
and eiat is the c.f. for a, so the continutity theorem implies Sn/n → a weakly.
Finally, one can prove that converging weakly to a constant implies convergence
in probability as well, so that Sn/n→ a in probability.

(b) Since Sn/n → a in probability, and therefore in distribution, it follows that the
c.f.’s also converge, so φ(t/n)n → eiat (uniformly on compact sets). Taking log’s,

lim
n

log φ(t/n)

t/n
= lim

n

φ(t/n)− 1

t/n
= ia

also uniformly on compact sets. So, given ε > 0, we can choose n so |φ(t/n)−1
t/n

−ia| <
ε for |t| ≤ 1, implying |φ(h)−1

h
− ia| < ε for |h| < 1

n
, so that φ′(0) = ia.
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4. (a) For any ε > 0,∑
n

P (|Xn/n| > ε) =
∑
n

P (|X/ε| > n) ≤
∫ ∞
0

P (|X/ε| > x) dx = E|X/ε| <∞,

so by Borel Cantelli, P (|Xn/n| > ε i.o.) = 0. Thus,

P (|Xn/n| → 0) = P

(⋂
k≥1

{|Xn/n| > 1
k

i.o.}c
)

= 1,

so Xn/n→ 0 a.s.

(b) ∑
n

P (Xn/n > A) =
∑
n

P (X/A > n) ≥
∫ ∞
1

P (X/A > x) dx = E(X/A·1X/A>1) =∞.

Thus, by the second Borel-Cantelli lemma, P (Xn/n > A i.o.) = 1, so P (lim supXn/n =
∞) = P (

⋂
k≥1{lim supXn/n ≥ k}) = 1.

I’m not sure why what we just proved implies Sn/n→∞ a.s, but you can prove
this as follows. Let Y M

n = Xn ∧M , and SMn =
∑
Y M
1 + · · ·+ Y M

n . Then

lim inf Sn/n ≥ lim inf SMn /n = EY M
1 a.s.

As M → ∞, by MCT, EY M
1 → EX = ∞, so for all k, P (lim inf Sn/n ≥ k) = 1.

Thus, P (lim inf Sn/n =∞) = P (
⋂
k≥1{lim inf Sn/n ≥ k}) = 1, so Sn/n→∞ a.s.
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1998 Fall

1. See 1997 Fall 1(c)

2. First note that
E(Sn − nf(n))2 = Var Sn =

∑
Var Xi ≤ n,

since |Xi| ≤ 1. Thus,

P (|Sn − nf(n)| > nε) ≤ Var (Sn)

n2ε2
≤ n

ε2n2
→ 0

proving Sn/n− f(n)→ 0 in probability.
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1999 Spring

1. By Borel-Cantelli, P (Xn 6= cn i.o.) = 0. With probability 1, only finitely many Xn will
not be cn, so the set of values that Sn can take is⋃

n≥0

{b1 + · · ·+ bn +
∑
k≥n+1

ck : bj ∈ B}

This is a countable union of countable sets, so is countable.

2. (a) This is 1√
2π

∫∞
−∞ e

−x2/2eixt dx = e−t
2/2
∫

1√
2π
e−(x−it)

2/2 dx = e−t
2/2.

(b) We have

φk(u) = E(eiu(Xk−
1
k
)) = eiu(1−

1
k
) · 1

k
+ e−iu/k · (1− 1

k
)

=
1

k
cos u(k−1)

k
+
k − 1

k
cos u

k
+
i

k
sin u(k−1)

k
− i(k − 1)

k
sin u

k

(c) Since sin t = t− o(t2) and cos t = 1− t2/2 + o(t2), we have

i

k
sin t(k−1)

k
− i(k − 1)

k
sin t

k
=

(
i
(k − 1)t

k2
+ o(t2)

)
−
(
i
(k − 1)t

k2
+ o(t2)

)
= o(t2)

1

k
cos t(k−1)

k
+
k − 1

k
cos t

k
=

1

k

(
1− t2(k − 1)2

2k2
+ o(t2)

)
+
k − 1

k

(
1− t2

2k2
+ o(t2)

)
= 1− (k − 1)2 + (k − 1)

k3
· t

2

2
+ o(t2)

= 1− k − 1

k2
· t

2

2
+ o(t2)

Thus, adding the above two together, we get

ϕk(t) = o(t2) + 1− k − 1

k2
· t

2

2
+ o(t2) = 1− k − 1

k2
· t

2

2
+ o(t2)

(d) Since Sn−h(n) =
∑
Xk− 1

k
, and characteristic functions multiply when variables

add, the c.f. for Sn − h(n) is
∏n

1 φk(u), implying the c.f. for (Sn − h(n))/
√
h(n)

is

ϕ∗n(u) =
n∏
1

φk(u/
√
h(n))
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(e) Writing the previous formula for ϕ∗n in little oh notation, and using in the third
equality that log(1 + x) = x+ o(x),

ϕ∗n(u) =
n∏
1

(
1− k − 1

k2
· u

2/h(n)

2
+ o(u2)/h(n)

)

= exp

(
n∑
1

log

(
1− k − 1

k2
· u

2/h(n)

2
+ o(u2)/h(n)

))

= exp

(
n∑
1

−k − 1

k2
· u

2/h(n)

2
+ o(u2)/h(n)

)

= exp

(
−u

2

2
·

(
1

h(n)

n∑
1

k − 1

k2

)
+ n · o(u2)/h(n)

)

Since
∑n

1
k−1
k2

= h(n) − O(1), and n/h(n) → 0, it follows that the above ap-
proaches exp(−u2/2) as n→∞, as desired.

15



1999 Fall

1. Since Xn → X a.s, it must be true that Xn is Cauchy almost surely. Since X ′n has the
same distrubtion, this means X ′n is Cauchy almost surely, and since Cauchy sequences
converege, X ′n converges a.s.

To elaborate: (X1, X2, . . . ) and (X ′1, X
′
2, . . . ) having the same distribution on R∞

means, for any event E in the product sigma algebra on R∞, then P ((X1, X2, . . . ) ∈
A) = P ((X ′1, X

′
2, . . . ) ∈ A). Thus,

1 = P (Xn is Cauchy) = P

(⋂
k≥0

⋃
M≥0

⋂
m,n≥M

{|Xn −Xm| ≤ 1
k
}

)

= P

(⋂
k≥0

⋃
M≥0

⋂
m,n≥M

{|X ′n −X ′m| ≤ 1
k
}

)
= P (X ′n is Cauchy)

where the third equality follows since the enclosed event is in the product sigma algebra
on R∞.

2. Let f(x) be the pdf of X, let µX = f(x) dx (so µX(A) = P (X ∈ A), and µY be the
measure that Y induces on R (namely, µ(A) = P (X ∈ A)). Then, using Fubini’s
(allowed since everything is nonnegative):

P (X + Y ≤ z) =

∫
1x+y≤zdµX × µY =

∫ ∫
1x≤z−ydµXdµY =

∫ ∫ z−y

−∞
f(x) dx dµY

=

∫ ∫ z

−∞
f(x− y) dx dµY

=

∫ z

−∞

∫
f(x− y) dµY dx

Differentiating the last equation with respect to z shows that X +Y has density given
by fZ(z) =

∫
f(x− y) dµY , so X + Y is absolutely continuous.

3. ( =⇒ ) Sn → S a.s. implies Sn → S in distribution, so that the c.f. of Sn,
∏n

1 φk(u),
converges pointwise to the c.f. of S, h(u). That h(u) 6= 0 in a neighborhood of 0
follows since h(0) = eiS·0 = 1, and h is continuous.

(⇐=) / This problem is very similar to problem 3.3.21 in Durrett (4th edition), and
this problem gives a hint that involves looking at other problems.

16



4. (a) Since EZ = 1
2
eit + 1

2
e−it = cos t, the desired c.f. is

n∏
1

cos(ckt)

(b) It is a standard result that, for an ≥ 0, limn

∏n
1 (1 − an) exists and is nonzero if

and only if
∑∞

1 an <∞. So, we will show

∞∑
1

c2k <∞ ⇐⇒
∞∑
1

1− cos ckt <∞ for |t| < t0

This will complete the proof, since the second condition holds iff
∏n

1 cos ckt con-
verges for |t| < t0, which as shown in problem 3 holds iff

∑∞
1 ckZk converges.

Suppose
∑∞

1 c2k. Since 1− cos ck ≤
c2kt

2

2
, it follows

∑∞
1 1− cos ckt <∞ for all t.

Suppose
∑∞

1 1−cos ckt <∞ for t < t0. Since 1−cosx−x2/2
x2

→ 0 as x→ 0, for small
enough t, we have, for any 0 < ε < 1,

1− cos ckt− c2kt2/2
c2kt

2
k

> −ε

proving

c2kt
2/2 ≤ 1− cos ckt

(1− ε)
Since the right hand side has finite sum, so the the left, proving

∑∞
1 c2k <∞.

17



2000 Spring

1. (a) {An i.o.} =
⋂∞
n=1

⋃
k≥nAk.

(b) Let A1 ⊃ A2 ⊃ . . . , where P (An) = n−1. Then en =
∑n

1 k
−1 ≈ log n, but

fn =
∑
i,j

P (Ai ∩ Aj) =
∑
i,j

(max(i, j))−1 =
n∑
k=1

(2k − 1) · k−1 ≈ 2n− log n

The third equality follows since there are 2k−1 pairs (i, j) for which max(i, j) = k.
Thus, we see that fn/e

2
n ∼ (2n− log n)/(log n)2 →∞.

(c) Since EYn = 1, we have that

1− E(YnZn) = E(Yn − YnZn) = EYn(1− Zn) = E(Yn1Yn≤ε) ≤ ε

so that E(YnZn) ≥ 1− ε. Using Cauchy-Schwarz,

EYnZn ≤ EY 2
n · EZ2

n =
EX2

n

e2n
· EZn =

fn
e2n
EZn,

so EZn ≥ e2n
fn

(1−ε). Letting n→∞, we get lim supnEZn ≥ 1−ε
β

Applying Fatou’s
Lemma to 1− Zn, we get that

P (Yn ≥ ε i.o.) = E lim supZn ≥ lim supEZn ≥
1− ε
β

Finally, realize that Yn ≥ ε i.o. implies An i.o. (if An happens finitely often, then
Yn = Xn/en → 0, since en → ∞). Thus, P (An i.o.) ≥ P (Yn ≥ ε i.o.), so the
above also implies P (An i.o.) ≥ 1−ε

β
. Letting ε→ 0 proves P (An i.o.) ≥ 1

β
.

18



2. (a) One can prove that, if E|X|n <∞, then ϕ(t) is n times continuously differentiable,
and φ(n)(0) = E(iX)n. Taylor’s theorem then gives that

ϕ(t) = 1 + ϕ′(t)t+
ϕ′′(t)

2
t2 +O(t3) = 1 + 0− σ2t2

2
+O(t3)

(b) The CLT says that, if X1, X2 . . . i.i.d, EX = µ, Var X = σ2 <∞, then

Sn − nµ
σ
√
n

=⇒ N(0, 1).

Here’s a sketch of the proof. We can assume EX = 0, by applying the theorem
to Xn − µ. If ϕ is the c.f. for X, then the characteristic function for Sn/

√
n is

ϕ(t/
√
n)n = (1− σ2t2/2(

√
n)2 +O(t3/(

√
n)3))n ≈

(
1− σ2t2

2n

)n
So

lim
n→∞

ϕ(t/
√
n)n = lim

n→∞

(
1− σ2t2

2n

)n
= e−t

2σ2/2

Since e−t
2σ2/2 is the c.f. for N(0, σ2), the continuity theorem implies Sn/

√
n =⇒

N(0, σ2), which means that Sn/(σ
√
n) =⇒ N(0, 1).

19



2001 Spring

1. (a) B =
⋂
n≥1
⋃
k≥n{|Xk| ≥ k}.

(b)

1 +
∞∑
1

P (|Xn| ≥ n) ≥
∫ ∞
0

P (|X| > t) dt = E|X| =∞

proving P (|Xn| ≥ n i.o.) = 1 by Borel-Cantelli.

(c) If Mn → m, then it would be true that Xn+1/(n+1) = Mn+1−Mn+Mn/(n+1)→
m−m+ 0 = 0, so that it wouldn’t be true |Xn|/n ≥ 1 i.o..

(d) P (A) = P (A ∩B) + P (A ∩Bc) ≤ P (∅) + P (Bc) = 0 + 1− 1 = 0.

2. (a) To show a set is an interval, you need only show s, t ∈ I and s < r < t implies
r ∈ I. Suppose s, t ∈ I. Let s < r < t. If r > 0, then t > 0 as well, and whenever
X > 0, we have erX < etX . When X < 0, erX < 1. Using both these bounds,

EerX = E(erX1X<0) + E(erX1X≥0) ≤ 1 + EetX1X>0 ≤ 1 + EetX <∞

If on the other hand r < 0, then

EerX = E(erX1X<0) + E(erX1X≥0) ≤ EesX1X<0 + 1 ≤ 1 + EesX <∞

Either way, we have r ∈ I, implying I is an interval.

(b) We use the fact that f is continuous at x if and only if, for every sequence xn
such that xn → x, it is true that f(xn)→ f(x).

Given t in the interior of I, let tn be any sequence in I where tn → t. Choose some
T+, T− ∈ I so that T− ≤ tn ≤ T+ for all n. Then etnX ≤ eT

+X1X>0 + eT
−X1X≤0,

and etnX → etX pointwise, so by the DCT, we have

lim
n
EetnX = E lim

n
etnX = EetX

This proves M is continuous at t.

(c) Let Y be a random variable where P (Y > y) = 1
y

when y > 1, and let X = log Y .
For t > 0,

EetX = EY t =

∫ ∞
0

tyt−1P (Y > y) dy = t

∫ ∞
0

yt−2 dy

This integral is only finite for t < 1. When t < 0, then EetX ≤ 1 since tX ≤ 0
always. Thus, the interval for which etX exists is (−∞, 1).
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3. (a) We have that

Var Xk = EX2
k = 12 · (1− 1

k2
) + k2 · 1

k2
= 2− 1

k2

Thus,

Var S∗n = Var (Sn)/(
√
n)2 =

1

n

n∑
1

(
2− 1

k2

)
= 2−

∑n
1 k
−2

n
−→ 2

since
∑n

1 k
−2 → π2/6.

(b) This proof was figured out by Gene Kim.

We first compute the c.f. for Xn. This is given by

EeiXnt =
1

2

(
1− 1

n2

)
(eit·1 + e−it·1) +

1

2n2
(eitn + e−itn) = (1− 1

n2 ) cos t+
1

n2
cosnt

This implies the c.f. for S∗n is

ϕ∗n = EeitSn/
√
n =

n∏
k=1

(1− 1
k2

) cos( t√
n
) +

1

k2
cos( kt√

n
)

= cosn
(

t√
n

) n∏
k=1

(
1 +

1

k2

(
cos(kt/

√
n)

cos(t/
√
n)
− 1

))

= cosn
(

t√
n

)
exp

(
∞∑
k=1

1k≤n log

(
1 +

1

k2

(
cos(kt/

√
n)

cos(t/
√
n)
− 1

)))
We will show the enclosed sum approaches zero as n → ∞, for a fixed t. Note

that cos(kt/
√
n)

cos(t/
√
n)
− 1 is O(1) as n→∞, and log(1 + x) is O(x). Thus, we have that

1k≤n log(· · · ) ≤ Ct
k2

, for some constant Ct, so by DCT,

lim
n→∞

∞∑
k=1

1k≤n log

(
1 +

1

k2

(
cos(kt/

√
n)

cos(t/
√
n)
− 1

))
=
∞∑
k=1

lim
n→∞

1k≤n log

(
1 +

1

k2

(
cos(kt/

√
n)

cos(t/
√
n)
− 1

))
=
∞∑
1

0 = 0.

Next, we consider the cosn(t/
√
n). We have

cosn
(

t√
n

)
=

(
1− t2/2

n
+ o

(
t2/n

))n
→ e−t

2/2

These last two results imply that ϕ∗n → e−t
2/2. Since this is the c.f. for N(0, 1),

we have that S∗n =⇒ N(0, 1).
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2001 Fall

1. (a) First, choose constants Mn so P (|Xn| > Mn) < 1
n2 , then let cn = M2

nn
2

ε2
. Letting

Yn = Xn1|Xn|≤M , we have, for any ε > 0,

P (|Yn/cn| > ε) = P (Y 2
n /ε

2 > c2n) ≤
1
ε2
EY 2

n

c2n
≤ M2

n

ε2c2n
≤ 1

n2

Thus, by Borel-Cantelli, P ((|Yn/cn| > ε i.o.) = 0. This holds for all ε > 0, which
allows you to show Yn/cn → 0 a.s. Furthermore, since P (Xn 6= Yn) < 1

n2 , we have
P (Xn 6= Yn i.o.) = 0, so that with probability 1 we also have Xn/cn → 0.

(b) No. Consider the probability space (0, 1), with Lesbesgue measure. Let Ω0 be
set where P (Ω0) = 0 and whose cardinality is 2ℵ0 (for example, the Cantor set).
Now, choose Xn so every possible sequence of real numbers c1, c2, . . . occurs as
X1(ω), X2(ω), . . . for some ω ∈ Ω0, and Xn(ω) = 0 for ω /∈ Ω0. This can be done
since the number of such sequences is (2ℵ0)ℵ0 = 2ℵ0 = |Ω0|, and the Xn will indeed
be measurable since they are 0 a.e. Then, no matter what constants c1, c2, . . .
you choose, there will be some ω for which Xn(ω)/cn = 1 for all n.

(c) See 1997 Fa, 4(a).

2. (a) The special property is that ϕ will be real. If X and −X have the same distrub-
tion, then

EeitX = E cos tX + iE sin tX

But tX is symmetrically positive and negative, and sin(tx) is an odd function, so
E sin(tX) = 0.

Suppose EeitX is real. Using the inversion formula, we have, for any a < b,

P (X ∈ (a, b)) +
1

2
P (X ∈ {a, b}) = lim

T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
ϕ(t) dt

Both sides are real, so taking the conjugate of the right preserves equality, re-
sulting in

P (X ∈ (a, b)) +
1

2
P (X ∈ {a, b}) = lim

T→∞

1

2π

∫ T

−T

e−it(−a) − e−it(−b)

−it
ϕ(t) dt

= lim
T→∞

1

2π

∫ T

−T

e−it(−b) − e−it(−a)

it
ϕ(t) dt

= P (X ∈ (−b,−a)) +
1

2
P (X ∈ {−b,−a})

= P (−X ∈ (a, b)) +
1

2
P (−X ∈ {a, b})

This holds for all a, b, proving X and −X have the same distribution.
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(b) This is given by φ(t/n)n.

(c) Since φ′(0) = 0, we have that

lim
n→∞

φ(t/n)− 1

t/n
= 0

Furthermore, from calculus it is true that log(1+x)
x

→ 1 as x → 0, implying
log φ(t/n)
φ(t/n)−1 → 1 as n→∞. Multiplying these two limits, we get

lim
n→∞

log φ(t/n)

t/n
= 0

Taking exp of both sides, we get φ(t/n)n → 1. But φ(t/n)n is the c.f. for Sn/n,
and 1 is the c.f. for 0, so the continutity theorem implies Sn/n → 0 weakly.
Finally, one can prove that converging weakly to a constant implies convergence
in probability as well, so that Sn/n→ 0 in probability.

(d) We have

E|X| = 2c

∫ ∞
4

x · 1

x2 log x
dx = 2c( lim

n→∞
log log n− log log 4) =∞

(e) Since X is symmetric about 0, we have

E
eitX − 1

t
= E

cos(tX)− 1

t
= 2c

∫ ∞
4

cos(tx)− 1

tx2 log |x|
dx

Letting y = tx, this becomes

E
eitX − 1

t
= 2c

∫ ∞
4

cos(y)− 1

t(y/t)2 log |y/t|
d(y/t) = 2c

∫ ∞
4

cos(y)− 1

y2 log |y/t|
dy

Since, for −1 < t < 1, it’s true that cos(y)−1
y2 log |y/t| ≤

cos(y)−1
y2 log |y| ∈ L1(dy), the DCT implies

lim
t→0

2c

∫ ∞
4

cos(y)− 1

y2 log |y/t|
dy = 2c

∫ ∞
4

lim
t→0

cos(y)− 1

y2 log |y/t|
dy = 2c

∫ ∞
4

0 dt = 0

Which proves that

lim
t→∞

E
eitX − 1

t
= lim

t→0
2c

∫ ∞
4

cos(y)− 1

y2 log |y/t|
dy = 0

proving φ′(0) = 0.
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2002 Spring

1. First, realize that E|X1|2 < ∞ implies |Xn|2/n → 0 a.s, which in turn implies
|Xn|/

√
n→ 0 a.s. The first fact is proven by using

∑
n≥1 P (|Xn|2/n ≥ ε) ≤

∫∞
0
P (|X2

1/ε| >
t) dt = E|X1/ε|2 < ∞, then using Borel-Cantelli to argue P (|X2

n|/n > ε i.o.) = 0 for
all ε > 0, which then gives X2

n/n→ 0 a.s.

Once you have |Xn|/
√
n→ 0 a.s, we use the below lemma:

Lemma Let {an}n≥0 be a nonrandom, nonnegative sequence, where an/
√
n→ 0. Let

mn = max1≤k≤n an. Then mn/
√
n→ 0.

Proof. Given ε > 0, choose K so n > K implies an/
√
n < ε. Then

mn√
n
≤ mK√

n
+ max

K≤j≤n

aj√
n
≤ mK√

n
+ max

K≤j≤n

aj√
j
≤ mK√

n
+ ε

Letting n→∞ shows, since mK/
√
n→ 0, that lim supmn/

√
n ≤ ε. This holds for all

ε > 0, so mn/
√
n→ 0.

Thus, |Xn|/
√
n → 0 a.s. implies max1≤k≤n |Xn|/

√
n → 0 a.s, and therefore in proba-

bility.

2. By Borel-Cantelli, P (|Xn| > εn i.o.) = 0. Thus, with probability 1, there will be some
K where n > K implies |Xn| < εn, meaning

∑
|Xn| ≤

∑K
1 |Xn|+

∑∞
K+1 εn <∞.
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2002 Fall

1. The desired α is α = 3. Let Xn,k = Xk
n3 . We prove convergence using the Lindberg-Feller

CLT. Then, using the fact that Var (Xk) =
∫ k
−k x

2 · 1
2k
dx = k2

3
,

n∑
k=1

EX2
n,k =

1

n3

n∑
k=1

Var Xk =
1

n3

n∑
k=1

k2

3

Then, since
∑n

k=1
k2

3
≈
∫ n
0

x2

3
dx = n3

9
, we have that

n∑
k=1

EX2
n,k ≈

1

n3
· n

3

9
→ 1

9
as n→∞

The above use of ≈ can be made more precise, either by finding an closed form for∑n
1
k2

3
, or by using and upper and lower integral bound.

This gives the first condition of the Lindberg Feller CLT. For the second, we must show

n∑
k=1

E(X2
n,k · 1|Xn,k|>ε) =

n∑
k=1

E(
X2
k

n3 · 1|Xk|>εn3)→ 0.

Notice that, for large enough n, we have that εn3 > n2 ≥ |Xk|. Thus, for large n, the
above sum will be zero, since all the indicator variables 1|Xk|>εn3 will all be zero.

By the Lindberg Feller CLT, this shows

Sn/n
3 =

n∑
k=1

Xn,k → N(0, 1
9
).

2. (a) We first show that P (Y > n i.o.) = 0. We have∑
n≥1

P (Yn > n) ≤
∫ ∞
0

P (Y > t) dt = EY <∞

By Borel Cantelli, P (Y > n i.o.) = 0.

Thus, with probability one, we have

lim sup
n

(Yn)1/n ≤ lim sup
n

(n)1/n = 1

By the root test, the radius convergence of
∑
Ykα

k is at least 1, so that it converges
when |α| < 1.
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(b) Choose Y so that P (Y > yy) = 1
y

when y > 1. In other words, letting f(y) by the

inverse function of g(y) = yy, let Y be the random variable whose distribution is

P (Y ≤ y) = 1− 1

f(y)
(y > 1)

Then
∑
P (Yn > nn) =

∑
1
n

= ∞, so by Borel-Cantelli, P (Yn > nn i.o.) = 1,
proving that, with probability one,

lim sup
n

(Yn)1/n ≥ lim sup(nn)1/n =∞.

Thus, almost surely the radius of convergence will be 0, proving S =∞.
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3. Proof 1: Let µ be the measure on R induced by X, so µ(A) = P (X ∈ A), and ν for
Y similarly. Since E|X + Y |p <∞, using Fubini’s theorem we have

E|X + Y |p =

∫
|x+ y|pdµ× ν =

∫ (∫
|x+ y|pdµ

)
dν <∞

This implies
(∫
|x+ y|pdµ

)
< ∞ for ν a.e. y, so there is some y0 for which it holds.

Then, using |x|p = |x+ y0 − y0|p ≤ 2p(|x+ y0|p + | − y0|p),

E|X|p =

∫
|x|pdµ ≤

∫
2p|x+ y0|p + 2p|y0|p dµ = 2p

∫
|x+ y0|p dµ+ 2p|y0|p <∞

Proof 2: Choose M so P (|Y | ≤M) = ε > 0. For all t, we have

P (|X + Y | > t−M) ≥ P ({|X| > t} ∩ {|Y | ≤M})
= P (|X| > t)P (|Y | ≤M)

Using this,

E|X|p =

∫ ∞
0

ptp−1P (|X| > t) dt ≤
∫ ∞
0

ptp−1
P (|X + Y | > t−M)

P (|Y | ≤M)
dt

=
1

ε

(∫ M

0

ptp−1 dt+

∫ ∞
M

ptp−1P (|X + Y | > t−M) dt

)
The first integral,

∫M
0
ptp−1 dt, is some K < ∞. For the second, we use the chagne of

variables u = t−M , obtaining

E|X|p ≤ 1

ε

(
K +

∫ ∞
0

p(u+M)p−1P (|X + Y | > u) du

)
Notice that, when u > M , we have (u+M)p−1 ≤ 2p−1up−1, so1

E|X|p ≤ 1

ε

(
K +

∫ M

0

p(u+M)p−1 du+ 2p−1
∫ ∞
M

pup−1P (|X + Y | > u) du

)
≤ 1

ε

(
K +

∫ M

0

p(u+M)p−1 du+ 2p−1E|X + Y |p
)
<∞

1This only works when p ≥ 1. When p < 1, use the bound (u+M)p−1 ≤ up−1
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4. Note that F∞ being continuous implies that, for some m, P (X∞ ≤ m) = 1
2
, implying

also that P (X∞ ≥ m) = P (X∞ > m) = 1− 1
2

= 1
2
. This m is a median, so m = m∞.

Furthermore, for any ε > 0, we must have P (X∞ ≤ m∞− ε) < 1
2
: if it equaled 1

2
, that

would mean m∞ − ε was another median, violating uniqueness. By the same logic,
P (X∞ ≤ m∞ + ε) > 1

2
.

For any ε > 0, we have

lim
n→∞

P (Xn ≤ m∞ − ε) = P (X ≤ m∞ − ε) <
1

2

The above shows that, for large enough n, we have P (Xn ≤ m∞ − ε) < 1
2
, so that for

large enough n, mn ≥ m∞ − ε.
Similarly,

lim
n→∞

P (Xn ≤ m∞ + ε) = P (X ≤ m∞ + ε) >
1

2

proving P (Xn ≤ m∞ + ε) > 1
2

eventually, so that mn ≤ m∞ + ε eventually.

We have shown
m∞ − ε ≤ lim inf

n
mn ≤ lim sup

n
mn ≤ m∞ + ε

for all ε > 0, proving mn → m∞.
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1. Since φ′(0) = ia, we have that

lim
n→∞

φ(t/n)− 1

t/n
= ia

Furthermore, from calculus it is true that log(1+x)
x
→ 1 as x→ 0, implying log φ(t/n)

φ(t/n)−1 → 1
as n→∞. Multiplying these two limits, we get

lim
n→∞

log φ(t/n)

t/n
= ia

Taking exp of both sides, we get φ(t/n)n → eiat. But φ(t/n)n is the c.f. for Sn/n, and
eiat is the c.f. for a, so the continutity theorem implies Sn/n→ a weakly. Finally, one
can prove that converging weakly to a constant implies convergence in probability as
well, so that Sn/n→ a in probability.

2. Let an = inf{x : Fn(x) ≥ 1
2
}. This implies Fn(an) ≥ 1

2
by right continuity of Fn. Since

Xn −X ′n → 0 in distribution, we have that P (|Xn −X ′n| > ε)→ 0. Since Xn > an + e
and X ′n ≤ an implies Xn −X ′n > ε, we have that

P (|Xn −X ′n| > ε) ≥ P ({Xn > an + ε} ∩ {X ′n ≤ an})
= P (Xn > an + ε)P (X ′n ≤ an)

≥ P (Xn > an + ε) · 1
2

The last inequality follows since P (X ′n ≤ an) = P (Xn ≤ an) = Fn(an) ≥ 1
2
.

Since P (|Xn − X ′n| > ε) → 0, the displayed string of inequalities implies P (Xn >
an + ε)→ 0 as well.

By the same logic, we have

P (|Xn −X ′n| > ε/2) ≥ P (Xn ≤ an − ε)P (X ′n > an − ε
2
)

= P (Xn ≤ an − ε)(1− P (Xn ≤ an − ε
2
))

≥ P (Xn ≤ an − ε) · 12

The last inequlaity follows from the definition of an: since an − ε
2
< an, and an =

inf{x : Fn(x) ≥ 1
2
}, we must have P (Xn ≤ an − ε

2
) < 1

2
.

Thus, the above shows that P (Xn ≤ an − ε)→ 0). Finally, we have that

P (|Xn − an| ≥ ε) ≤ P (Xn > an + ε) + P (Xn ≤ an − ε)→ 0

proving Xn → an in probability.
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3. Let an = 1
α

log n, and β = 1. Since P (Xn > x) = x−α, we have that

P ( logXn
(logn)/α

> 1) = P (Xn > n1/α) = n−1

Since
∑
n−1 = ∞, by Borel-Cantelli, P ( logXn

(logn)/α
> 1 i.o.) = 1. This proves that

lim sup logXn
(logn)/α

≥ 1 a.s.

Furthermore, for any e > 0, we have

P ( logXn
(logn)/α

> 1 + ε) = P (Xn > n(1+ε)/α) = n−1−ε

Since
∑
n−1−ε < ∞, by Borel-Cantelli, P ( logXn

(logn)/α
> 1 + ε i.o.) = 0. This proves that

lim sup logXn
(logn)/α

≤ 1 + ε a.s. Since this holds for all ε > 0, this additionally proves that

lim sup logXn
(logn)/α

≤ 1 a.s.

We have proven lim sup logXn
(logn)/α

= 1 a.s, and would like to prove the same for Mn. Since
Mn ≥ Xn, we certainly now know that

lim sup logMn

(logn)/α
≥ 1 a.s.

For the other inequality, we use the following Lemma:

Lemma: Let {an} be a (nonrandom) sequence, and {bn} be an increasing sequence
where bn →∞. Let mn = max1≤k≤n ak. If lim sup an/bn ≤ 1, then lim supmn/bn ≤ 1.

Proof. Given ε > 0, choose N so n > N implies an/bn ≤ 1 + ε. Then

mn

bn
≤ mN

bn
+ max

N≤k≤n

ak
bn
≤ mN

bn
+ max

N≤k≤n

ak
bk
≤ mN

bn
+ 1 + ε

Since mN/bn → 0, the above proves lim supmn/bn ≤ 1 + ε. Letting ε → 0 completes
the proof.

This lemma shows lim sup logXn
(logn)/α

= 1 a.s. implies lim sup logMn

(logn)/α
≤ 1 a.s, so we are

done.
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4. (i) Let ‖X‖p denote (EXp)1/p. By Minkowski’s inequality, ‖X+Y ‖p ≤ ‖X‖p+‖Y ‖p.
Therefore,

‖Xn −Xm‖p ≤ ‖Xn −X‖p + ‖X −Xm‖p
The right side approaches zero since E|Xn −X|p → 0, proving ‖Xn −X‖p → 0.
Raising both sides to p then implies that E|Xn −Xm|p → 0.

(ii) This proof is due to Gene Kim.

Choose a subsequence Xn(k) so that ‖Xn(k) −Xn(k+1)‖p < 1
2k

. Let

φm = |Xn(1)|+
m∑
k=2

|Xn(k) −Xn(k−1)| φ = lim
m→∞

φm

By the MCT,

‖φ‖p = lim
m→∞

‖φm‖p ≤ ‖Xn(1)‖p+
∞∑
k=2

‖Xn(k)−Xn(k−1)‖p ≤ ‖Xn(1)‖p+
∞∑
k=2

1

2k
<∞

Since ‖φ‖p < ∞, it must be true that φ < ∞ almost surely, which proves that
the series

X = Xn(1) +
∞∑
k=2

Xn(k) −Xn(k−1)

converges absolultely, and therefore converges. Also,

X = lim
m→∞

Xn(1) +
m∑
k=2

Xn(k) −Xn(k−1) = lim
n→∞

Xn(m)

so Xn(m) is a sequence converging almost surely to X.

(iii) Letting X be defined as before, for any m we have X = Xn(m) +
∑∞

k=m+1Xn(k)−
Xn(k+1), so

‖X −Xn(m)‖p ≤
∞∑

k=m+1

‖Xn(k) −Xn(k+1)‖p ≤
∞∑

k=m+1

1

2k
m→∞−→ 0

proving Xn(m) → X in Lp. Since Xn is Cauchy in Lp, and has a subsequence
converging to X, this implies Xn → X in Lp.

31



2003 Fall

1. This proof is due to Gene Kim.

Let Mn = 1
n

maxj≤nXj, and let FX(x) = P (X ≤ x). Since Mn ≤ x exactly when each
Xj ≤ nx, we have that P (Mn ≤ m) = FX(nx)n. Thus,

EMn =

∫ ∞
0

P (Mn > x) dx

=

∫ ∞
0

1− FX(nx)n dx

=

∫ ∞
0

1− FX(t)n

n
dt

=

∫ ∞
0

(1− FX(t))

(
1 + FX(t) + FX(t)2 + · · ·+ FX(t)n−1

n

)
dt

Since
(

1+FX(t)+FX(t)2+···+FX(t)n−1

n

)
≤ 1, the above integrand is bounded by 1 − FX(t),

which is integrable since
∫∞
0

1− FX(t) = EX <∞. Thus, by the DCT,

lim
n→∞

EMn =

∫ ∞
0

lim
n→∞

(1− FX(t))

(
1 + FX(t) + FX(t)2 + · · ·+ FX(t)n−1

n

)
dt

=

∫ ∞
0

(1− FX(t))1{FX(t)=1} dt =

∫ ∞
0

0 dt = 0

2. Impossible Problem!! Let U ∼ Unif(0, 1), and f(x) = 0 when x ≤ 1 and f(x) = x
when x > 1. Then f(X) = 0 always, so X and f(X) are independent, but f is not
constant.

The problem is possible when reworded as follows: if X and f(X) are independent,
then f(X) is constant a.s.

Since X is independent of f(X), this implies f(X) is independent of f(X) (this comes
from the theorem which says that, if Y independent of Z, then g(Y ) independent of
h(Z)). This means that, for any x ∈ R, the event {f(X) ≤ x} is independent of itself.
Thus, P (f(X) ≤ x) = 0 or 1, since A independent of itselft implies P (A) = P (A∩A) =
P (A)P (A). This implies f(X) is constant a.s; if it were nonconstant, there would be
some x where P (f(X) ≤ x) was neither 0 nor 1.

32



3. Unclear wording: They should have mentioned that σ2 was finite.

(a) Let S =
∑Nλ

1 Xi, and Sn =
∑n

1 Xi. We first find the c.f. for S. Let ϕ be the c.f.
for X1. Then

EeitS = E
∞∑
n=0

eitS1Nλ=n =
∞∑
n=0

E(eitSn1Nλ=n) =
∞∑
n=0

E(eitSn)P (Nλ = n)

=
∞∑
n=0

ϕ(t)n
e−λλn

n!
= e−λ

∞∑
n=0

(λϕ(t))n

n!
= e−λeλϕ(t) = exp(λ(ϕ(t)− 1))

Since the c.f. for Nλ is exp(λ(eit − 1)), this means the c.f for S−Nλµ√
λ

is

E

(
exp

(
it · S −Nλµ√

λ

))
= exp(λ(ϕ(t/

√
λ)− 1)) · exp(λ(e−itµ/

√
λ − 1))

= exp
(
λ
(
ϕ( t√

λ
) + (e−itµ/

√
λ − 1)− 1

))
Now, note that that

e−itµ/
√
λ − 1 =

−itµ√
λ
− t2µ2

2λ
+ o(t2/λ)

and

ϕ(t/
√
λ) = 1 + itµ− t2

2
EX2 + o(t2/λ)

= 1 +
itµ√
λ
− t2

2λ
(σ2 + µ2) + o(t2/λ)

Thus,

E

(
exp

(
it · S −Nλµ√

λ

))
= exp

(
λ

(
itµ√
λ
− t2

2λ
(σ2 + µ2) +

−itµ√
λ
− t2µ2

2λ
+ o(t2/λ)

))
= exp(−t2(σ2 + 2µ2)/2− λo(t2/λ))→ exp(−t2(σ2 + 2µ2)/2)

The last expression is the c.f. for N(0, σ2 + 2µ2), which is the limit distribution.

(b) Since the c.f. for
√
λµ is exp(itµ

√
λ), the c.f for S−λµ√

λ
is

E
(

exp
(
it · S−λµ√

λ

))
= exp(λ(ϕ(t/

√
λ)−1)) exp(−itµ

√
λ) = exp

(
λ

(
ϕ(t/
√
λ)− itµ√

λ
− 1

))
Using the same asymptotics,

E
(

exp
(
it · S−λµ√

λ

))
= exp

(
λ

(
−t2(σ2 + µ2)

2λ
+ o(t2/λ)

))
→ exp(−t2(σ2+µ2)/2)

The latter is the c.f. for N(0, σ2 +µ2), which is therefore the desired limit distru-
bution.

(c) The two limit distriubtions are only the same when µ = 0.
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4. (a) We have that

E[X + Y |X, Y > 0] = E[X|X, Y > 0] + E[Y |X, Y > 0] = E[X|X > 0] + E[Y |Y > 0]

= 2E[X|X > 0]

The second = follows since X is independent of Y . We then have

E[X|X > 0] =
E[X1X>0]

P (X > 0)
= 2

∫ ∞
0

x
1√
2π
e−x

2/2 dx =
2√
2π

(
−e−x2/2

) ∣∣∣∣∞
0

=
√

2/π

Thus, E[Z|X, Y > 0] = 2
√

2/π.

(b) This problem is a little misleading: you can’t really get a closed form for the
dsitribution of Z. However, you can get an expression in terms of the distribution
of X.

P (Z ≤ z|X, Y > 0) =
P (Z ≤ z,X > 0, Y > 0)

P (X > 0, Y > 0)
,

Let T be the event that Z ≤ z, X > 0, Y > 0. Let S be the event that (X, Y ) is in
the square with vertices (±z, 0) and (0,±z). By symmetry, P (T ) = 1

4
P (S). Now,

let S ′ be the event that (X, Y ) is in this same square, but rotated 45 degrees
about the orgin; this is the square with vertices (± z√

2
,± z√

2
). Since the pdf of

(X, Y ) is
1√
2π
e−x

2/2 · 1√
2π
e−x

2/2 =
1

2π
e−r

2/2,

where r2 = x2 + y2, it follows that the pdf has rotational symmetry, so that
P (S) = P (S ′). Finally,

P (S ′) = P (|X| ≤ z√
2
)P (|Y | ≤ z√

2
)

=

(
1√
2π

∫ z/
√
2

−z/
√
2

e−x
2/2 dx

)2

= 4

(
1√
2π

∫ z/
√
2

0

e−x
2/2 dx

)2

= 4(FX(z/
√

2)− 1
2
)2

so

P (Z| ≤ zX, Y > 0) =
1
4
P (S ′)

P (X > 0)P (Y > 0)
= P (S ′) = 4(FX(z/

√
2)− 1

2
)2

Differentiating with respect to z gives the density fZ(z) of Z:

fZ(z) =
1√
2
· 1√

2π
e−(z/

√
2)2/2 · 8(FX(z/

√
2)− 1

2
) =

4√
π
e−z

2/4 · (FX(z/
√

2)− 1
2
)
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The π − λ theorem: A π-system is a collection of subsets of Ω which is closed under
intersection. A λ-system, L, is a collection of subsets of Ω where

(i) Ω ∈ L

(ii) if A,B ∈ L, A ⊂ B, then B \ A ∈ L

(iii) if An ↗ A, and each An ∈ L, then A ∈ L.

The π−λ theorem says that, if P is a π-system, L is a λ-system, and P ⊂ L, then σ(P ) ⊂ L,
where σ(P ) is the sigma algebra generated by P .

1. (a) Let A be the sets of the form {X ≤ x}, for x ∈ [−∞,+∞], and B be sets of the
form {Y ≤ y}. Note thatA is a π-system, since {X ≤ a}∩{X ≤ b} = {X ≤ a∧b}.
Let

L = {E ∈ σ(X) : P (E ∩B) = P (E)P (B) for all B ∈ B}
Note that by assumtion, A ⊂ L.

We will show L is a Lambda system, by checking each of the above three conditions

(i) P (Ω ∩B) = P (B) = P (Ω)P (B), so Ω ∈ L.

(ii) If E,F ∈ L, and E ⊂ F , then

P ((E \ F ) ∩B) = P (E ∩B)− P (F ∩B) = P (E)P (B)− P (F )P (B)

= (P (E)− P (F ))P (B) = P (E \ F )P (B)

so E \ F ∈ L.

(iii) If En ↗ E, then En∩B ↗ E∩B, proving that P (En∩B) = P (En)P (B)↗
P (E ∩B). Since we also have P (En)P (B)↗ P (E)(B), this implies P (E ∩
B) = P (E)P (B).

Applying the π−λ theorem gives that σ(A) = σ(X) ⊂ L. We the apply the π−λ
theorem again to

L′ = {E ∈ σ(Y ) : P (E ∩ A) = P (E)P (A) for all A ∈ σ(X)}

Since B ⊂ L′, we have that σ(B) = σ(Y ) ⊂ L′. Now, notice that σ(Y ) ⊂ L
means that, for all A ∈ σ(X), and all B ∈ σ(Y ), P (A∩B) = P (A)P (B), proving
that X, Y are independent.

(b) It is sufficient to show that, for all k,

P (B1 = b1, . . . , Bk = bk) = P (B1 = b1) · · ·P (Bk = bk)

since the sets {Bi = bi}, for b1 = 0, 1, generate σ(Bi). Note that the right hand
side is (1/2)k, since

⌊
2kU

⌋
will be odd half the time. The left hand side is also

(1/2)k, since the event {B1 = b1, . . . , Bk = bk} is exactly the event that the first
k binary digits of U are b1, . . . , bk, and the set of possible values of U for which
that occurs form an interval of length (1/2)k.
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2. Note that s2n =
∑
EX2

i = 1 + 1 + 2 + · · ·+ 2n−2 = 2n−1. This means that

Xn/sn ∼ N(0, 2
n−2

s2n
) = N(0, 1

2
),

so that P (|Xn|/sn > ε) is constant in n, so P (|Xn|/sn > ε) 6→ 0. Thus,

n∑
k=1

∫
|Xn|>εsn

X2
n dP ≥

∫
|Xn|/sn>ε

X2
n dP ≥ ε2P (|Xn|/sn ≥ ε) 6→ 0

so the Lindberg condtion doesn’t hold.

Note that, if Z1 ∼ N(0, σ2
1) and Z2 ∼ N(0, σ2

2), then Z1 + Z2 ∼ N(0, σ2
1 + σ2

2). This is
because the c.f. for N(0, σ2) is exp(−t2σ2/2), so the c.f. for Z1 + Z2 is

exp(−t2σ2
1/2) · exp(−t2σ2

2/2) = exp(−t2(σ2
1 + σ2

2)/2)

This means that

Sn ∼ N(0, 1 + 1 + 2 + · · ·+ 2n−2) = N(0, 2n−1)

so Sn/sn ∼ N(0, 1). So, not only does Sn/sn → N(0, 1) in distribution, but in fact
each Sn/sn is equal to N(0, 1) in distribution!
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3. Recall Kronecker’s Lemma: if an ↗ ∞, and
∑∞

1
xn
an

converges, then 1
an

∑n
1 xk → 0.

Thus, it suffices to show that
∑∞

1
X2
n

n2 converges. To do this, we use the Kolmogorov

3-series test. Let Yn = X2
n

n2 1
(
X2
n

n2 ≤ 1
)

= X2
n

n2 1(Xn ≤ n). We must check that

(i)
∑∞

1 P (X
2
n

n2 > 1) <∞ (ii)
∑∞

1 EYn converges (iii)
∑∞

1 Var Yn <∞

(i) This is true since EX1 < ∞, which holds if and only if
∑∞

1 P (Xk > k) < ∞,
which is the same as

∑∞
1 P (X2

k/k
2 > 1) <∞.

(ii) The below computation uses many clever tricks. For the first equality, we are
using X11X1≤n =

∑n
1 X11{k−1<X1≤k}. For the second, we use Fubini’s, vaild since

all summands are positive. For the third, we bound
∑∞

n=k n
−2 ≤

∫∞
k
x−2 dx = 1

k
.

For the fourth, note that X2
11(k−1,k] ≤ kX11(k−1,k].

∞∑
n=1

E(X
2
n

n2 ; |X| ≤ n) =
∞∑
n=1

n∑
k=1

1

n2
E(X2

11{k−1<X≤k}) =
∞∑
k=1

E(X2
1 ; 1(k−1,k])

∞∑
n=k

1

n2

≤
∞∑
k=1

E(X2
1 ; 1(k−1,k])

1

k

≤
∞∑
k=1

E(X1; 1(k−1,k])

= EX1 <∞

(iii) To show
∑

Var Yn <∞, we show
∑
EY 2

n <∞, using the same tricks.

∞∑
n=1

E(X
4
n

n4 ; |X| ≤ n) =
∞∑
n=1

n∑
k=1

n−4E(X4
11(k−1,k]) =

∞∑
k=1

E(X4
11(k−1,k])

∞∑
n=k

n−4

≤
∞∑
k=1

E(X4
11(k−1,k])

3

k3

≤ 3
∞∑
k=1

E(X11(k−1,k]) = 3EX1 <∞

This completes the proof!
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Lemma If yn is a sequence of real numbers, and every subsequence has a further subsequence
converging to y, then yn → y.

Proof. Suppose yn 6→ y. Then there is an ε > 0, and a subsequence yn(k) where |y−yn(k)| > ε.
This means no subsequence of yn(k) can approach y, contradicting the assumtion.

1. (a) =⇒ (b) We are given that Xn → 0 in probability, which implies every subse-
quence Xn(k) has a further subsequence Xn(km) converging almost surely to 0. Since
f is continuous, this means f(Xn(km)) → f(0) a.s, and since f is bounded, by DCT,
Ef(Xn(km)) → f(0). We have shown every subsequence of Ef(Xn) has a further
subsequence converging to f(0): by the above lemma, this implies Ef(Xn)→ f(0).

(b) =⇒ (a) Given ε > 0, let h(x) = (|x|/ε) ∧ 1 = min(|x|/ε, 1). The idea is that h is
bounded, continuous, and 1|x|≥ε ≤ h(x). Thus,

P (|Xn| > ε) = E1|Xn|>ε ≤ Eh(Xn)

So letting n→∞, we get

lim sup
n

P (|Xn| > ε) ≤ lim
n
Eh(Xn) = h(0) = 0.

2. (a) The c.f. of Sn/n is always ϕ(t/n)n, so in this case, (e−|t/n|)n = e−|t|.

(b) The law of large numbers does not hold since E|X1| =∞.

Also, the law of large numbers would imply Sn/n → µ, but the previous result,
and the continuity theorem, show that Sn/n→ X1 in distribution.
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3. (a) We have that P (Xn ≥ log n) = e− logn = n−1, and
∑
n−1 = ∞, so by Borel-

Cantelli, P (Xn/ log n ≥ 1 i.o.) = 1, which proves P (lim supnXn/ log n ≥ 1) = 1.

For any ε > 0, we have P (Xn/ log n > 1 + ε) = n−(1+ε), which is now summable,
so again by Borel Cantelli, P (Xn/ log n > 1 + ε i.o.) = 0. This shows

lim sup
n

Xn/ log n ≤ 1 + ε a.s.

Letting L = lim supXn/ log n, since {L ≤ 1} =
⋂
k≥1{L ≤ 1 + 1

k
}, the above

implies L ≤ 1 a.s, so we have shown L = 1 a.s.

(b) We first show:

Lemma Given a (non random) sequence a1, a2, . . . , where an ≥ 0, and lim supn
an
logn

=
1, let mn = max1≤k≤n ak. Then lim supn

mn
logn
≤ 1.

Proof. Given ε > 0, choose K so n > K implies an
logn

< 1 + ε. Then

mn

log n
≤ mK

log n
+ max

K+1≤j≤n

aj
log j

≤ mK

log n
+ 1 + ε

Letting n → ∞, we have mK/ log n → 0, so the above shows lim sup mn
logn

≤
1 + ε.

Thus, using lim sup Xn
logn

= 1 a.s. and the Lemma proves lim sup Mn

logn
≤ 1 a.s.

Secondly, we show lim inf Mn

logn
≥ 1 a.s. For any ε > 0, we have

P (Mn/ log n < 1−ε) = P (Xi ≤ (1−ε) log n)n = (1−e−(1−ε) logn)n =

(
1− nε

n

)n
≤ e−n

ε

Since
∑

( 1
eε

)n <∞, this implies that P (Mn/ log n < 1− ε i.o.) = 0. Thus, almost
surely we will haveMn/ log n is eventually greater than 1−ε, so lim inf Mn/ log n ≥
1− ε a.s, so lim inf Mn/ log n ≥ 1 a.s.
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2006 Spring

1. (a) The condition is pn → 0, since P (|Xn| > ε) = P (Xn = 1) = pn, so Xn → 0 in
probability iff pn → 0.

(b) The condition is
∑
pn <∞, since

Xn → 0 a.s. ⇐⇒ P (Xn = 1 i.o.) = 0 ⇐⇒
∑

P (Xn = 1) <∞

with the last ⇐⇒ following from Borel-Cantelli.

2. (a) Note that EI1 = P (Y1 ≤ f(X1)) = J (since (X1, Y1) is uniform over the unit

square, and the area for which y ≤ f(x) is J), and Ef(X1) =
∫ 1

0
f(x) dx = J .

Thus, by SLLN, 1
n

∑
Ii and 1

n
f(Xi) both converge to J a.s.

(b) Since Jn − J = 1
n

∑n
1 (Ii − J), and each Ii − J has mean 0, we have

E(Jn−J)2 = Var (Jn−J) =
1

n2

n∑
1

Var (Ii−J) =
n

n2
Var (I1) =

1

n
(EI21−(EI1)

2) =
1

n
(J−J2)

The last step follows since I2i = Ii (it is always 0 or 1).

In the same vein,

E(J∗n−J) =
n

n2

∑
Var f(Xi) =

1

n
(Ef(Xi)

2−(Ef(Xi))
2) =

1

n

(∫ 1

0

f(x)2 dx− J2

)
Thus, in order to prove E(J∗n−J) ≤ E(Jn−J)2, it suffices to prove

∫ 1

0
f(x)2 dx ≤

J =
∫ 1

0
f(x) dx, which is true since f(x) ∈ [0, 1], so that f(x)2 ≤ f(x). In the

previous inequality, equality only holds when f(x) is 0 or 1, and the only two
continuous functions which are always 0 or 1 are f(x) = 0 and f(x) = 1.

(c) Note this distribution of
√
n(Jn−J)
σ

is approximately the standard normal, for large
n, where σ = Var Ii = J − J2. Thus,

P

(√
n|Jn − J |

σ
< 3

)
≈ 0.95

P (|Jn − J | < 3(J − J2)/
√
n) ≈ 0.95

Solving 3(J − J2)/
√
n = 0.01 for n, we get n = 90, 000 · (J − J2) ≤ 90, 000, so

choosing n = 90, 000 should sort of work.
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3. (a) Xn → X in probability if, for all ε > 0, P (|Xn −X| > ε)→ 0 as n→∞.

Xn → X in distribution if, for any x for which the function FX(x) = P (X ≤ x)
is continuous at x, we have P (Xn ≤ x)→ P (X ≤ x) as n→∞.

(b) It does not converge in probability, since P (|Xn − Y | > ε) = P (|X − (1−X)| >
ε) = P (|2X − 1| > ε) = 1 6→ 0.

It does converge in distribution, since P (Xn ≤ x) = P (Y ≤ x) for all n.

(c) It is a well known fact that convergence in probability implies that in distribution.
To see this, suppose Zn → Z in probability, and let z be a continuity point of
FZ(z) = P (Z ≤ z). Using the fact that

{Zn ≤ z} ⊂ {Z ≤ z + ε} ∪ {|Z − Zn| > ε}

we have
P (Zn ≤ z) ≤ P (Z ≤ Z + ε) + P (|Z − Zn| > ε)

Using {Z ≤ z − ε} ⊂ {Zn ≤ z} ∪ {|Zn − Z| > ε}, we also have

P (Zn ≤ z) ≥ P (Z ≤ z − ε)− P (|Z − Zn| > ε)

letting n→∞, the above two inequalities imply

P (Z ≤ z − ε) = FZ(z − ε) ≤ lim
n→∞

P (Zn ≤ z) ≤ FZ(z + ε) = P (Z ≤ z + ε)

then letting ε→ 0 gives limn→∞ P (Zn ≤ z) = FZ(z).

Since Yn → Y in probability, we have Yn → Y in distribution. But X has the same
distribution as Y , and convergence in distribution only depends on distrubtion,
proving that Yn → X in distribution as well.
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2007 Spring

1. (i) For any ε, {Xn/n > ε} = {Xn > nε} ↘ {Xn =∞}, so P (Xn/n > ε)↘ P (Xn =
∞) = 0.

(ii) Using the inequalities∑
n≥1

P (|Xn|/ε > n) ≤ E|X1/ε| ≤
∑
n≥0

P (|Xn|/ε > n)

We have

E|X1| <∞ ⇐⇒
∑

P (|Xn/n| > ε) <∞

⇐⇒ P (|Xn/n| > ε i.o.) = 0

⇐⇒ Xn/n→ 0 a.s.

The second ⇐⇒ is Borel-Cantelli, and the third follows by intersecting {|Xn/n| >
εk i.o.} for εk ↘ 0.

(iii) Using Xn/
√
n → 0 ⇐⇒ X2

n/n → 0 and the previous problem, the desired
condtion is EX2

1 <∞.

2. (i) We have, using Fubini’s theorem,

1

2π

∫ π

−π
e−iktφ(t) dt =

1

2π

∫ π

−π
e−ikt

∑
x∈Z

eitxP (X = x) dt =
∑
x∈Z

P (X = x)
1

2π

∫ π

−π
eit(x−k) dt

Consider 1
2π

∫ π
−π e

it(x−k) dt. When x = k, this is clearly 1. When x 6= k, breaking
the complex exponential into its sinusoidal real and imaginary parts shows that
the integral is zero. Thus, the only positive contribution to the sum is when
X = k, so the sum is P (X = k).

(ii) The c.f. for Sn is φX(t)n, so

P (Sn = k) =
1

2π

∫ π

−π
e−itkφX(t)n dt
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3. (i) (⇐=) We have, for M > sup |µn|,

P (|Xn| > M) ≤ P (||Xn − µn| > M − |µn|) ≤
σ2
n

(M − |µn|)2
≤ supσ2

n

(M − sup |µn|)2

so

sup
n
P (|Xn| > M) ≤ supσ2

n

(M − sup |µn|)2
→ 0 as M →∞

( =⇒ ) Suppose sup |µn| =∞. Then for any M , there will be some XN for which
|µN | > M , implying by symmetry of the normal distribution that P (|XN | >
M) > 1

2
, meaning lim supn P (|Xn| > M) ≥ 1

2
6→ 0.

Suppose sup |µn| = C < ∞, but supσn = ∞. Recall that for a normal distrub-
tion, P (|Xn − µn| > σn) ≈ .32. For any M , there will be some XN for which
σN > M + C, so

lim sup
n

P (|Xn| > M) ≥ P (|XN | > M)

≥ P (|XN − µN | > M + |µN |)
≥ P (|XN − µN | > σN) > 0.3 6→ 0

(ii) (⇐=) If µn → µ and σn → σ, then eiµnt → eiµt and e−t
2σ2
n/e → e−t

2σ2/2 pointwise,
so eiµnte−t

2σ2
n/2 → eiµte−t

2σ2/2. Note that eiµnte−t
2σ2
n/2 is the c.f. of Xn. Since the

limit function is continuous at zero, this implies Xn → some X in distribution,
by the continuity theorem.
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( =⇒ ) Suppose Xn → X weakly. This implies the c.f.’s of Xn converge pointwise,
so eiµnte−t

2σ2
n/2 → ϕ(t). Taking magnitudes,

|eiµnte−t2σ2
n/2| = e−t

2σ2
n/2 → |ϕ(t)|,

Since Xn → X weakly implies the Xn are tight, by part (i), supσn <∞, meaning
we must have |φ(t)| > 0. Setting t = 1, we get σn →

√
−2 log |ϕ(1)| = σ.

We now have
eiµnt = ϕ(t)et

2σ2
n/2 → ϕ(t)et

2σ2/2 = ρ(t), (1)

where |ρ(t)| = |eiµnt| = 1. From part (i), we know sup |µn| <∞, so {µn}n≥0 has
at least one accumulation point. When t = 1 in (1), eiµn → ρ(1) implies that all
accumulation points of {µn}n≥0 are of the form arg ρ(1) + 2πk.

Suppose, by way of contradiction there were at least two accumulation points.
This would imply there were subsequences µh(n) and µ`(n) so that

µh(n) → arg ρ(1) + 2πk1 and u`(n) → arg ρ(1) + 2πk2

where k1 6= k2 are integers. Now, setting t = 2π in (1), so that ei2πµn → ρ(2π),
we can find further subsquences h′(n) of h(n) and `′(n) of `(n) so that

µh′(n) →
1

2π
arg ρ(2π) + k′1 and u`(n) →

1

2π
arg ρ(2π) + k′2

for some k′1, k
′
2 ∈ Z. Setting corresponding limits of subsequences equal to each

other, we get

arg ρ(1) + 2πk1 =
1

2π
arg ρ(1) + k′1

arg ρ(1) + 2πk2 =
1

2π
arg ρ(1) + k′2

so that

2π =
k′1 − k′2
k1 − k2

contradicting the irrationality of π.

Thus, there is only one acculumation point, µ, of {µn}n≥0. Since {µn} is bounded,
every subsequence of µn has a further convergent subsequence. Since these sub-
sussequences always converge to µ, it follows µn → µ.
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2007 Fall

1. Let An be the event {Ln > log n+ θ log log n}. Then

P (An) =
1

2

logn+θ log logn

=
1

n(log n)θ

Since
∑
P (An) <∞ (use the integral test), by Borel-Cantelli, P (An i.o.) = 0.

2. The continuous form of the inversion formula implies, since
∫
|φn| <∞, that Xn have

densities for n < ∞, given by fn(x) = 1
2π

∫
e−itxϕn(t) dt (for a proof of this fact, see

Spring 1997, problem 3). Furthermore, |ϕn(x)| ≤ g(x) and ϕn(x) → ϕ∞(x) implies
|ϕ∞(x)| ≤ g(x), so we also have that ϕ∞ is integrable, implying the density f∞ exists,
and is given by a similar formula.

We have that

sup
x∈R
|fn(x)− f(x)| = sup

x∈R

∣∣∣∣∫ e−itxϕn(t) dt−
∫
e−itxϕ∞(t) dt

∣∣∣∣
≤ sup

x

∫
|e−itx(ϕn(t)− ϕ∞(t))| dt

=

∫
|ϕn(t)− ϕ∞(t)| dt

Since |ϕn − ϕ| ≤ 2g ∈ L1, and |ϕn(t) − ϕ(t)| → 0, by the dominated convergence
theorem,

lim sup
n→∞

(
sup
x
|fn(x)− f(x)|

)
≤ lim

n→∞

∫
|ϕn(t)− ϕ∞(t)| dt = 0

proving supx |fn(x)− f(x)| → 0, so fn → f uniformly.
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3. Choose A0 so that supn
E(X2

n;|Xn|>A)
EX2

n
< 1

2
when A > A0. Then for these A,

EX2
n = E(X2

n; |Xn| ≤ A) + E(X2
n; |Xn| > A) ≤ A2 +

1

2
EX2

n

so rearranging, we get
EX2

n

A2
≤ 2

Thus, using Chebychev’s inequality, for A > A0,

sup
n
P (|Xn| > A) ≤ sup

n

E(X2
n; |Xn| > A)

A2

= sup
n

E(X2
n; |Xn| > A)

EX2
n

· EX
2
n

A2

≤ sup
n

E(X2
n; |Xn| > A)

EX2
n

· 2

Letting A→∞, the right hand side approaches 0 (by assumption), proving

lim
A→∞

sup
n
P (|Xn| > A) = 0,

which means the Xn, and therefore their distributions Fn, are tight.

4. (a) Take expectations of both sides of the inequality ϕ(t)1Y >t ≤ ϕ(Y ).

(b) Using (a), with ϕ(t) = eλt,

P (Sn > nx) ≤ EeλSn

eλnx

Since eλSn = eλX1 × · · · × eλXn , and each factor is independent, with the same
expectation, we have

P (Sn > nx) ≤ (EeλX1)n

eλnx
=

(
M(λ)

eλx

)n
Taking logs,

logP (Sn > nx) ≤ n(logM(λ)− λx)

so rearranging and taking the inf over λ > 0,

1

n
logP (Sn > nx) ≤ inf

λ>0
−(λx−M(λ)) = − sup

λ>0
(λx−M(λ)) = −I(x)
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2008 Spring

1. (a) Let Sn = X1 + · · ·+Xn. We have

ϕε = EeitSε =
∑
n≥0

E[eitSε|Nε = n]P (Nε = n) =
∑
n≥0

E[eitSn ] · e
−λ/ε2(λ/ε2)n

n!

Note that E[eitSn ] = (cos εt)n, since cos εt is the c.f. for Xn, and adding random
variable makes their c.f’s multiply. Thus,

ϕε = e−λ/ε
2
∑
n≥0

(λ/ε2 · cos εt)n

n!
= e−λ/ε

2

eλ/ε
2·cos εt = eλ(cos εt−1)/ε

2

(b) As ε→ 0, using, L’Hoptial’s rule twice, cos εt−1
ε2
→ −t sin εt

2ε
→ −t2

2
, so ϕε → e−λt

2/2.
This is the c.f. of N(0, λ), proving ϕε converges in distribution to N(0, λ).

2. Let x be a continuity point of FX , and ε > 0. Since {Xn + Yn ≤ x} ⊂ {Xn ≤
x+ ε} ∪ {|Yn| > ε} and {Xn ≤ x− ε} ⊂ {Xn + Yn ≤ x} ∪ {|Yn| > ε}, we have

P (Xn ≤ x− ε)− P (|Yn| > ε) ≤ P (Xn + Yn ≤ x) ≤ P (Xn ≤ x+ ε) + P (|Yn| > ε)

Assuming x± ε is also a contiuity point of FX , letting n→∞ above shows

F (x− ε) ≤ lim inf
n

P (Xn + Yn ≤ x) ≤ lim sup
n

P (Xn + Yn ≤ x) ≤ F (x+ ε)

and letting ε→ 0 shows P (Xn + Yn ≤ x)→ F (x), completing the proof.
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3. (a) Note that Vn can be written as a function of the Ui for which an−i 6= 0, and Vn+1

as a function of the Ui for which an+1−i 6= 0. This means that Vn and Vn+1 are
functions of disjoint sets of independent variables, since for all i, an−ian−i+1 = 0,
so at least one of an−i and an−i+1 is zero, meaning there is no Ui which both Vn
and Vn+1 both depend on. Since Vn, Vn+1 are functions of independent vectors,
they are independent.

(b) Note that Vn ∼ N(0, a20 + · · · + a2n−1). This is because, when X ∼ N(0, σ2) and
Y ∼ N(0, ρ2), then X + Y ∼ N(0, σ2 + ρ2), which can be proven by looking at
characteristic functions.

Let An =
∑n−1

0 a2i , and A =
∑∞

0 a2i . Then Vn ∼ N(0, a21 + · · · + a2n), so Vn/
√
An

is standard normal, so (for large enough x),

P (Vn ≥ x
√
A) ≤ P (Vn/

√
An ≥ x) ≤ 1√

2πx
exp

(
−x

2

2

)
≤ exp

(
−x

2

2

)
Letting x =

√
2(1 + ε) log n,

P

(
Vn√
log n

≥
√

2(1 + ε)A

)
≤ exp

−
(√

2(1 + ε) log n
)2

2

 = n−1−ε

Since
∑
n−1−ε <∞, Borel-Cantelli implies P

(
Vn√
logn
≥
√

2(1 + ε)A i.o.
)

= 0.

This means that lim sup Vn√
logn

≤
√

2(1 + ε)A a.s. Letting ε → 0 proves that

lim sup Vn√
logn
≤
√

2A a.s.

4. The appropriate choice of t is t = 1
c
. We have

P (X ≥ c) ≤ P ((X+1
c
)2 ≥ (c+1

c
)2) ≤

E(X + 1
c
)2

(c+ 1
c
)2

=
EX2 + 2

c
EX + 1

c2

(c+ 1
c
)2

=
1 + 1

c2

(c+ 1
c
)2

=
1

c2 + 1

This solution of course doesn’t help show you how to approach the problem correctly.
Assuming you didn’t know what t was, you would have

P (X ≥ c) ≤ P ((X + t)2 ≥ (c+ t)2) ≤ E(X + t)2

(c+ t)2
=

1 + t2

(c+ t)2

You want to find a t so that 1+t2

(c+t)2
≤ 1

c2+1
. Cross multiplying and simplyifying that

inequality is how you find t = 1
c
.
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2008 Fall

1. It does follows that E logXn → E logX. Since Xn → X, in distribution, there exist
variables Yn, Y with the same distribution as Xn, X, and where Yn → Y almost surely.

By Fatou’s Lemma, we have that lim inf E log Yn ≥ E log Y .

Since EYn → c, we must have that EYn ≤ K for some constant K and large enough
n. Given ε > 0, choose M so x > M implies log y

y
≤ ε

K
and so P (Y = M) = 0. Then

E(log Yn1Yn>M) = E

(
log Yn
Yn

· Yn1Yn>M

)
≤ E

( ε
K
· Yn1Yn>M

)
≤ ε

K
EYn ≤ ε

so

E log Yn ≤ E(log Yn1Yn≤M) + E(log Yn1Yn>M) ≤ E(log Yn1Yn≤M) + ε

Taking limits above, we get

lim sup
n

E log Yn ≤ ε+ lim sup
n

E(log Yn1Yn≤M)
DCT
= ε+ E(log Y 1Y≤M) ≤ ε+ E log Y

To justify the middle equality, realize that Yn → Y a.s. and P (Y = M) = 0 implies
log Yn1Yn≤M → log Y 1Y≤M a.s, and the log Yn1Yn≤M are dominated by logM .

Letting ε→ 0 above, we have shown that

E log Y ≤ lim inf E log Yn ≤ lim sup
n

E log Yn ≤ E log Y

which implies E logXn = E log Yn → E log Y = E logX.

2. / First, we get an upper lower bound on P (Xn ≥ α):

P (Xn ≥ α) =
∞∑
k=α

λk

k!

Let an be the integer closest to logn
log logn

, so an = logn
log logn

(1 + o(1)). Using Sterling’s

approximation, which says that log(k!) = k log k + O(k), and the fact that O(an)
implies o(log n),

P (Xn = an) =
e−λean log λ

an!

= exp(−an log an + an(1 + log λ) + o(an))

= exp

(
− log n

log log n
· (log log n− log log log n) + o(log n)

)
= exp(− log n+ o(log n)) = n−1+o(1)

The above computation is useless, since
∑
n−1+o(1) can be either finite or infinite.
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3. (a) The special property is that ϕ will be real. If X and −X have the same distrub-
tion, then

EeitX = E cos tX + iE sin tX

But tX is symmetrically positive and negative, and sin(tx) is an odd function, so
E sin(tX) = 0.

Suppose EeitX is real. Using the inversion formula, we have, for any a < b,

P (X ∈ (a, b)) +
1

2
P (X ∈ {a, b}) = lim

T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
ϕ(t) dt

Both sides are real, so taking the conjugate of the right preserves equality, re-
sulting in

P (X ∈ (a, b)) +
1

2
P (X ∈ {a, b}) = lim

T→∞

1

2π

∫ T

−T

e−it(−a) − e−it(−b)

−it
ϕ(t) dt

= lim
T→∞

1

2π

∫ T

−T

e−it(−b) − e−it(−a)

it
ϕ(t) dt

= P (X ∈ (−b,−a)) +
1

2
P (X ∈ {−b,−a})

= P (−X ∈ (a, b)) +
1

2
P (−X ∈ {a, b})

This holds for all a, b, proving X and −X have the same distribution.

(b) This is given by φ(t/n)n.

(c) Since φ′(0) = 0, we have that

lim
n→∞

φ(t/n)− 1

t/n
= 0

Furthermore, from calculus it is true that log(1+x)
x

→ 1 as x → 0, implying
log φ(t/n)
φ(t/n)−1 → 1 as n→∞. Multiplying these two limits, we get

lim
n→∞

log φ(t/n)

t/n
= 0

Taking exp of both sides, we get φ(t/n)n → 1. But φ(t/n)n is the c.f. for Sn/n,
and 1 is the c.f. for 0, so the continutity theorem implies Sn/n → 0 weakly.
Finally, one can prove that converging weakly to a constant implies convergence
in probability as well, so that Sn/n→ 0 in probability.

(d) We have

E|X| = 2c

∫ ∞
4

x · 1

x2 log x
dx = 2c( lim

n→∞
log log n− log log 4) =∞
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(e) Since X is symmetric about 0, we have

E
eitX − 1

t
= E

cos(tX)− 1

t
= 2c

∫ ∞
4

cos(tx)− 1

tx2 log |x|
dx

Letting y = tx, this becomes

E
eitX − 1

t
= 2c

∫ ∞
4

cos(y)− 1

t(y/t)2 log |y/t|
d(y/t) = 2c

∫ ∞
4

cos(y)− 1

y2 log |y/t|
dy

Since, for −1 < t < 1, it’s true that cos(y)−1
y2 log |y/t| ≤

cos(y)−1
y2 log |y| ∈ L1(dy), the DCT implies

lim
t→0

E
eitX − 1

t
= lim

t→0
2c

∫ ∞
4

cos(y)− 1

y2 log |y/t|
dy = 2c

∫ ∞
4

lim
t→0

cos(y)− 1

y2 log |y/t|
dy = 2c

∫ ∞
4

0 dt = 0

proving φ′(0) = 0.
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2009 Spring

1. The only thing let to prove is when µ = ±∞. Assume WLOG µ = ∞. Given
M ∈ N, let XM

n = Xn ∧ M . Note that E|XM
n | < ∞, since (XM

n )+ < M , and
E(XM

n )− = EX−n <∞ since EXn = EX+
n −EX−n =∞. Thus, letting SMn =

∑n
1 X

M
i ,

and using the regular SLLN,

lim inf
n

Sn/n ≥ lim
n
SMn /n = EXM

1 a.s.

As M → ∞, by MCT, EXM
1 → EX1 = ∞. Using this, and the fact that the

intersection of countably many almost sure events is almost sure, we have

P (Sn/n→∞) = P

(
∞⋂

M=1

lim inf
n

Sn/n > EXM
1

)
= 1

so Sn/n→∞ = µ a.s.

2. You actually only need to assume Xn → 0 in probability to to this problem.

Since Xn → 0 a.s. implies, for any k, that P (Xn > k−2) → 0, we have that for each
k, there exists an nk such that P (Xnk > k−2) < k−2. By Borel-Cantelli, P (Xnk >
k−2 i.o.) = 0, implying that, almost surely, only finitely many Xnk will exceed k−2,
meaning

∑∞
1 Xnk will be finite. Thus, almost surely, limm Ym =

∑∞
1 Xnk will be

finite.

3. /

(a)

(b)

(c)
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4. The first step is to prove that |Xn|/n→ 0 a.s. The fact that E|Xn| <∞ and Xn i.i.d
implies |Xn|/n→ 0 a.s. has been proven many times in these answers, see for example
1997 Fall, 4(a), or 2007 Spring 1(ii).

Next, we prove that max1≤i≤n |Xn|/n→ 0 a.s. This follows from |Xn|/n→ 0 a.s, and
the following lemma:

Lemma: if an ≥ 0 is a sequence of numbers, and an/n→ 0, then 1
n

max1≤i≤n an → 0.

Proof. Given ε > 0, choose k so n > k implies an/n < ε. Then

lim sup
n

max1≤i≤n an
n

≤ lim sup
n

max(x1, . . . , xk)

n
+ max

k≤i≤n

ai
i
≤ 0 + ε

This holds for all ε > 0, so
max1≤i≤n an

n
→ 0.

Finally, let Mn = max1≤i≤n |Xn|. We have, using what we just showed and the SLLN,
that

Mn

n
→ 0 a.s. and

n

|Sn|
→ 1

|EX1|
a.s.

Thus, the product of these sequences converges to the product of the limits a.s, proving
that Mn/|Sn| → 0 a.s.
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2009 Fall

1. See 2011 Fall, problem 2.

2. Note Var Xn = n−2α, so
∑

Var Xn <∞ ⇐⇒ α > 1
2
. It follows, by the “Kolmogorov

1-series theorem”, that α > 1
2

implies
∑
Xn converges a.s. When α ≤ 1

2
, the more

subtle 3-series theorem is needed. To check the conditions of this theorem are satisfied,
it suffices to realize that, for any A > 0, if Yn = Xn1{|Xn|≤A}, then

∑
Var Yn = ∞,

which follows since Yn = Xn for large enough n.

Note |Xn| = n−α with probability 1, so
∑
Xn converges exactly when α > 1.

3. (i) You can prove, by induction, that Vn−1 is independent of Un+k for all k ≥ 0. It
holds when n = 2, since V1 = U1 is independent of all other Ui. Assuming Vn−1 is
independent of all Un+k, the inductive step follows since Vn is a function of Vn−1
and Un, both of which are independent of Un+1+k for k ≥ 0.

(ii) This problem is unfair, since it requires knowledge of conditional expectation,
which is not covered until 507b. However, you should be able to prove equation
(∗), shown in the next part, and this is all you need in order to do part (iii).

Let A = {Vn−1 ∈ [0, 1
2
]} and B = {Vn−1 ∈ [1

2
, 1]}. Then

Vn = 2Vn−1Un1A + (2Vn−1 − 1)Un1B

= Un(2Vn−1(1A + 1B)− 1B)

= Un(2Vn−1 − 1B)

Thus, using the independence of Un and Vn−1,

E[Vn|Vn−1] = E[Un|Vn−1]·E[2Vn−1−1B|Vn−1] = E[Un]·(2Vn−1−1B) =
1

2
(2Vn−1−1B)

(iii) Taking the expectation of the equation E[Vn|Vn−1] = Vn−1 − 1B, we get

EVn = EVn−1 − P (Vn−1 ∈ [1
2
, 1]) (*)

which gives

EVn = EV1 +
n∑
k=2

EVk − EVk−1 =
1

2
−

n∑
k=2

P (Vk−1 ∈ [1
2
, 1])

Thus, for all n,
∑n

k=2 P (Vk−1 ∈ [1
2
, 1]) = 1

2
− EVn ≤ 1

2
(since Vn ≥ 0), proving in

particular that P (Vk−1 ∈ [1
2
, 1])→ 0 as k →∞, so P (Vk−1 <

1
2
)→ 1.
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2010 Spring

1. (a)

P (|ηn| > ε) = P

(
n⋂
1

Xi > 0

)
= (1− e−λ)n → 0 as n→∞

(b) They are asking if there is a sebsequence converging in L1 to some η, implying
convergence in probability as well. Since every subsequence converges in proba-
bility to 0, we would need η = 0, so Eηnk → 0. Since Eηnk = λnk , this is only
possible when λ < 1.

2. Suppose supXn < ∞ a.s. Then {lim supnXn < A} ↗ {supnXn < ∞} as A → ∞,
since if supnXn < ∞, then lim supnXn is certainy less than some A. It follows that,
for some A, P (lim supnXn < A) > 0. Since lim supXn < A implies Xn will be
more than A only finitely many times, this implies P (Xn > A i.o.) < 1. Finally, by
Borel Cantelli,

∑
P (Xn > A) = ∞ would imply P (Xn > A i.o.) = 1, we have that∑

P (Xn > A) <∞.

Suppose that
∑
P (Xn > A) < ∞. By Borel-Cantelli, P (Xn > A i.o.) = 0. Thus,

with probability 1, the sequence Xn will be greater that A only finitely times, meaning
supXn < ∞ (since supXn will be max(Xn1 , . . . , Xnk , A), where n1, . . . , nk are the
indices for which Xn > A). Thus, supXn <∞ a.s.
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3. We first show that SNn/σ
√
an − San/σ

√
an → 0 in probability. For any ε, δ > 0,

P (|SNn − San|/σ
√
an > ε) = P (|SNn − San| > ε

√
anσ)

≤ P ({|SNn − San| > ε
√
anσ} ∩ {|Nn − an| ≤ δan}) +

���
���

���:
0

P (|Nn
an
− 1| > δ)

≤ P ( max
−anδ≤k≤anδ

|Sk − San| > ε
√
anσ)

The above could use some explaining. The first ≤ follows from P (A) = P (A ∩ B) +

P (A ∩ Bc) ≤ P (A ∩ B) + P (Bc), and in this case, ���
�: 0

P (Bc) means that P (Bc) → 0 as
n→∞, which follows since Nn/an → 1 in probability. Finally, given that the random
Nn is at most anδ away from an, the event |SNn − San| > εanσ that this holds when
Nn = some k.

We know use Kolmogorov’s maximal inequality, which says that, given X1, X2 . . .
independent, EXi = 0, then P (max1≤k≤n |Sn| > x) ≤ x−2Var Sn. Thus, applying this
to Xanδ, Xanδ+1, . . . and Xanδ, Xanδ−1, . . . , we have

P (|SNn − San|/σ
√
an > ε) ≤ P ( max

1≤k≤anδ
|Sk − San| > ε

√
anσ) + P ( max

1≤−k≤anδ
|Sk − San| > ε

√
anσ)

≤ 2

ε2σ2an
Var (San+δan − San) =

2

ε2σ2an
· δan · Var Xi ≤

2δ

ε2

Letting δ → 0 proves that P (|SNn − San|/σ
√
an > ε)→ 0 as n→∞, proving

SNn
σ
√
an
− San
σ
√
an
→ 0

in probability.

Furthermore,
San/σ

√
an → N(0, 1)

in distribution by the CLT. Thus, using Slutsky’s to add the last two sequences gives

SNn/σ
√
an → N(0, 1)

in distribution.
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2010 Fall

1. It will converge to zero a.s. We have

P (|Xn/n| > ε) ≤ EX2
n

n2ε2
≤ 1

n2ε2

Thus, by Borel Cantelli, P (|Xn/n| > ε i.o.) = 0, so intersecting the events {|Xn/n| >
εk i.o.}c for some εk ↘ 0 givens Xn/n→ 0 a.s.

2. Let Yn,i = Xi√
n logn

· 1{|Xi|<√n logn}. The Lindberg-Feller CLT has two conditions. For
the first, we find

EY 2
n,i =

1

n log n
· 2
∫ √n logn

1

y2 · 1

y3
dy

=
2

n log n
· log(

√
n log n)

=
1

n
·
(

1 +
log log n

log n

)
Thus, we get that

∑n
i=1EY

2
n,i = nEY 2

n,1 = 1 + log logn
logn

→ 1. Since this limit is nonzero,

we can apply Lindeberg, and since it is 1, we have that σ2 = 1.

Secondly, we compute

E
(
Y 2
n,i · 1|Yn,i|>ε

)
=

1

n log n
· 2
∫ √n logn

ε
√
n logn

y2 · 1

y3
dy

=
1

n log n
· 2(log(

√
n log n)− log(ε

√
n log n))

=
2

n log n
· log(1/ε)

So, we get
∑n

i=1EY
2
n,i1|Yn,i|>ε = n · EY 2

n,11|Yn,i|>ε = n · 2
n logn

· log(1
ε
)→ 0, as required.

Thus, we can apply Lindeberg-Feller CLT to obtain
n∑
i=1

Yn,i =⇒ N(0, σ2) = N(0, 1)

Next, we show that
∑n

1
Xi√
n logn

−
∑n

i=1 Yn,i → 0 in probability. Note that this difference

is given by
∑n

1 Xi1|Xi|>
√
n logn, so we compute

P

(∣∣∣∣ n∑
1

Xi1|Xi|>
√
n logn

∣∣∣∣ > ε

)
≤ P

( n⋃
1

{|Xi| >
√
n log n}

)
≤ n · P (|X1| >

√
n log n)

But P (|X1| >
√
n log n) = 2

∫∞
n logn

1
x3
dx = 1

n logn
, so the above is at most 1

logn
→ 0,

proving convergence in probability.

It can be proven that if An =⇒ A and Bn → b (a constant) in probability, than
An + Bn =⇒ A + B. Using this, combined with

∑n
i=1 Yn,i =⇒ N(0, 1) and∑n

1
Xi√
n logn

−
∑n

i=1 Yn,i → 0 in probability gives the desired result.
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3. Let X+ = max(X, 0). I claim EX+ < ∞. If not, then for all M ∈ N, we would have
EX+/M =∞, so that

∞∑
n=0

P (X+
n /n > M) =

∞∑
n=0

P (X+
n /M > n) >

∫ ∞
0

P (X+/M > t) dt = EX+/M =∞

implying P (X+
n /n > M i.o.) = P (lim supX+

n /n > M) = 1. Since this holds for all M ,
it follows that lim supX+

n /n =∞ almost surely, contradicting the problem statement.

Finally, using SLLN,

lim sup
n

∑
Xk

n
≤ lim sup

n

∑
X+
k

n
a.s.
= EX+

k <∞

4. It does follow that E|X| <∞.

Proof 1: Choose M so P (|Y | ≤M) = ε > 0. For all t, we have

P (|X + Y | > t−M) ≥ P ({|X| > t} ∩ {|Y | ≤M}) = P (|X| > t)P (|Y | ≤M)

Using this,

E|X| =
∫ ∞
0

P (|X| > t) dt ≤
∫ ∞
0

P (|X + Y | > t−M)

P (|Y | ≤M)
dt

=
1

ε

(
M +

∫ ∞
0

P (|X + Y | > t) dt

)
=

1

ε
(M + E|X + Y |) <∞

Proof 2: Let µ be the measure on R induced by X, so µ(A) = P (X ∈ A), and ν for
Y similarly. Since E|X + Y | <∞, using Fubini’s theorem we have

E|X + Y | =
∫
|x+ y|dµ× ν =

∫ (∫
|x+ y|dµ

)
dν <∞

This implies
(∫
|x+ y|dµ

)
< ∞ for ν a.e. y, so there is some y0 for which it holds.

Then

E|X| =
∫
|x|dµ ≤

∫
|x+ y0|+ |y0| dµ =

∫
|x+ y0| dµ+ |y0| <∞
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2011 Spring

1. Impossible Problem! You need the additional assumption an ≥ 0 for this problem to
work; if infinitely many an are negative, then

∑
P (|Xn| > an) would be ∞!

Asssuming additionally each an ≥ 0, then

|Sn/an| = |Xn/an + an−1

an

Sn−1

an−1
| ≥ |Xn/an| − |an−1

an
| · |Sn−1

an−1
| ≥ |Xn/an| − C|Sn−1

n−1 |

so
lim sup

n
|Xn/an| ≤ lim sup

n
|Sn/an|+ C · |Sn−1/an−1| = 0 a.s.

In particular, this shows that P (|Xn/an| > 1 i.o.) = 0, because |Xn/an| i.o. would
imply lim supn |Xn/an| ≥ 1. By Borel-Cantelli, we must have

∑
P (|Xn| > an) <∞.

2. Typo! They meant to say P (Xn = 1) = p, P (Xn = −1) = 1− p.

(a) By SSLN, Sn/n → EX1 = 2p − 1 6= 0 a.s, so with probability 1, for some N ,
SN+k will be bounded away from 0 for all k ≥ 0.

(b) Note that, using
√
n(n/e)n < n! < e

√
n(n/e)n,

P (S2n = 0) =
1

22n

(
2n

n

)
>

1

4n

(
(2n/e)2n

√
n

((n/e)n
√
ne)2

)
=

1

e2
√
n

Thus,
∑

n≥1 P (S2n = 0) =∞, so P (S2n = 0 i.o.) = 1. This shows P (τ <∞) = 1,
since τ =∞ implies S2n = 0 not infinitely often. We now compute Eτ . In order
for τ to be 2k+ 2, the path has to start by moving to 1 (or −1), stay at or above
1 (below −1), then return to 0. The number of ways the middle step can happen
is counted by the Catalan numbers, 1

k+1

(
2k
k

)
. Thus,

Eτ =
∑
k≥0

(2k + 2)P (τ = 2k + 2) =
∑
k≥0

(2k + 2)
1

22k+2
· 2

k + 1

(
2k

k

)
Using the same approximation as before, this sum is infinite.

3. (a) Without loss of generality, we can assum EXn = 0 by replacing Xn with X ′n =
Xn − EXn.

Using Chebychev’s,

P (|Sn/n| > ε) <
E(S4

n)

n4ε4

When S4
n is expanded out, it contains summands like X4

i , X2
iX

2
j , X3

iXj, X
2
iXjXk,

and XiXjXkX`. Only the first two have nonzero expectation (since distinct Xi

are independent, and EXi = 0). Thus, letting supEX4
n = M ,

P (|Sn/n| > ε) <

∑
EX4

i +
∑

i 6=j EX
2
i EX

2
j

n4ε4
≤ n ·M + n(n− 1)M

n4ε4
∈ O(1/n2)

Using Borel Cantelli, we then have P (|Sn/n| > ε i.o.) = 0. This holds for all ε,
so intersecting these events for some sequence εk ↘ 0 gives Sn/n→ 0 a.s.

(b) If E|X1| <∞, then Sn/n→ EX1 a.s.
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2011 Fall

1. (a) Xn → X a.s. if P ({ω : Xn(ω)→ X(ω)}) = 1. Xn → X in L1 if E|Xn −X| → 0.

(b) i. Let X1, X2 . . . be independent, where P (Xn = n2) = 1
n2 = 1 − P (Xn = 0).

Then Xn → 0 a.s. (since P (Xn > 0 i.o.) = 0 by Borel-Cantelli) but EXn =
1 6→ 0.

ii. On the probability space [0, 1], with Lesbegue measure, let Xn,k = 1[ k−1
n
, k
n
],

for n ≥ 0, and 1 ≤ k ≤ n. Then let X ′m be the sequence

X1,1, X2,1, X2,2, X3,1, X3,2, X3,3, . . .

i.e. the result of ordeing Xn,k lexicographically by (n, k). Since E|Xn,k| =
1
n
→ 0 as n → ∞, it follows X ′m → 0 in L1. However, X ′m(ω) 6→ 0 for any

ω ∈ [0, 1], since any ω will be contained in at least one of the intervals [k−1
n
, k
n
]

for each each n.

(c) For any ε > 0, we have P (|Xn−X| > ε) ≤ E|Xn−X|
ε

. Thus,
∑
P (|Xn−X| > ε) ≤

1
ε

∑
E|Xn −X| <∞, so P (|Xn −X| > ε i.o.) = 0 by Borel Cantelli. This shows

that Xn → X a.s.

2. First, note that

P (− logXn/ log n ≥ 1) = P (Xn ≤ n−1) = 1/n

Thus,
∑
P (− logXn/ log n ≥ 1) =∞, so P (− logXn/ log n ≥ 1 i.o.) = 1, so

lim supn− logXn/ log n ≥ 1 a.s.

Now, for any ε > 0, we similarly have that∑
P (− logXn/ log n ≥ 1 + ε) =

∑ 1

n1+ε
<∞

So P (− logXn
logn≥1 + ε i.o.) = 0, so lim supn

− logXn
logn

≤ 1 + ε a.s. Intersecting the events

{lim supn
− logXn
logn

≤ 1 + 1
k
} for k ∈ N shows that lim supn

− logXn
logn

≤ 1 a.s.

3. (a) Note the constant that X+Y equals must be 1, since EX+Y = EX+EY = 1
2
+ 1

2
.

Thus, the ith bit of X is the opposite of that of Y .

(b) Suppose that, for each i, vector (Xi, Yi, Zi), where Xi is the ith trinary digit of
X, is uniformly distrubted over the 6 permutations of (0, 1, 2). Then X, Y, Z are
each uniformly distrubted over [0, 1] since each of their trinary digits are 0,1 or 2
with equal probability, and X + Y + Z is always equal to 1 + 1

3
+ 1

32
+ · · · = 3

2
.
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2012 Spring

1. (a) Let X =
∑
Xi. By MCT, EX =

∑
λi <∞, so we must have P (X =∞) = 0.

Alternatively, P (Xn > 0) = 1 − e−λn ≤ λn, so
∑
P (Xn > 0) < ∞, so P (Xn >

0 i.o.) = 0, implying only finitely many Xn are nonzero a.s.

(b) P (Xn > 0) = 1 − e−λn ≥ (λn/2) ∧ 1
2
, where a ∧ b = min(a, b). Therefore,∑

P (Xn > 0) ≥
∑

(λn/2) ∧ 1
2

=∞, so P (Xn ≥ 1 i.o.) = 1, so
∑
Xn =∞ a.s.

2. Note that Var X = EX2 = 1
3
. By CLT,∑n

1 Xi√
n

=⇒ N(0, 1/3) (2)

By SLLN, ∑n
1 X

2
i

n

a.s.→ EX2 = 1/3

so √
n√∑n
1 X

2
i

a.s.→
√

3 (3)

Using Slutsky’s theorem (Xn =⇒ X and Yn → c in probability implies XnYn → cX),
along with (2) and (3) gives ∑n

1 Xi√∑n
1 X

2
i

=⇒ N(0, 1)
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3. Remark: As far as I can tell, this problem is ridiculously hard, using tricks that aren’t
that common or intuitive. The =⇒ direction is reasonable, but I’m almost certain
no one got the ⇐= when this test was given.

(a) =⇒ (b) Letting Tn = n−1/p
∑n

1 ξn, we have

ξn
n1/p

= Tn − Tn−1 ·
(n− 1)1/p

n1/p

Letting n→∞ above, since Tn → T a.s, and (n−1)1/p
n1/p → 1, we get

ξn
n1/p

= Tn − Tn−1 ·
(n− 1)1/p

n1/p
→ T − T · 1 = 0

so that ξn/n
1/p → 0 a.s. This means P (|ξn|/n1/p > 1 i.o.) = P (|ξn|p > n i.o.) = 0, so

(using Borel Cantelli on the last inequality),

E|ξ|p =

∫ ∞
0

P (|ξ|p > t) dt ≤
∑
n≥0

P (|ξn|p > n) <∞

proving E|ξ|p < ∞. Now, suppose by way of contradiction that p > 1 and Eξ 6= 0.
Using Jensen’s, (E|ξ|)p ≤ E|ξ|p <∞, so E|ξ| <∞. By SLLN,∑n

k=1 ξn
n

→ Eξ 6= 0

almost surely as n→∞. We also have, since p > 1, that

1

n1/p−1 →∞

Multiplying the two above limits implies that∑n
k=1 ξn
n1/p

→∞ a.s.

contradicting that the limit was finite. Thus, we must have p ≤ 1 or Eξ = 0.
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(b) =⇒ (a) First, suppose that p ≤ 1. We can actually assume p < 1, since p = 1

follows from SLLN. We will show that
∑∞

1
|ξn|
n1/p converges a.s. This implies

∑∞
1

ξn
n1/p

converges a.s., which by Kronecker’s Lemma implies n−1/p
∑n

1 ξk → 0 a.s., the desired
result.

To show
∑∞

1
|ξn|
n1/p , we use the Kolmogorov 3-series test. Let Yn = ξn

n1/p1(|ξn|p ≤ n). We
must check that

(i)
∑∞

1 P (|ξn|p > n) <∞ (ii)
∑∞

1 EYn converges (iii)
∑∞

1 Var Yn <∞

(i) This is true since E|ξ|p1 <∞, which holds if and only if
∑∞

1 P (|ξ|p1 > k) <∞.

(ii) The below computations uses many clever tricks. For the first equality, we are
using |ξ1|1|ξ1|p≤n =

∑n
1 |ξ1|1{k−1<|ξ1|p≤k}. For the second, we use Fubini’s, being

careful with the indices. For the third, we bound
∑∞

n=k n
−1/p ≤

∫∞
k
x−1/p dx. For

the fourth, realize that when |xi|p ≤ k, then |ξ1|1−p = (|ξ1|p)(1/p)−1 ≤ k(1/p)−1.

∞∑
n=1

E( |ξn|
n1/p ; |ξ|p ≤ n) =

∞∑
n=1

n∑
k=1

1

n1/p
E(|ξ1|1{k−1<|ξ|p≤k})

=
∞∑
k=1

E(|ξ1|1{k−1<|ξ|p≤k})
∞∑
n=k

1

n1/p

≤
∞∑
k=1

E(|ξ1|p · |ξ1|1−p1{k−1<|ξ|p≤k})
k1−1/p

1/p− 1

≤ 1

1/p− 1

∞∑
k=1

E
(
|ξ|p

(
k1/p−1

)
1{k−1<|ξ|p≤k}

)
· k1−1/p

=
1

1/p− 1
E|ξ1|p <∞

(iii) To show
∑

Var Yn <∞, we show
∑
EY 2

n <∞, using the same tricks.

∞∑
n=1

E( |ξ1|
2

n2/p ; |ξ| ≤ n) =
∞∑
n=1

n∑
k=1

n−2/pE(|ξ|21{k−1<|ξ|p≤k})

=
∞∑
k=1

E(|ξ|21{k−1<|ξ|p≤k})
∞∑
n=k

n−2/p

≤
∞∑
k=1

E(|ξ|p · |ξ1|2−p1{k−1<|ξ|p≤k})
k1−2/p

2/p− 1

≤ 1

2/p− 1

∞∑
k=1

E(|ξ1|p1{k−1<|ξ|p≤k}) =
EX1

2/p− 1
<∞

This completes the proof in the case p ≤ 1.
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Now, suppose Eξi = 0 and p ∈ (1, 2). Let Yk = ξk1{|ξ|k≤k1/p}, and let Tn = Y1+ · · ·+Yn.
Since ∑

P (|ξk| > k1/p) ≤
∫ ∞
0

P (|ξ1|p > t) dt = E|ξ|p <∞,

it follows that P (ξk 6= Yk i.o.) = 0, so it suffices to prove Tn/n
1/p → 0. We compute

∞∑
k=1

Var (Yk/k
1/p) ≤

∞∑
k=1

E(Y 2
k )/k2/p

=
∞∑
k=1

∫ k1/p

0

2y

k2/p
P (Yk > y) dy

≤
∞∑
k=1

k∑
n=1

∫ n1/p

(n−1)1/p

2y

k2/p
P (|ξ| > y) dy

Fubini
=

∞∑
n=1

∫ n1/p

(n−1)1/p
2yP (|ξ| > y)

(
∞∑
k=n

1

k2/p

)
dy

We can bound
∑∞

m=n
1

k2/p
by an integral:

∞∑
k=n

1

k2/p
≤
∫ ∞
n−1

x−2/p dx =
(n− 1)(p−2)/p

(2− p)/p
≤ Cyp−2,

for any y ∈ [(n− 1)1/p, n1/p], and some constant C. Therefore,

∞∑
k=1

Var (Yk/k
1/p) ≤

∫ ∞
0

2Cyp−1P (|ξ| > y) dy <∞,

with the last inequality following since E|ξ|p =
∫∞
0
pyp−1P (|ξ| > y) dy < ∞. By

Kolmogorov’s theorem for the convergence of random series, letting µk = EYk, we
have

∑∞
1 (Yk − µk)/k1/p <∞ a.s, which by Kronecker’s Lemma implies

n−1/p
n∑
1

Yk − µk → 0 a.s.

To show that n−1/p
∑n

1 Yk → 0 a.s, completing the proof, we need only show n−1/p
∑n

1 µk →
0. Since µk + E(ξk; |ξ| > k1/p) = Eξk = 0, we have that

|µk| ≤ E(|ξ|; |ξ| > k1/p) = k1/pE(|ξ|/k1/p; |ξ| > k1/p)

≤ k1/pE(|ξ|p/k; |ξ| > k1/p)

= k−1+1/pE(|ξ|p; |ξ| > k1/p)

Since
∑n

1 k
−1+1/p ≤ Kn1/p and E(|ξ|p; |ξ| > k1/p)→ 0 as k →∞ (by DCT), it follows

that n1/p
∑
µk → 0, completing the proof.
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2012 Fall

1. (a) For any 0 < x < 1, we have

P (Xn ≤ x) =

∫ x

0

1 + sin 2πnt dt = x+ 1−cos 2πnx
2πn

→ x+ 0

as n→∞. Thus, Xn =⇒ X, where P (X ≤ x) = x, i.e, X is uniform on [0, 1].

(b) Let an = − log n. Then

P ( 1
an

logXn > 2) = P (Xn < n−2) = n−2 + 1−cos(2πn·n−2)
2πn

= n−2 +O(n−3)

Notice
∑
P ( 1

an
logXn > 2) < ∞. By Borel-Cantelli, P ( 1

an
logXn > 2 i.o.) = 0,

proving lim supn
1
an

logXn ≤ 2 a.s. Furthermore,

P ( 1
an

logXn > 1) = P (Xn < n−1) = n−2 + 1−cos(2π)
2πn

= n−1

So by Borel-Cantelli again, P ( 1
an

logXn > 1 i.o.) = 1, so the limsup will be at
least 1 almost surely.

2. (a) possibly wrong solution: The following proof did not at any point use sup Var Xn <
∞, so I suspect I made a mistake. Please check to make sure my logic is correct.

Given n, for each m we can variables i.i.d. X1
m, . . . , X

n
m so

X1
m + · · ·+Xn

m
d
= X1

m

We first show that the sequence X1
1 , X

1
2 , X

1
3 . . . is tight. Since X i

m > A for each i

implies that
∑

iX
i
m ≥ nA, and X1

m
d
=
∑

1X
i
m, we have

P (X1
m > A)n = P

(
n⋂
1

X i
m > A

)
≤ P (Xm > nA) ≤ P (|Xm| > nA).

Similarly, P (X1
m < −A)n ≤ P (|Xm| > nA), so

sup
m
P (|X1

m| > A) = sup
m
P (X1

m > A) + P (X1
m < −A) ≤ sup

m
2P (|Xm| > nA)1/n

By tightness of Xm, the right hand side of above approaches 0 as A→∞, proving
the left does as well, so the sequence {X1

m}m→∞ is tight.

By Helly’s selection theorem, there exists a subsequence X1
mk

and a random vari-

able X1 so that X1
mk

=⇒ X1. Since X i
m

d
= X1

m, this means X i
mk

=⇒ X i, where

X i d
= X1. Since Zn =⇒ Z, Yn =⇒ Y and Zn, Yn being independent implies

Zn + Yn =⇒ Z + Y (to prove this, look at characteristic functions), it follows
that

Xmk
d
=

n∑
1

X i
mk

=⇒
n∑
1

X i.

But we also have Xmk =⇒ X so we must have X
d
=
∑n

1 X
i. This shows X has

been written as a sum of n iid random variables, so X is infinitely divisible.
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(b) In general, if X is any varible where |X| ≤ 1 a.s, then X is not infintiely divisible.

If X1 + . . . Xn
d
= X, then it must mean that each Xi ≤ 1

n
a.s. If not, for some

ε > 0 then there would be a possibility that each Xi >
1
n

+ ε, implying
∑
Xi > 1,

which is a contradiction, since X has the same distribution as
∑
Xi, and X ≤ 1

always. Similarly, Xi ≥ − 1
n

a.s, so |Xi| ≤ 1
n

a.s, implying

Var Xi ≤ EX2
i ≤

1

n2
(1)

However, we also have

Var (X) =
∑

Var (Xi) = nVar (X1)

so that

Var (Xi) =
Var X

n
(2)

But (1) and (2) are in contradiction for large enough n, so X is not infinitely
divisible.

(c) We could just run through the same argument above to show that U is not
infinitely divisible.

I think they were going for this argument: if U ′ has the same distribution as U ,

and is independent of U , then U+U ′
d
= X (you can check this). Thus, if you could

divide U into any number of parts, n, then you could do the same for U ′, and

then use this to divide X
d
= U + U ′ into 2n parts. This, doesn’t quite contradict

the fact that X is non infinitely divisible, but it’s close.

3. /
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2013 Spring

1. (a) We have that

E(X2
i,n1(|Xi,n| > ε)) = E(( Xi√

n
)2;1(| Xi√

n
| > ε)) =

1

n
E(X2

11(|X1| > ε
√
n))

so

Ln,ε =
n∑
1

E(X2
i,n1(|Xi,n| > ε)) = E(X2

11(|X1| > ε
√
n))

Since X2
11(|X1| > ε

√
n) → 0 almost surely as n → ∞, and EX2

1 < ∞, by the
DCT, the last quantiy approaches 0 as n→∞.

(b) Using Jensen’s inequality, E|Xi,n|p = E((X2
i,n)p/2) ≥ (EX2

i,n)p/2 ≥ EX2
i,n, so

Ln,ε =
n∑
1

E(X2
i,n1(|Xi,n| > ε)) ≤

n∑
1

E|Xi,n|p → 0

(c) Let Xi,n have normal dsitribution N(0, 2
k−2

2n−1 ) when i ≥ 2, and X1,n have dis-
tribution N(0, 1

2n−1 ). Then because Z1 ∼ N(0, σ2
1) and Z2 ∼ N(0, σ2

2) implies
Z1 + Z2 ∼ N(0, σ2

1 + σ2
2), we have that

Wn ∼ N

(
0,

1 + 1 + 2 + · · ·+ 2n−2

2n−1

)
= N(0, 1)

so that not only does Wn → N(0, 1) in distribution, but each Wn is equal to
N(0, 1) in distibution.

However, the Lindeberg condition does not hold, since Xn,n ∼ N(0, 2
n−2

2n−1 ) =
N(0, 1

2
), so

n∑
1

E(X2
i,n;1(|Xi,n| > ε)) ≥ E(X2

n,n;1(|Xn,n| > ε)) ≥ εP (Xn,n > ε) 6→ 0

where the last quantity does not approach zero since each Xn,n have the same
N(0, 1

2
) distribution, so P (Xn,n > ε) is constant in n.
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2. (a) By definition, a matrix M is nonneggative semidefinite if xTMx ≥ 0 when x is
any column vector. Given a column vector x = [a0 a1 . . . an−1], expand out the
right side of the inequality

0 ≤ E
(

(a0 + a1X + a2X
2 + . . . an−1X

n−1)2
)

then distribute the E over all of the terms, so each Xk becomes mk. You will
see that the result is exactly xTHnx, proving xTHnx ≥ 0, so Hn is nonnegative
semidefinite.

(b) First of all, what does ∆kmn mean? First of all, they don’t just mean ∆mn =
mn+1 −mn, they mean that for any sequence an, ∆an = an+1 − an. So, ∆an is
itselt a sequence, and you can apply ∆ to that, getting ∆2an. For example,

∆2mn = ∆(mn+1 −mn) = (mn+2 −mn+1)− (mn+1 −mn) = mn+2 − 2mn+1 +mn

∆3mn = mn+3−2mn+2+mn+1−(mn+2−2mn+1+mn) = mn+3−3mn+2+3mn+1−mn

∆4mn = mn+4 − 4mn+3 + 6mn+2 − 4mn+1 +mn

Fans of combinatorics will notice Pascal’s triangle appearing on the RHS of each
equation. In fact, you can prove by induction that

∆kmn =
k∑
j=0

(
k

j

)
(−1)j+kmn+k

Using this, and the binomial theorem, we have that

0 ≤ EXn(1−X)k = E
k∑
j=0

(
k

j

)
(−1)jXn+j = (−1)k

k∑
j=0

(
k

j

)
(−1)j+kmn+k = (−1)k∆kmn

3. (a) First, we find the c.f. for Yk, which has pdf e−x:

φ(t) = EeitYk =

∫ ∞
0

eitye−y dy =
1

it− 1
ey(it−1)

∣∣∣∣∞
0

=
1

1− it

This means that the c.f. for Yk−1
k

= 1
1−it/ke

−it/k.

Let Wn = γ +
∑n

k=1
Yk−1
k

. Since Wn → W a.s, so that eitWn → eitW , and each
|eitWn| ≤ 1, it follows by DCT that

ϕ(t) = EeitW = lim
n
EeitWn = lim

n
eiγt

n∏
1

e−it/k

1− it/k
= eiγt

∞∏
1

e−it/k

1− it/k

As far as I can tell, this is the only way to express the characteristic function.
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(b)

|ϕ(t)| =

∣∣∣∣∣eiγt
∞∏
1

e−it/k

1− it/k

∣∣∣∣∣ =
∣∣eiγt∣∣ ∞∏

1

∣∣e−it/k∣∣
|1− it/k|

=
∞∏
1

1√
12 + t2/k2

= exp

(
∞∑
k=1

−1

2
log(1 + t2/k2)

)
≤ exp

(
−1

2
log(1 + t2)− 1

2
log(1 + t2/4)

)
Using the concavity of log, so that log x lies above the secant line joining (1, 0)
and (1 + t2, log(1 + t2)), for any 1 ≤ x ≤ t2 is true that

log x ≥ log(1 + t2)− log(1)

1 + t2 − 1
· (x− 1) =

log(1 + t2)

t2
(x− 1),

and setting x = 1 + t2/4 implies log(1 + t2/4) ≥ log t2

4
,so

|ϕ(t)| ≤ exp

(
−1

2

(
log(1 + t2) +

log(1 + t2)

4

))
= exp(log(1+t2)−5/8) = (

√
1 + t2)−5/4

Since
√

1 + t2 ≥ max(1, t) it follows that∫
|ϕ(t)|], dt <

∫ ∞
−∞

(
√

1 + t2)−5/4 ≤
∫ ∞
−∞

min

(
1,

1

|t|5/4

)
<∞.

(c) It does follow that W has an absolutely continuous distribution.

(d) / The inversion formula gives

fW (w) =

∫ ∞
−∞

e−itwϕ(t) dt =

∫ ∞
−∞

e−itwϕ(t) dt
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1. (a) It does follow that Sn/n → X. We first show that Xn → X in L1. Note that
|X| ≤ 1 a.s, because if P (|X| > 1 + δ) = ε > 0, then P (|Xn −X| > δ) ≥ ε 6→ 0.
In particular, |Xn −X| ≤ 2. Thus, given any ε ≥ 0,

lim sup
n

E|Xn −X| = lim sup
n

E(|Xn −X|1|Xn−X|<ε) + E(|Xn −X|1|Xn−X|>ε)

≤ lim sup
n

ε+ 2P (|Xn −X| > ε) = ε

This holds for all ε, proving E|Xn −X| → 0. Let |Xn −X|1 = E|Xn −X|, and
given ε, choose N so that n > N implies |Xn −X|1 < ε. Then, for n > N ,

|Sn/n−X|1 ≤
∞∑
1

1
n
|Xi −X|1

=
1

n

N∑
1

|Xi −X|1 +
n∑

N+1

1
n
|Xi −X|1

≤ 1

n

N∑
1

|Xi −X|1 +
n∑

N+1

1
n
· ε

≤ 1

n

N∑
1

|Xi −X|1 + ε→ ε as n→∞

Taking the lim sup of the above inequality, the last sum converges to 0, proving
Sn/n→ X in L1, and therefore in probability.

(b) Now the claim does not follow. Let

Xn =

{
0 with probability 1− 1

n

n with probability 1
n

so that Xn → 0 in probability. However, we can show that P (Sn/n ≥ 1
2
) ≥ 1

2
for

all n. In order for Sn/n to be bigger than 1
2
, it suffices for some Xk to equal k,

for k ≥ n
2
. Thus, noting that the below product is telescoping, we get

P (Sn/n ≥ 1
2
) ≥ P

 n⋃
k=n/2

Xk = k

 = 1−
n∏

k=n/2

k − 1

k
= 1− n/2− 1

n
≥ 1

2

This shows Sn/n 6→ 0 in probability.
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2. (a) This follows from E(X) =
∫∞
0
P (X > x) dx, and applying

∫∞
0

to below:

P (X > dxe) ≤ P (X > x) ≤ P (X > bxc)

(b) Applying part (i) to |Xn|/k,∑
P (|Xn| > kn) =

∑
P (|Xn|/k > n) ≥ E|Xn/k| =∞

Using Borel-Cantelli, this says that for all k, P (|Xn|/n > k i.o.) = 1. Thus,
P
(⋂

k≥1{|Xn|/n > k i.o.}
)

= 1, proving that lim supn |Xn|/n =∞ a.s.

Note that

|Sn/n| = |Xn/n+ n−1
n

Sn−1

n−1 | ≥ |Xn/n| − |n−1n | · |
Sn−1

n−1 | ≥ |Xn/n| − |Sn−1

n−1 |

so
lim sup

n
|Sn
n
|+ |Sn−1

n−1 | ≥ lim sup |Xn/n| =∞ a.s.

Thus, almost surely the sequence |Sn
n
|+ |Sn−1

n−1 | is unbounded, proving that |Sn/n|
is unbounded almost surely as well.

3. Note that E(XiYi) = 0, and Var (XiYi) = E(X2
i Y

2
i ) = EX2

i = Var X2
i + (EXi)

2 =
σ2 + µ2. Thus, by CLT, ∑

XkYk√
n

=⇒ N(0, σ2 + µ2)

Furthermore, we have 1
n

∑
Xk → µ a.s. by SLLN, so that

n∑
Xk

→ 1

µ
a.s.

Using Slutsky’s to multiply these two gives us

√
n
∑
XkYk∑
Xk

→ N(0, 1 + σ2

µ2
)
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2014 Spring

1. (a) We have Var (Sn) =
∑

Var Xi ≤ nC, so

E(Sn/n− µ)2 ≤ Var (Sn/n) ≤ Cn

n2
→ 0

proving convergence in L2.

(b) For all ε > 0,

P (Sn/µ− µ > ε) = P ((Sn/n− µ)2 > ε2) ≤ Var (Sn/n)

ε2
→ 0.

(c) There will be a subsequence Sn(k)/n(k)→ µ a.s. You won’t have a.s. convergence
in general, since you need independence, not just uncorrelation (I can’t think of
a specific counterexample though).

2. (a) Let En be the event that he wins games 2n and 2n+ 1. The En are indpendent,
and

∑
P (En) =

∑
1√

2n(2n+1)
=∞, so by second Borel Cantelli, P (En i.o.). Since

he gets a dollar each time En occurs, his winnings will be infinite a.s.

(b) Let Fn be the event he wins games n, n+ 1 and n+ 2. Then P (Fn i.o.) = 0, since∑
P (Fn) =

∑
1√

n(n+1)(n+2)
<∞. So, almost surely, he only gets finite monies.

3. Let

an =
1

2

n∑
1

k2 bn =

√√√√ n∑
1

k4

12

We’ll use the Lindeberg-Feller CLT to show that
∑
Xk−an
bn

→ N(0, 1).

Let Yn,k = (Xk − k2

2
)/bn, so EYn,k = 0. We have

n∑
1

EY 2
n,k =

n∑
1

Var (Yn,k) =

∑n
1 Var Xk

b2n
=

∑n
1 k

4/12

b2n
= 1

Furthermore, for any ε > 0, consider

n∑
1

EY 2
n,k1{|Yn,k|>ε}

Note that |Yn,k| < n2/2
bn
→ 0 as n → ∞. Thus, for large n, Y 2

n,k1|Yn,k|>ε = 0 always, so
limn→∞ of the above sum is zero.

Thus, by the Lindberg Feller CLT, we have

n∑
1

Yn,k =

∑n
1 Xk − an
bn

=⇒ N(0, 1)
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1. (a) ( =⇒ ) Assume that P (En i.o.) = 1. Let A be an event where P (A) > 0. Then

1 = P (En i.o.)

= P ({En i.o.} ∩ A) + P ({En i.o.} ∩ Ac)
≤ P ({En i.o.} ∩B) + P (Ac)

so
P ({En i.o.} ∩ A) ≥ 1− P (Ac) = P (A) > 0.

Since the event {En i.o.} ∩ A is the same as the event {En ∩ A i.o.}, the above
shows that P (En ∩ A i.o.) > 0. By the (contrapositive of the) Borel-Cantelli
lemma, this means that

∑
P (En ∩ A) =∞.

(⇐=) Assume that, whenever P (A) > 0, we have
∑
P (En ∩ A) = ∞. Let

A = {En i.o.}c, and consider ∑
n≥1

P (En ∩ A)

Notice that only finitely many of the above terms can be nonzero: if ω ∈ A, then
ω is in only finitely many En, so only finitely many En ∩A are nonempty. Thus,
the above sum is finite. Since such sums are always infintie when P (A) > 0, this
means P (A) = 0, so that P (Ac) = P (En i.o.) = 1.

(b) This is false. For the prabability space (0, 1) with Lesbegue measure, let En =
(0, 1/n). Then P (En i.o.) = 0, but

∑
P (En ∩ (0, 1)) =

∑
1/n =∞.

2. Given ε > 0, choose x so the distribution function of X is continuous at x and P (X ≤
x) < ε. Then

P (Xn + Yn ≤ c) ≤ P ({Xn ≤ x} ∪ {Yn ≤ c− x}) ≤ P (Xn ≤ x) + P (Yn ≤ c− x)

so
lim sup

n
P (Xn + Yn ≤ c) ≤ lim sup

n
P (Xn ≤ x) + P (Yn ≤ c− x) = ε+ 0

Thus, for all ε > 0, lim supn P (Xn + Yn ≤ c) ≤ ε, so P (Xn + Yn ≤ c)→ 0.

73



3. The answer is that Yn → 0 a.s. iff a < e.

Note Yn → 0 a.s. ⇐⇒ log Yn → −∞ a.s. We have

E logX1 =

∫ a

0

log x · 1

a
dx = log(a)− 1

By SLLN,
log Yn
n

=
1

n

n∑
1

logXi → log(a)− 1 a.s.

Thus, when a < e, we have 1
n

log Yn a.s. converges to a negative constant, so log Yn →
−∞ a.s. When a > e, the same reasoning shows log Yn 6→ −∞. When a = e, CLT
tells us that

log Yn
σ
√
n

=⇒ N(0, 1)

where σ2 = Var logX1. In particular, P (log Yn > 0) = P (Yn > 1)→ 1
2
. Since Yn → 0

a.s. would imply P (Yn > 1)→ 0, this means that Yn 6→ 0 a.s.
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