Notation

When I say S, I always mean Y . | X,,.

If E, are events (or sets), I write F,, /' E to mean E,, C E,,; and |JE, = E.

The notation a A b means min(a,b), while a V b means max(a, b).

Xt =max(X,0) and X~ = —min(—X,0). Thus, X = X" - X, |[X|=XT+ X".

Both 14 and 1(A) refer to the indicator function for the set A. Furthermore, E(X; A)
means F(X1,4). I will often omit set braces, so for example, all of the below mean the
same:

E(X1yxi<ay) = E(X1ixjcm) = E(X1(|X] < M)) = E(X;[X] < M)

[use X, = X to mean X,, convreges to X in distribution.

o(f(t)) refers to some function g(¢) for which lim;_,, (—)) — 0. The number a depends

g(t
f
on context, but is usually either 0 or oc.
Everyone, including qual writers, makes mistakes. These will be marked in red.

Problems that I couldn’t do will be marked with a ®, possibly with a partial solution.



Theorems to Know

In addition to all of the usual theorems (Monotone Convergence Thoerem, Fatou’s Lemma,
Dominated Convergence Theorem, Fubini’s Theorem, Chebyshev’s Inequality, Jensen’s In-
equality, Cauchy-Schwarz Inequality, Borel-Cantelli, Weak Law of Large Numbers, Strong
Law of Large Numbers, Kolmogorv’s Maximal Inequality, Kolmogorov Three-Series Test, In-
version Formula, Continuity Theorem, Central-Limit Theorem, Linberg Feller Central Limit
Theorem), these solutions will assume you know the following theorems:

Theorem 1 (Relations Between Convergence Concepts). If p > q, then
LP Lq
= = L
4
a.s. P D

Any implication not pictured does not hold in general.
Theorem 2. If X,, — X in probability, then there is a subsequence X,, — X a.s.
Theorem 3. X,, — X a.s. if and only if for alle >0, > 7" P(| X, — X| > ¢) < 00.

Theorem 4 (“Layer-Cake” Formula).
BIX| :/ P(X| > ) dt
0

and more generally,

E|X|P :/ pt! I P(|X| > t)dt
0

When p = 1, the above is used to prove the following very useful fact:

Theorem 5. If Xy, Xy, ... i.i.d, then E|X;| < oo if and only if X,,/n — 0 a.s.

The next result is very useful for problems that involve max;<g<, X,:

Lemma 1. Let a,,b, be sequences of numbers where b, — oo, and m, = maxij<k<p . If
7 — 0, then 7= — 0.
You may not know the next theorem by this name, but it is taught in 507a:

Theorem 6 (Skorohod’s Reprentation Theorem). If X,, — X in distribution, then there
exists random variables X, , X' with the same distributions as X,,, X such that X — X' a.s.
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Theorem 7 (Slutsky’s Theorem). If X,, — X and Y, = ¢, a constant, then X, +
Y, = X +cand X,Y, — Xc.

For a proof of X,, +Y,, = X + ¢ when ¢ = 0, see Spring 2008 Problem 2.
For X,)Y,, = Xc when ¢ = 1, see Spring 1997 problem 2.
21 Xk

The next theorem is useful when you what to prove, for example, <= — 0.

Lemma 2 (Kronecker’s Lemma). If a, — oo and » 1° &=, then

n

"o
Theorem 8. If EX? < oo, and o(t) = EX | then
ot) =1+ i(EX)t — (EXHt?/2+0(t*)  ast—0
To make this look cleaner, let p = EX, 02 = Var X = EX? — u%. Then

o(t) =1+ iut — (0> + p*)t?/2 + o(t?) ast— 0



1994 Fall

1. (a) Given € > 0, there exists an M so that E[|X,|1x,>um] < € for all n.

2.

(b)
()

(a)

Let X,, = n with probability %, X, = 0 with probability 1 — %

First, realize that uniform integrability implies that FX,, is bounded as n — oo,
so by Fatou’s lemma, FX <liminf FX, < co. In particular, E[X1x|sn] — 0 as
M — oo (by DCT).

Thus, given € > 0, we can choose M so both E[X,1x,-u]| < €/2 for all n and
E[X1x-pm] < €/2. Let

Yn == anXngM Zn = anXn>M7

so that X,, =Y, + Z,, and similarly write X =Y + Z.

Then |Y,| < M, and Y,, —» Y a.s, so by DCT, EY,, — EY. Thus, as n — oo,
|EX, — EX| < |EY, —EY |+ E|Z,|+ E|Z| < |EY,, —EY|+¢/2+¢/2 = ¢

proving limsup |[EX,, — EX| <e foralle >0, s0o EX,, —» EX.

Impossible Problem! What they are asking you to prove is just plain wrong. Let

X7 be any variable with FX; = oo, and let X,, = X = 0, for n > 2. Then

X, = X as, and FX,, » EX, but {X;, X5...} is not uniformly integrable since

E[Xllxle] = oo for all M.

However, this problem does work with the additional assumptions that E'X,, < oo,

EX < o0, and E|X,, — X| — 0.

Typo! They meant to say Ef(X,) < ¢ < 0.

Given € > 0, choose M so x > M implies % < g/c. Then

E(Xolx,on) = E (f(Xn) : %1&1%) < Ef(X,)-efc<coele=¢

proving uniform integrability.

Typo! The phrase “show that Y,, — Y, converges in distribution” is nonsesnse.
They probably meant “show that Y,, — Y,/ converges in distribution.”

To see this, let ¢,(t) be the c.f. for Y,,. Since Y, — Y in distribution, for some
Y, we have p,(t) — ¢(t), where ¢(t) = E®. This implies ¢, (t)p,(—t) —
©(t)p(—t). Since @, (t)pn(—t) is the c.f. for Y,, — Y and ¢(t)¢(—t) is continuous
at zero, by the continuity theorem, we have that Y,, — Y — Z, where Z has c.f.
p(t)o(—t).

The c.f. for a,S, is exp(—c|a,t|*)" = exp(—cnla,|*[t|*). If welet a,, = n~'/, then
the c.f. for S, /n'/® becomes exp(—c|t|*). Thus, not only will S, /n'/® converge
in distribution, but it will be equal in distribution to X; for each n. So, Z and
X1 have the same distribution.



1995 Spring

1. Suppose F,, = F'. Then there are r.v.’s X,,, X where X,, (resp. X) has distribution
F, (resp. F), and that X,, — X a.s. (Sorokhod’s representation theorem). Since h
is continuous, this means h(X,) — h(X) a.s, and by bounded convergence theorem,
Eh(X,) = Eh(X), so that [ hdF, — [hdF.

Suppose [ hdF, — [ hdF for all bounded, continuous h. Let z¢ be a continuity point
of F'. Given € > 0, let

1 z < 29
h(z) = < linear xp <z <zo+e€
0 To+e<zx

Then 1<z, < h(x) < li<zgte, SO

lim sup F,(z) = lim sup/lmgm0 dF, <lim sup/han = /hdF < /1{J;Sm0+€}dF = F(zo+€)

n—o0 n—oo n—oo

As € — 0, this shows limsup,, . Fy,(z¢) < F(xp). Doing a very similar argument using

1 r<xT9—E€
h(z) = < linear o <z —¢e <
0 To < T

shows liminf, . F},(x¢) > F(x¢). Thus, F,(z¢) — F(xo), so F,, = F.

2. The condition Flog X < oo is sufficient and necessary. Suppose Elog X = oco. First,
note that (X - - X,)'/" converging a.s. is the same as S, /n = L(log X; +- - - +1og X,,)
converging a.s, since the latter is the log of the former. Now, for M > 0, let Y'Y =
(log X,) AM, and S =YM + .-+ VM. Then S, > SM so

liminf S, /n > liminf S¥ /n = EYM (a.s.)

by SLLN. But as M — oo, EY® — Elog X = oo by MCT, so for all k, P(liminf S,, /n >
k) = 1. Thus, P(liminf S, /n = 00) = P([\;5, {liminf S, /n > k}) =1, so S, /n cannot
converge to a finite limit a.s.



1997 Spring

1. (a) First, we show |X,,|/n'/® — 0 a.s. We have
S PIXlfte > €)= S PESE s ) < [T PN e > 1) = B[ < o
1 1 0

Thus, by Borel Cantelli, P(|X,|/n'/® > ¢ i.0.) = 0, and intersecting these events
for e \, 0 proves | X,,|/n'/* — 0 a.s.

This means that | X, |*/n — 0 a.s. as well. Applying the below Lemma, we see
that this implies max;<g<p | X,|%/n — 0 a.s, so that max;<x<, | X, | /0> =0

(b) Note that FX; is finite implies E|X;| < oo, since E|X| = EX*T + EX ™.
Since F|X;| < oo, we have that X,,/n — 0 a.s.

Next, we prove that max;<;<, | X,|/n — 0 a.s. This follows from | X,|/n — 0 a.s,
and the following lemma:

Lemma: If a sequence a,, > 0, and a,,/n — 0, then %maxlggn a, — 0.

Proof. Given € > 0, choose k so n > k implies a,,/n < . Then

_ mMax; <<y @ . max(xy,...,x a;
lim sup ——="" < lim sup (21, k)+max—,1§0—i—€
n n n n k<i<n 1
This holds for all & > 0, so === — (), O

Finally, let M,, = max;<;<, |X,|. The previous lemma shows that

50 a.s.
n

The SLLN implies S,,/n — EX; # 0, so

n R 1
— r—— a.s.

Thus, the product of these sequences converges to the product of the limits a.s,
proving that M, /|S,| — 0 a.s.



2. Lemma 1: X,, =— X and Y,, = 0 implies X,, +Y,, — X.

Proof. Let x be a continuity point of Fx, and € > 0. Since {X,, +VY, <z} C {X, <
r+etU{Y,] >c} and {X, <z —¢c} C{X,+Y, <z} U{|Y,| > ¢c}, we have

PX,<z—¢)=P(|Yo| >¢) < PX,,+Y, <)< P(X,<x+e)+ P(|Ya] >¢)
Assuming x + ¢ is also a contiuity point of Fly, letting n — oo above shows
Flx—e) < P(X,+Y,<z)<F(x+e¢)
and letting € — 0 completes the proof. O
Lemma 2: X,, =— X and Y,, = 0 implies X,,Y,, = 0.
Proof. Let € > 0, M € N. Then {|X,,Y,| > e} C {|X,| > eM} U{|Y,| > 1;}, so
P(|X,Y,| > ¢) < P(|X,| > eM) + P(|Y,| > +)
Letting n — oo, and assuming +ecM is a continuity point of Flx, gives

limsup P(|X,Y,| >¢) < P(|X| > eM)

and letting M — oo gives limsup,, P(|X,,Y,| > ¢) = 0, so X,,Y,, — 0 in probability,
and therefore in distribution. O

Finally, assume X,, = X and Y,, = 1, so that ¥, —1 == 0. Lemma 2 implies
that
X,(Y,—1) = 0.

This, combined with
X, = X

and Lemma 1, gives that
X, (Y, -1)+X, = X



3.

(a) The general inversion formula gives, for any a < b (and using the fact that F), is
continuous, so P(X,, = a) =0),

P(X, € (a,b)) = P(X,, € (a,b)) + %P(Xn € {a,b})

1 T _—ita _ _—itdh
— lim —/ S O

T—o0 2T | _p it
1 e—ita o e—itb
= lim — [ 1 —,(t) dt *
Tl—rgo 27r/ |t|<T i en(t) (%)
Since
e—ita o e—itb

b
- / e_itydy‘ <b-a
it o

It follows that the integrand in () is dominated by (b — a)p,(t) € L1, so by the
DCT,

efzta o efztb

1 .
P(X € (a,b)) = %/Tlggolﬂa —n(t) dt
1 6—ita _ e—itb
= % Z—tspn(t) dt

_ 1 ( / ’ e dy) on(t) dt

2m a

b]_ y
— [ = [ ety (t)dtd
/a%/e on(t) dt dy

The last formula implies by definition that 5= [ e~"¢, (¢) dt is the density of X,,.
(b) We have that
[onlt + h) = (D) = [B(He _ ()| < EJeltXe _ (o) _ Eleihe _

since |eXn| = 1. As h — 0, ¢» — 1 — 0, and is dominated by |e!X» — 1] < 2,
so by the Dominated Convergence Theorem, E|e"X» — 1| — 0. Thus, for small
h, and all ¢, |@n(t + h) — @n(t)] <&, so sup, [pn(t + h) — n(t)] <e.



(¢) Typo They meant to say |¢,(t)] < g(t) for all n and t.

We have that
/e‘“"”gpn(t) dt — /e‘“"”gp(t) dt‘

<sup [ |e"(pn(t) — (1)) dt

T

sup [ fn(x) — f(x)| = sup
zeR z€eR

Noting that ¢, (t) — ¢(t) and |p,(t)| < g(t) implies |¢(t)| < g(t), we get that
lon — @ < |enl + || < 2g € Li. Since |p,(t) — o(t)] — 0, by the dominated
convergence theorem,

lim sup (sup | frl(z) — ) < hm /](pn (t)]dt =0

n—oo xT

proving sup,, | fn(z) — f(x)| — 0, so f, — f uniformly. No need for Arzela-Ascoli.



1997 Fall

1. (a) The first is Fatou’s Lemma applied to the sequence 14,. The middle is obvious,
and the last is Fatou’s applied to 1 — 14,_: by Fatou’s

E(liminf1 —14,) < liminf E(1 — 14,) = liminf 1 — P(A,) =1 — limsup P(A,)

Then, notice that F(liminf1 —1,4,) = P((limsup1ly4,)¢) =1 — P(limsup 14,).

(b) Let (©2,F,P) be (0,1) with Lebesgue measure, Ay, = (0,1/3), and Agpi1 =
(1/3,1), for all k € N. Then 0 < 1/3 <2/3 < 1.

(¢) (=) Assume that P(A, i.0.) = 1. Let B be an event where P(B) > 0. Then

1

P(A, i.0.)
P({A, i.0.}NB)+ P({A, i.0.} N B°)
P({A, i.0.} N B) + P(B°)

IN

SO

P({A, i0.}NB)>1- P(B°) = P(B) > 0.

Since the event {A,, i.0.} N B is the same as the event {A, N B i.0.}, the above
shows that P(A, N Bio.) > 0. By the (contrapositive of the) Borel-Cantelli
lemma, this means that > P(A,, N B) = co.

(<=) Assume that, whenever P(B) > 0, we have > P(A, N B) = oco. Let
B = {A, i.0.}° and consider

> P(4,NB)

n>1

Notice that only finitely many of the above terms can be nonzero: if w € B,
then w is in only finitely many A,,, so only finitely many A, N B are nonempty.
Thus, the above sum is finite. Since we assumed the sum would be infinite when
P(B) > 0, this means P(B) = 0, so that P(B¢) = P(4, i.0.) = 1.

10



(a) Var S, = ES? = X:AEX-2 + i EXiX; < Kn+0=0(n).
(b) By Chebychev’s, 52, P(|S,| > ne) = P(S2 > n2?) < £% — 9ln) _ o<%)
(c) Since > P(B,) = ZO( 5) < 00, by Borel Cantelli, (B io.) =
(d) We will show that, for all ¢ > 0, P(D,,/n?® > ¢ i.0.) = 0, which proves D,,/n? — 0
a.s. since {D,,/n* = 0} = My>1{D/n? >  i.0.}°
Note that {D, > n2} = JI""} > ISk — S2| > n%e}, so

k=n2+1
(n+1)2-1 m
P(D,>n’) < Y P(IS— S| >n’) <Y P(|Suse — Su2| > %)
k=n2+1 =1

By the same reasoning as in part (a), we have that Var (S,2,,—S5,2) = Var (X2 1+
-+ Xp240) = O(0), so using Chebychev’s,

2 — 2 1
P(S,0g — Sy > 2) < YA e = Sw2) _ (-)

lie? 03

Thus,
2n 1 1
(=1

so by Borel-Cantelli, P(D,, > n’¢ i.0.) = 0.

(a) Since ¢'(0) = ia, we have that

t -1
lim M = ia
Furthermore, from calculus it is true that M

10577(115)/ ") 51 as n — oo. Multiplying these two hmlts we get

1 t

i 089(t/n) _
Taking exp of both sides, we get ¢(t/n)" — €. But ¢(t/n)" is the c.f. for S,/n,
and €' is the c.f. for a, so the continutity theorem implies S, /n — a weakly.

Finally, one can prove that converging weakly to a constant implies convergence
in probability as well, so that S,,/n — a in probability.

(b) Since S,,/n — a in probability, and therefore in distribution, it follows that the
c.f.’s also converge, so ¢(t/n)" — ¢ (uniformly on compact sets). Taking log’s,

lim 108 OU/R) _ ppy 9E/m) 1
" t/n n t/n

— 1 as ¢ — 0, implying

=1a

also uniformly on compact sets. So, given € > 0, we can choose n 50 | ¢(tt T z'a| <

e for |t] < 1, implying |¢ ML _a| < e for |h| < L so0 that ¢/(0) = ia.

11



4.

(a) For any € > 0,

ZP(]Xn/n] >¢) = ZP(\X/&] >n) < /000 P(|X/e| > x)de = E|X/e| < o0,

so by Borel Cantelli, P(|X,,/n| > ¢ i.0.) = 0. Thus,
P(|Xu/n| = 0)=P (ﬂ{\Xn/n] > 1 i.o.}c> =1,
k>1

so X,,/n — 0 a.s.

Y P(X,/n>A)=> P(X/A>n)> /OO P(X/A > z)dr = B(X/A-1x/451) = 00.

Thus, by the second Borel-Cantelli lemma, P(X,,/n > A i.0.) = 1,s0 P(limsup X,,/n =
00) = P(( s {limsup X,,/n > k}) = 1.

I'm not sure why what we just proved implies S,,/n — 0o a.s, but you can prove

this as follows. Let Y = X, AM, and S¥ =Y VM +---+ Y M. Then

liminf S, /n > liminf S /n = BYM a.s.

As M — oo, by MCT, EYM — EX = oo, so for all k, P(liminf S, /n > k) = 1.
Thus, P(liminf S, /n = 00) = P((;5, {liminf S, /n > k}) =1, 50 S, /n — oo as.

12



1998 Fall

1. See 1997 Fall 1(c)

2. First note that
E(S, —nf(n))* = Var S, = Z\/ar X; <n,

since |X;| < 1. Thus,

Var (S,) <N

n2e2 T g2p?

P(|S, —nf(n)] > ne) < —0

proving S,,/n — f(n) — 0 in probability.

13



1999 Spring

1. By Borel-Cantelli, P(X,, # ¢, i.0.) = 0. With probability 1, only finitely many X,, will
not be ¢,, so the set of values that S,, can take is

Ui+ 4+ > a:bjeB)

n>0 k>n+1
This is a countable union of countable sets, so is countable.
2. (a) This is \/%ffo e~ 2¢iwt dp = e_t2/2f (@=it)*/2 g = =1°/2,
(b) We have

- 1 ) 1
Qbk(U) _ E(e’bu(Xk k)) ezu(l—%) . E + oiu/k (1 . E)

1 kE—1 ) (k—1
:ECOS@—FTCOS%—F%&H“(TU —Z< ’ )sin%

(c) Since sint =t — o(t?) and cost = 1 — t?/2 + o(t?), we have

e (- CI B CL== e N

k 2k2 k 2k2
(k—1)2+(k—1) ¢ )
:1— ]{J3 §+O(t)
k—1 ¢ 5
*1— k}2 §+O<t)

Thus, adding the above two together, we get

E—1 ¢
k2 2

k—1 ¢
c—to(t) =1~

2
12 5 + o(t*)

or(t) = o(t*) +1 —

(d) Since S, —h(n) =Y X, — 1, and characteristic functions multiply when Variables
add, the c.f. for S, — h(n) is [[] ¢x(u), implying the c.f. for (S, — h(n))/1/h(

o (u) fH (u/\/h(

14



(e) Writing the previous formula for ¢} in little oh notation, and using in the third
equality that log(1 + z) = z + o(z),

e =TT (1- 55 5 + outy/nm)

= exp Zlog (1 — k}; 1 . u2/121(n) + O(Uz)/h(n)>)

=0 (2 Smbia Ll +o(u2)/h(n))

= exp _%. <h<1n) Z kk_Z 1) _|_n0(u2)/h(n))

1

Since 37 55t = h(n) — O(1), and n/h(n) — 0, it follows that the above ap-
proaches exp(—u?/2) as n — oo, as desired.

15



1999 Fall

1. Since X,, — X a.s, it must be true that X,, is Cauchy almost surely. Since X has the
same distrubtion, this means X/ is Cauchy almost surely, and since Cauchy sequences
converege, X/ converges a.s.

To elaborate: (Xi, Xs,...) and (X7, X}, ...) having the same distribution on R*
means, for any event E in the product sigma algebra on R*, then P((X;, Xs,...) €
A)=P((X], X}, ...) € A). Thus,

1 = P(X, is Cauchy) = P (ﬁ U ﬂ {|Xn — Xin| < %}>

k>0 M >0 m,n>M

:P(mu N {\x;—ms%})

k>0 M >0 m,n>M
= P(X,, is Cauchy)

where the third equality follows since the enclosed event is in the product sigma algebra
on R*°.

2. Let f(x) be the pdf of X, let ux = f(x)dx (so ux(A) = P(X € A), and py be the
measure that Y induces on R (namely, u(A) = P(X € A)). Then, using Fubini’s
(allowed since everything is nonnegative):

z—y
P<X +Y < Z) = /1x+y<zdﬂX X py = //1x<zyd,uXd,UY = // f(x) dx d,uY

Z//_;f(w—y)dwduy
:/_;/f(x—y)d,uyd:v

Differentiating the last equation with respect to z shows that X +Y has density given
by fz(z) = [ f(x —y)dpy, so X +Y is absolutely continuous.

3. (=) S, — S as. implies S,, — S in distribution, so that the c.f. of Sy, [[} ¢x(u),
converges pointwise to the c.f. of S, h(u). That h(u) # 0 in a neighborhood of 0
follows since h(0) = ¢*° = 1, and h is continuous.

(«<=) ® This problem is very similar to problem 3.3.21 in Durrett (4th edition), and
this problem gives a hint that involves looking at other problems.

16



4.

(a) Since BZ = 3e™ + 17 = cost, the desired c.f. is

H cos(cyt)

(b) It is a standard result that, for a, > 0, lim, [} (1 — a,) exists and is nonzero if

and only if > 7 a, < co. So, we will show

oo o0
Zci<oo = Zl—cosckt<oofor t] < to
1 1

This will complete the proof, since the second condition holds iff ]} cos ¢t con-
verges for |t| < to, which as shown in problem 3 holds iff > (" ¢, Zx converges.

242
Suppose > cz. Since 1 — cos ¢ < %, it follows > 11 — cos ¢t < oo for all ¢.

1—cosz—x2/2

Suppose Y " 1—cos ¢t < oo for ¢t < t. Since —3— —0asz — 0, for small
enough ¢, we have, for any 0 < ¢ < 1,

1 — cos ¢t — cat?/2

272
Cili

proving
1-— t
Citz/Q < %

Since the right hand side has finite sum, so the the left, proving > ¢ < oo.

17



2000 Spring

1. (a)
(b)

{4, 10} = ﬂiil Ukzn Ap.
Let Ay D Ay D ..., where P(A,) =n"'. Thene, = > .7 k™! ~ logn, but

n

fo = ZP(Ai N4;) = Z(max(i,j))*l = Z(Qk —1)- k™t ~2n —logn

i k=1

The third equality follows since there are 2k—1 pairs (i, j) for which max(i, j) = k.
Thus, we see that f,/e? ~ (2n —logn)/(logn)?* — oc.

Since EFY,, = 1, we have that
1-EY,Z,) =EY,—-Y.2Z,) =EY,1—-2,) = EY,ly,<c) <e¢

so that E(Y,,Z,) > 1 — e. Using Cauchy-Schwarz,

EX?
EY,Zy, < EY?-EZ}=—" -EZ, = f—;‘EZn,
en en

so BEZ, > ;—i(l —¢). Letting n — oo, we get limsup,, £Z,, > 1’%5 Applying Fatou’s

Lemma to 1 — Z,,, we get that

1 _—
P(Y,, > ei.0.) = Elimsup Z, > limsup EZ,, > c

Finally, realize that Y,, > ¢ i.o. implies A, i.o. (if A,, happens finitely often, then
Y, = X, /e, — 0, since e, — o0). Thus, P(4, i.0.) > P(Y,, > €1i.0.), so the
above also implies P(A,, i.0.) > % Letting € — 0 proves P(A4, i.0.) > %

18



2.

(a) One can prove that, if E|X|™ < oo, then ¢(t) is n times continuously differentiable,
and ¢™(0) = E(iX)". Taylor’s theorem then gives that

" 242
o(t) =1+ ¢ (t)t + SDT(t)t? Lo =140— % +O(#)

(b) The CLT says that, if X1, X,... i.i.d, EX = u, Var X = 02 < 0o, then

Sp—np
ov/n

Here’s a sketch of the proof. We can assume FX = 0, by applying the theorem
to X, — p. If ¢ is the c.f. for X, then the characteristic function for S, //n is

= N(0,1).

(/)" = (1 — 0™2/2(J)? + O (V)" ~ (1 - ﬂ)

2n

2,2\ N
lim (t/v/n)" = lim <1 — i) = e t*0%/2

n—o00 n—o00 on

Since e=**7"/2 is the c.f. for N(0,0?), the continuity theorem implies S, //n —>
N(0,0?%), which means that S, /(cy/n) = N(0,1).

19



2001 Spring

1.

(a)
(b)

()
()

(a)

B = mnz1 Uan{‘X’f| > k}

1+ P(1X] > ) 2/ P(X]| > #)dt = E|X| =
0

1
proving P(|X,| > n i.0.) =1 by Borel-Cantelli.

If M,, — m, then it would be true that X, .1/(n+1) = M, 1 —M,+M,/(n+1) —
m —m + 0 = 0, so that it wouldn’t be true |X,|/n > 1 i.o..

P(A) = P(ANB) + P(ANB°) < P(@) + P(B) =0+1—1=0,

To show a set is an interval, you need only show s,t € I and s < r < t implies
r € I. Suppose s,t € I. Let s <r <t. If r >0, then t > 0 as well, and whenever
X > 0, we have e’ < . When X < 0, "X < 1. Using both these bounds,

Ee™ = E(e™1x<0) + E(e™1x50) <1+ Ee'1x0 < 1+ B < 00
If on the other hand r < 0, then
EerX = E(eTX1X<O) —+ E(eerxzo) S Eesxlx<0 + 1 S 1 =+ EGSX < 0

Either way, we have r € I, implying [ is an interval.

We use the fact that f is continuous at x if and only if, for every sequence x,
such that z,, — z, it is true that f(z,) — f(z).

Given t in the interior of I, let t,, be any sequence in I where ¢,, — t. Choose some
T+,T~ €I sothat T~ < t, < T for all n. Then e* < T X1y o+ e’ X1y,
and e — X pointwise, so by the DCT, we have

lim Eet** = Elim e = EetX
n n

This proves M is continuous at t.

Let Y be a random variable where P(Y > y) = i when y > 1, and let X = logV.
For t > 0,

EetX = BY' = / ty'" LP(Y > y)dy = t/ Y2 dy
0 0

This integral is only finite for ¢ < 1. When ¢ < 0, then EetX < 1 since tX <0
always. Thus, the interval for which X exists is (—oo, 1).

20



3.

(a)

We have that
Var X, = EXp =1 (1 - %)+ k- H=2—-
Thus,

Var S = Var (Sn)/(\/ﬁ)QZ%Z@—i) zz—w—n

since Y 1 k7% — 72/6.

This proof was figured out by Gene Kim.

We first compute the c.f. for X,,. This is given by

EeiXnt — E 1— L (e 4 ey 1 L(eim +e ™) = (1 — %) cost + 1 cosnt
2 n? 2n? n? n?

This implies the c.f. for S} is
o= s T ) + ot
e (L )g( (s )
ot () (S 1+ s (S0

We will show the enclosed sum approaches zero as n — oo, for a fixed t. Note

that CCO;S(Z';/\‘[)) - 1 is O(1) as n — oo, and log(1 + x) is O(z). Thus, we have that

lg<nlog(-++) < kQ, for some constant C}, so by DCT,

L e 1 (cos(kt/y/n)

1 Loy log [ 14+ = 1

nggoz = og( + (cos(t/\/_)

- 1 [cos(kt/+/n) =

= hm 1 nlog(l—l——( )) 0=

kz:: - cos(t/v/n) 21:

Next, we consider the cos™(t//n). We have

These last two results imply that ¢} — et*/2. Since this is the c.f. for N(0,1),
we have that S} = N(0,1).

—_
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2001 Fall

1. (a) First, choose constants M, so P(|X,,| > M,) < -, then let ¢, = M’zgnz. Lettin
) n2? € g
Y, = X, 1x,<m, we have, for any € > 0,

LEY? M2 1
P(|Y,/cn| > €) = P(Y?/& > 2) < £ = < S < =

Thus, by Borel-Cantelli, P((|Y,,/cn| > € i.0.) = 0. This holds for all € > 0, which
allows you to show Y,,/¢,, — 0 a.s. Furthermore, since P(X,, # Y,) < n%, we have
P(X, #Y, i.0.) =0, so that with probability 1 we also have X, /¢, — 0.

(b) No. Consider the probability space (0,1), with Lesbesgue measure. Let 2 be
set where P(Q) = 0 and whose cardinality is 2% (for example, the Cantor set).
Now, choose X,, so every possible sequence of real numbers ¢y, co, ... occurs as
Xi(w), Xo(w), ... for some w € Qp, and X,,(w) =0 for w ¢ Q. This can be done
since the number of such sequences is (2%)*0 = 2% = ||, and the X,, will indeed
be measurable since they are 0 a.e. Then, no matter what constants cy,cs, ...
you choose, there will be some w for which X, (w)/¢, =1 for all n.

(c) See 1997 Fa, 4(a).

2. (a) The special property is that ¢ will be real. If X and —X have the same distrub-
tion, then
Ee™ = EcostX +iEsintX

But tX is symmetrically positive and negative, and sin(¢z) is an odd function, so
Esin(tX) = 0.

Suppose EeX is real. Using the inversion formula, we have, for any a < b,

P(X € (a,b)) + %P(X € {a,b}) = lim L /T M(ﬁ@) dt

T—o0 27 | _p 1t

Both sides are real, so taking the conjugate of the right preserves equality, re-
sulting in

1 1 T efit(fa) . efit(fb)
PX € (a,0) + 3P(X € {a,b}) = im / (1) dt

1 [T =it(=b) _ ,—it(~a)
= lim —/ ¢ ¢ o(t) dt
T—o0 271— _T 1t

= P(—X € (a,b)) + §P(—X € {a,b})

This holds for all a, b, proving X and —X have the same distribution.
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(b)
()

This is given by ¢(t/n)".
Since ¢'(0) = 0, we have that

lim M -0

Furthermore, from calculus it is true that w

log ¢(t/n)
o(t/n)—1

— 1 as z — 0, implying
— 1 as n — oo. Multiplying these two limits, we get

iy 08 2(t/n)

=0

Taking exp of both sides, we get ¢(t/n)* — 1. But ¢(t/n)" is the c.f. for S, /n,
and 1 is the c.f. for 0, so the continutity theorem implies S, /n — 0 weakly.
Finally, one can prove that converging weakly to a constant implies convergence
in probability as well, so that S,,/n — 0 in probability.

We have

o 1
E|X|:2c/ T — dx = 2¢( lim loglogn — loglog4) = oo
4 x?logx

n—oo

Since X is symmetric about 0, we have

E =F
t t

dx

e —1  _cos(tX)—1 /°° cos(tr) — 1
)y tz?loglzl

Letting y = tx, this becomes

etX —1 /°° cos(y) — 1 < cos(y) — 1
E =2c dly/t) = 20/ ——dy
i o it loalyyil " T P oali

Since, for —1 < t < 1, it’s true that y%olscfg)';/lﬂ < ZOQSl(gg)\_?j € Li(dy), the DCT implies

hmzc/ %@:2@/ hm%dy:%/ 0dt =0
0, y*logly/t| s 0 y*logly/t] 4

Which proves that

X _q 00 1
lim ES zlimQC/ Md(yzo
RPN, sy

proving ¢'(0) = 0.
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2002 Spring

1. First, realize that F|X;|> < oo implies |X,|[*/n — 0 a.s, which in turn implies
| Xn|/v/n — 0a.s. The first fact is proven by using > -, P(|X,,|*/n > ¢) < [[7 P(|X}/e| >
t)dt = E|X,/e|? < oo, then using Borel-Cantelli to argue P(|X2|/n > € i.0.) = 0 for
all £ > 0, which then gives X2/n — 0 a.s.

Once you have |X,|/v/n — 0 a.s, we use the below lemma:

Lemma Let {a,},>0 be a nonrandom, nonnegative sequence, where a,/\/n — 0. Let
My, = Maxy<k<n @n. Then m,/y/n — 0.
Proof. Given € > 0, choose K so n > K implies a, /y/n < . Then

m mg a; mg a; mg
— < —+4+ max < —+ max =< —+¢

VT o/n Ksjsey/n T oy/n Ksjse/j T/

Letting n — oo shows, since my /y/n — 0, that limsupm,, /+/n < . This holds for all
e >0, s0 m,/v/n— 0. O

Thus, | X,|/v/n — 0 a.s. implies maxj<i<, | Xn|/v/n — 0 a.s, and therefore in proba-
bility.

2. By Borel-Cantelli, P(|X,,| > €, i.0.) = 0. Thus, with probability 1, there will be some
K where n > K implies |X,,| < e,, meaning > |X,| < 31 [ X, + 3%, &0 < 0.
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1.

2.

The desired ais o« = 3. Let X,, , = =%. We prove convergence using the Lindberg-Feller
CLT. Then, using the fact that Var Xo) = [F x Lot o dr = k;,
2 _
Y EX) = — ) Var X; = ng 5
k=1 k=1
Then, since >, % ~ [ I dr = % we have that
. 1 1
ZEng%—-n—%— as n — 00
oond 9 9

The above use of =~ can be made more precise, either by finding an closed form for
n k2 . .
> %, or by using and upper and lower integral bound.

This gives the first condition of the Lindberg Feller CLT. For the second, we must show
n X2
ZE ne 11X kl>e) ZE(n—é“ 1ix,5ens) — 0.
k=1

Notice that, for large enough n, we have that en® > n? > |X;|. Thus, for large n, the
above sum will be zero, since all the indicator variables 1,x,|>.ns Will all be zero.

By the Lindberg Feller CLT, this shows

Sn/n® = Xnx = N(0, ).

k=1

(a) We first show that P(Y > n i.0.) =0. We have
> P(Y, >n) g/ P(Y > t)dt = EY < 0
n>1 0

By Borel Cantelli, P(Y > n i.0.) =0.
Thus, with probability one, we have

limsup(Y,)™ < limsup(n)"/" =1

n n

By the root test, the radius convergence of >~ Yo is at least 1, so that it converges
when |af < 1.

25



(b) Choose Y so that P(Y > y¥) = i when y > 1. In other words, letting f(y) by the
inverse function of g(y) = y¥, let Y be the random variable whose distribution is

PY <y =12 (1>1)

Then > P(Y, > n") = > 1 = o0, so by Borel-Cantelli, P(Y,, > n"io.) = 1,
proving that, with probability one,

lim sup(Y;,)"™ > lim sup(n™)"/" = oo.

n

Thus, almost surely the radius of convergence will be 0, proving S = oco.
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. Proof 1: Let p be the measure on R induced by X, so u(A) = P(X € A), and v for
Y similarly. Since E|X + Y|P < oo, using Fubini’s theorem we have

E]X+Y|”:/|x—|—y|pdu><y:/(/|x+y|pd,u)dv<oo

This implies ( [z + y]pdu) < oo for v a.e. y, so there is some yq for which it holds.
Then, using |z|P = |z + yo — yo|P < 2P(|z + yo|P + | — wo|?),

Elepz/lfvl”du < /2p|x+yo|p+2”|yo|”du=2”/|:r+yo|pdu+2”|yo|” <0

Proof 2: Choose M so P(|Y| < M) =& > 0. For all ¢, we have

PIX+Y[>t—-M) > P{|X]| >t} n{[Y| < M})
= P(X[>0)P(JY] < M)

Using this,
< *~ JP(X+Y|>t—M)
E|X|p:/ ptP P X >t)dt§/ ptP~! dt
0 0 P(JY] < M)
1 M oo
:—(/ ptp_ldt+/ pt”‘lP(|X+Y]>t—M)dt)
€ \Jo M

The first integral, fOM ptP~1dt, is some K < oo. For the second, we use the chagne of
variables u =t — M, obtaining

1 o0
EIXP < - (K +/ p(u+ MPP(X +Y| > u) du)
0

Notice that, when u > M, we have (u + M)P~1 < 2P~ 1yP=1 50!

1 M o0
pIxP < (K [ ptusanp a2 [Tpen px Y] wa)
€ 0 M
1 M
<- (K+/ p(u+ M) du+ 2P B|X +Y\P) < 00
€ 0

I This only works when p > 1. When p < 1, use the bound (u + M)P~1 < yP~!
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4. Note that F., being continuous implies that, for some m, P(X,, < m) = %, implying
also that P(Xs > m) = P(Xo > m) =1—1=1. This m is a median, so m = m.
Furthermore, for any € > 0, we must have P(Xs < mo —€) < 3: if it equaled %, that
would mean m., — ¢ was another median, violating uniqueness. By the same logic,
P(Xoo <o +€) > 3.

For any € > 0, we have

lim P(X, <me —¢€)=P(X <my—¢) <

n—oo

N | —

The above shows that, for large enough n, we have P(X,, < my —¢) < %, so that for
large enough n, m,, > my, — €.
Similarly,
1
lim P(X, <My +e)=P(X <me +¢)> =

n—00 2
proving P(X, < my +¢) > % eventually, so that m,, < m., + € eventually.

We have shown

Moo — € < liminf m,, < limsupm,, < my +¢
n n

for all € > 0, proving m,, = M.
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2003 Spring
1. Since ¢'(0) = ia, we have that

LS =1

n—00 t/n va

logo(t/m) _, 1

Furthermore, from calculus it is true that W — 1l asx — 0, implying 0/

as n — o0o. Multiplying these two limits, we get

iy 08 @(t/n)

n—00 t/n —

Taking exp of both sides, we get ¢(t/n)™ — €. But ¢(t/n)" is the c.f. for S,/n, and

e is the c.f. for a, so the continutity theorem implies S,,/n — a weakly. Finally, one

can prove that converging weakly to a constant implies convergence in probability as
well, so that S,,/n — a in probability.

2. Let a, = inf{z : F,(z) > 1}. This implies F,(a,) > 5 by right continuity of F,,. Since
X, — X/, — 0 in distribution, we have that P(|X,, — X]| > ¢) — 0. Since X,, > a, +e¢
and X| < a,, implies X,, — X] > ¢, we have that

P(|X,—X!|>¢)>P{X,>a,+e}nN{X <a,})
= P(X, > a,+¢)P(X), < ay,)
> P(X, >a,+¢) 3

The last inequality follows since P(X! < a,) = P(X, < a,) = F,(a,) > %
Since P(|X,, — X/| > ) — 0, the displayed string of inequalities implies P(X, >
a, +¢) — 0 as well.

By the same logic, we have

P(|X, — X| > £/2) > P(X, < a, — )P(X!. > a, — £)

P 2
P(X,<a,—-¢)(1-P(X, <a,—3))
P

(Xn<a,—¢)-%

v

The last inequlaity follows from the definition of a,: since a, — £ < a,, and a, =

2
inf{z : F,(z) > 1}, we must have P(X,, <a, — %) < 3.

Thus, the above shows that P(X,, < a, —¢) — 0). Finally, we have that
P(|X,—a,| >e) < P(X,>a,+e)+P(X,<a,—¢)—0

proving X,, — a, in probability.
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3. Let a, = élog n, and § = 1. Since P(X,, > x) = 2%, we have that

P(getayia > 1) = P(X, > n/*) =0

Since Y. n~! = oo, by Borel-Cantelli, P((lfggg’/’a > 1i0.) = 1. This proves that

lim sup (11(;)ggrf§7a >1 as.

Furthermore, for any e > 0, we have

log X, N L
P(eefe. > 14 ¢) = P(X, > n(M+9/%) = 1

Since > n~'7¢ < oo, by Borel-Cantelli, P((llsggig’;a > 1+ ¢ i.0.) = 0. This proves that

lim sup (llggg 370[ < 1+ € a.s. Since this holds for all € > 0, this additionally proves that
. log X

lim sup(loggw <1 as.

We have proven lim sup ~832 — 1 a.s, and would like to prove the same for M,,. Since

] (log n){{a
M, > X, we certainly now know that

log My,
(logn)/a — 1

lim sup a.s.

For the other inequality, we use the following Lemma:

Lemma: Let {a,} be a (nonrandom) sequence, and {b,} be an increasing sequence
where b, — co. Let m,, = maxj<g<, ax. If limsupa, /b, < 1, then limsupm,/b, < 1.

Proof. Given € > 0, choose N so n > N implies a, /b, < 14 ¢. Then

Since my /b, — 0, the above proves lim supm,, /b, < 1+ . Letting ¢ — 0 completes
the proof. 0

log X,
(logn)/a

log My,
(logn)/a

This lemma shows lim sup = 1 a.s. implies lim sup

done.

< 1 a.s, so we are
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4. (i) Let || X||, denote (EXP)'/P. By Minkowski’s inequality, || X +Y ||, < | X, +Y]l,-
Therefore,
X0 = Xonllp < 1X0 = Xlp + [[X = Xl

The right side approaches zero since F|X, — X|? — 0, proving || X,, — X, = 0.
Raising both sides to p then implies that E|X, — X,,|? — 0.
(ii) This proof is due to Gene Kim.

Choose a subsequence X, so that || X, — Xnws1)llp < zik Let

m
k=2

By the MCT,

. > > 1
61l = Jim_l[émlly < 1 Xally 3 1 Xnw = Xntenlp < 1 Xnllp Y~ o7 < o0
k=2 k=2

Since ||¢||, < oo, it must be true that ¢ < oo almost surely, which proves that
the series

X =X,n+ Z Xk — Xnk=1)
k=2

converges absolultely, and therefore converges. Also,

X = lm Xnq + kX_; Koty = Xnge-1) = lm Xy om)

so Xy (m) 18 a sequence converging almost surely to X.

(iii) Letting X be defined as before, for any m we have X = X,(n) + E;O:mﬂ Xo(k) —

Xn(k+1), SO
S~ d 1 oo
IX = Xamlle € 37 1% = Xagein lp € 3 5 ™0
k—m1 k=m+1

proving Xy, — X in L,. Since X, is Cauchy in L,, and has a subsequence
converging to X, this implies X,, = X in L,.
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1. This proof is due to Gene Kim.

Let M, = +maxj<, X;, and let Fy(z) = P(X < ). Since M,, < z exactly when each
X; < nz, we have that P(M,, <m) = Fx(nz)". Thus,

EM, = / P(M, > z)dx
0

:/ 1 — Fx(nx)" dx
0

1= Fx(t)"

0

n

z/ooo(l—Fx(t)) (1+FX(t)+FX(t);+~~~+FX(t)”‘1) "

n

which is integrable since [[°1— Fx(t) = EX < co. Thus, by the DCT,

Since (1+FX(t)+FX(t)2+'"+FX(t)n_l) < 1, the above integrand is bounded by 1 — Fix(t),

lim EM, = h lim (1 — Fy(t)) <1+Fx(t)+FX(t);+..._|_FX(t)n—1) "

n—oo 0 n—oo

:/ (1—FX(t))1{FX(t):1}dt:/ 0dt =0
0 0

2. Impossible Problem!! Let U ~ Unif(0,1), and f(z) = 0 when z < 1 and f(z) =«
when z > 1. Then f(X) = 0 always, so X and f(X) are independent, but f is not
constant.

The problem is possible when reworded as follows: if X and f(X) are independent,
then f(X) is constant a.s.

Since X is independent of f(X), this implies f(X) is independent of f(X) (this comes
from the theorem which says that, if Y independent of Z, then ¢(Y') independent of
h(Z)). This means that, for any « € R, the event {f(X) < x} is independent of itself.
Thus, P(f(X) < z) = 0or 1, since A independent of itselft implies P(A) = P(ANA) =
P(A)P(A). This implies f(X) is constant a.s; if it were nonconstant, there would be
some = where P(f(X) < x) was neither 0 nor 1.
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3. Unclear wording: They should have mentioned that o2 was finite.

(a) Let S =31 X;, and S, = 327 X;. We first find the c.f. for S. Let ¢ be the c.f.

for X;. Then
EeitS _ Ezeits]-N,\:n — ZE ZtSnl ZE ztSn — TL)
n=0 n=0
= eSS ()
=Y e = AZ—Q,” 0 = ep(N(p(t) - 1)
n=0 ’ n=0 )
Since the c.f. for Ny is exp(A(e” — 1)), this means the c.f for %ﬁ is

E (exp (it : w)) = exp(\(p(t/VA) — 1)) - exp(A(e"™/ VX — 1))

VA
= exp ()\ ((p(\%) F(e7MtIVY 1) - 1))

Now, note that that

) —t t2 2
emtm/VA 1= TR T E o2

VoY 2\
and
2
O(t/VA) =1+ ity — %EX2 +o(t*/N)
ity )
= 1 _—
+ 7 2)\(0 + p1?) + o(t*/ )

Thus,

B (o (1 52)) oy (3 (22 - £t 2B )
= exp(—t*(0 +21%)/2 = Mo(t*/ X)) — exp(—t*(0” + 2117) /2)
(

The last expression is the c.f. for N(0, 0% + 2u?), which is the limit distribution.

(b) Since the c.f. for vAu is exp(ituy/A), the c.f for %ﬁ is

E (exp <it- S_—\/é"» = exp(A(@(t/VA)—1)) exp(—ituv/A) = exp ()\ <<,0(t/\/_) - zt\/_/g - 1))

Using the same asymptotics,

E (eXp (it- L;;a)) — exp ()\ (W + o(tz/)\))) — exp(—12(0%+12) /2)

The latter is the c.f. for N(0, 0%+ p?), which is therefore the desired limit distru-
bution.

(¢) The two limit distriubtions are only the same when p = 0.
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(a)

We have that

E[X +Y|X,Y > 0] = E[X|X,Y > 0]+ E[Y|X,Y > 0] = E[X|X > 0] + E[Y|Y > 0]

= 2E[X|X > 0]

The second = follows since X is independent of Y. We then have

E[X1X>0] /OO ]. 22 2 2 o
EFXIX>0=———"""=2 2 g — 2 [ _em7/2
XIX=0=5x>0 72, v @ Mﬁ(e >0

=/2/7

Thus, F[Z|X,Y > 0] = 2/2/7.

This problem is a little misleading: you can’t really get a closed form for the
dsitribution of Z. However, you can get an expression in terms of the distribution

of X.
P(Z <2z, X>0Y >0)

P(X>0Y >0

Let T be the event that Z < z, X > 0,Y > 0. Let S be the event that (X,Y) isin

the square with vertices (+z,0) and (0, %z). By symmetry, P(T) = +P(S). Now,
let S” be the event that (X,Y’) is in this same square, but rotated 45 degrees

z

about the orgin; this is the square with vertices (:I:\/ii, iﬁ)' Since the pdf of
(X,Y) is

P(Z < 2X,Y >0) =

1 _x2/2 . 1 e_z2/2 1 _7,,2/2

—c€ = —e ,
V2 V2 2
where 2 = 2 + 32, it follows that the pdf has rotational symmetry, so that
P(S) = P(S5"). Finally,

2

SO
1P

P(Z| <:zX,Y >0) = P(X > 0)P(Y >0)

= P(5') = 4(Fx(2/V2) = 3)°

Differentiating with respect to z gives the density fz(z) of Z:

Fale) = s - <= N8P (2/VE) = §) = Sz (P(/VE) - )

&
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2004 Spring

The 7 — A theorem: A m-system is a collection of subsets of {2 which is closed under
intersection. A A-system, L, is a collection of subsets of {2 where

(i) Qe L
(i) if A, Be L, AC B, then B\ A€ L

(iii) if A, /A, and each A, € L, then A € L.

The m— A theorem says that, if P is a m-system, L is a A\-system, and P C L, then o(P) C L,
where o(P) is the sigma algebra generated by P

1.

(a)

Let A be the sets of the form {X < z}, for x € [—00,+00], and B be sets of the
form {Y < y}. Note that A is a m-system, since { X < a}N{X < b} = {X < anb}.
Let
L={FE€o(X): P(ENB)= P(E)P(B) for all B € B}

Note that by assumtion, A C L.
We will show L is a Lambda system, by checking each of the above three conditions

(i) P(2N B) = P(B) = P(Q)P(B), so Q € L.

(ii) If B, F € L, and E C F, then

P((E\F)NB)=P(ENB) - P(FNB)=P(E)P(B) - P(F)P(B)
= (P(E) - P(F))P(B) = P(E\ F)P(B)

so BE\FeL.

(iii) If £, ~ E, then E,,NB ~ ENB, proving that P(E,NB) = P(E,)P(B) /
P(E N B). Since we also have P( 2 )P(B) /* P(E)(B), this implies P(F N
B) = P(E)P(B).

Applying the m — A theorem gives that o(A) = o(X) C L. We the apply the m— A

theorem again to

={FecoY): P(ENA)=P(E)P(A) for all A € o(X)}

Since B C L', we have that o(B) = o(Y) C £'. Now, notice that o(Y) C L
means that, for all A € 0(X), and all B € o(Y'), P(ANB) = P(A)P(B), proving
that X, Y are independent.

It is sufficient to show that, for all &,
P(By=by,..., By =by) = P(By = by) - P(B, = by)

since the sets {B; = b;}, for by = 0,1, generate o(B;). Note that the right hand
side is (1/2)*, since |2*U| will be odd half the time. The left hand side is also
(1/2)%, since the event {B; = by,..., By = by} is exactly the event that the first
k binary digits of U are by, ..., b, and the set of possible values of U for which
that occurs form an interval of length (1/2)F.
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2. Note that s2 =Y EX?=1+1+2+.--+2"2=2""1 This means that

on—2

Xo/sn ~ N(0, %) = N(0,1),

2

so that P(|X,|/s, > €) is constant in n, so P(|X,|/s, > ¢) # 0. Thus,

/ X24P > / X2AP > e2P(|X,| /50 > €) 5 0
X X

k=1 v | Xn|>esn nl/sn>e

so the Lindberg condtion doesn’t hold.

Note that, if Z; ~ N(0,0%) and Zy ~ N(0,03), then Z; + Zy ~ N(0,0% + 03). This is
because the c.f. for N(0,0?) is exp(—t?0?/2), so the c.f. for Z; + Z, is

exp(—t°01/2) - exp(—t?03/2) = exp(—t*(of + 03)/2)
This means that
Sy~ N@O1T+1+2+---+2"% =N(0,2"

so Sp/sp ~ N(0,1). So, not only does S, /s, — N(0,1) in distribution, but in fact
each S, /s, is equal to N(0,1) in distribution!
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3. Recall Kronecker’'s Lemma: if a, /‘ oo, and Y 1° o= converges, then L Z? xp — 0.
Thus, it suffices to show that 21 - Converges To do this, we use the Kolmogorov
3-series test. Let Y, = ”1 ( o < 1> g 1(X,, <n). We must check that

1) > P(f—f‘ >1) < oo (i) Y77 EY,, converges (iii) > 27" Var Y;, < oo

(i) This is true since EX; < oo, which holds if and only if Y ° P(X; > k) < o0
which is the same as Y ;° P(X7/k* > 1) < oo.

(ii) The below computation uses many clever tricks. For the first equality, we are
using Xq1x,<, = Z? X11{k—1<x,<k}. For the second, we use Fubini’s, vaild since

all summands are positive. For the third, we bound Y>>, n™? < [F a2 dx = 1.
For the fourth, note that X71_1 4 < kX111

S B I <) = 303 R esensw) = 3 B L) S
n=1 n=1

1
E(X%; 1(k71,k])_

INA
Mg f
>

B
Il

1

WE

E(X1; 1(k-14)

B
Il

1
X| < o0

S|

(iii) To show Y Var Y, < oo, we show > EY,? < oo, using the same tricks.

ST B(ZX| <n) = Zzn—4EX1(k 1) = Z (XM (o1 Zn
n=1 n=1 k=1 k=1
< ZE(Xfl(k—Lk])%

k

=1

IN

3 E(Xilgo14) = 3EX; < 00
k=1

This completes the proof!
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Lemma If 3, is a sequence of real numbers, and every subsequence has a further subsequence
converging to y, then y, — .

Proof. Suppose y,, # y. Then there is an € > 0, and a subsequence ¥,,(x) where |y —ynm)| > €.
This means no subsequence of y,x) can approach y, contradicting the assumtion. O

1. (a) = (b) We are given that X,, — 0 in probability, which implies every subse-
quence X, ) has a further subsequence X, ,,) converging almost surely to 0. Since
[ is continuous, this means f(X,u,,)) — f(0) a.s, and since f is bounded, by DCT,
Ef(Xn@,) — f(0). We have shown every subsequence of Ef(X,) has a further
subsequence converging to f(0): by the above lemma, this implies Ff(X,) — f(0).

(b) = (a) Given € > 0, let h(z) = (|z|/e) A1 = min(|z|/e, 1). The idea is that h is
bounded, continuous, and 1>, < h(x). Thus,

P(|X,| > ¢) = Eljx, > < EM(X,)
So letting n — oo, we get

limsup P(|X,| > ¢) <lim Eh(X,,) = h(0) = 0.

2. (a) The c.f. of S,/n is always o(t/n)", so in this case, (e I/l = e~
(b) The law of large numbers does not hold since E|X;| = oo.

Also, the law of large numbers would imply S,,/n — u, but the previous result,
and the continuity theorem, show that S, /n — X in distribution.
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3. (a) We have that P(X,, > logn) = ¢ '¢" = n~! and Y. n~' = oo, so by Borel-
Cantelli, P(X,/logn > 1i.0.) =1, which proves P(limsup, X, /logn > 1) = 1.
For any ¢ > 0, we have P(X,,/logn > 1+ ¢) = n~+9) which is now summable,
so again by Borel Cantelli, P(X,,/logn > 1+ ¢ i.0.) = 0. This shows

limsup X,,/logn <1+¢ a.s.

Letting L = limsup X,,/logn, since {L < 1} = ;o {L < 1+ 1}, the above
implies L <1 a.s, so we have shown L =1 a.s.

(b) We first show:

LemIIla (}iVeIl a (I].OII raIldOIIl) sequence ap, ag, . .. WI ere a, > 0 and hIIl sup dn_ —
’ ’ ? - n logn
1, let m,, = maxj<g<, ax. Then limsup,, 12? < 1.

Proof. Given ¢ > 0, choose K so n > K implies 2= < 1+ ¢. Then

logn

my mg a; mg
< max —— <
logn — logn  K+1<j<nlogj — logn

+1+4+¢

Letting n — oo, we have mg/logn — 0, so the above shows lim sup
14 e

<

Mn
logn
Xn

logn

Secondly, we show lim inf

Thus, using lim sup

1 a.s. and the Lemma proves lim sup

an > 1 a.s. For any € > 0, we have
ogn

My < 1 a.s.
logn —

P(M,/logn < 1—¢) = P(X; < (1—¢)logn)" = (1—e~ (178 logmyn — (1 - n_) <e™
n

Since (%)™ < oo, this implies that P(M,/logn < 1—¢ i.0.) = 0. Thus, almost
surely we will have M,, / log n is eventually greater than 1—¢, so lim inf M,/ logn >
1 — ¢ as, so liminf M, /logn > 1 as.
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2006 Spring
1. (a) The condition is p, — 0, since P(|X,| > ¢) = P(X, = 1) = p,, so X,, — 0 in
probability iff p, — 0.
(b) The condition is > p, < oo, since

X, 0as. <= P(X,=1i0)=0 <= Y P(X,=1)<o0

with the last <= following from Borel-Cantelli.

2. (a) Note that EI, = P(Y7 < f(X1)) = J (since (Xi,Y7) is uniform over the unit
square, and the area for which y < f(x) is J), and Ef(X;) fo x)dr = J.
Thus, by SLLN, £ 3" I; and 1 f(X;) both converge to J a.s.

(b) Since J, — J = £ 377(I; — J), and each I; — J has mean 0, we have
B(J =) = Var (Jo—d) = S Var (I=J) = "var (1) = SER—(EL)?) = LU-r
(P = Vo (Jud) = 5 S Var (1) = Vo (1) = L(BI(EL)?) = (=)

The last step follows since I? = I; (it is always 0 or 1).

In the same vein,

TS Var f(X) = (B~ (BA(X (/f )

Thus, in order to prove E(J* —J) < E(J, —J)?, it suffices to prove fo )2 dr <

J = fo r) dz, which is true since f(z) € [0,1], so that f(z)* < f(z ) In the
previous mequahty, equality only holds when f(x) is 0 or 1, and the only two
continuous functions which are always 0 or 1 are f(z) =0 and f(x) =

(¢) Note this distribution of M is approximately the standard normal, for large
n, where o = Var I; = J — J?. Thus,

P(M <3> ~ 0.95
g

P(|J, — J| <3(J = J*/v/n) ~0.95

Solving 3(J — J?)/y/n = 0.01 for n, we get n = 90,000 - (J — J?) < 90,000, so
choosing n = 90, 000 should sort of work.
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3.

(a)

X,, = X in probability if, for all ¢ > 0, P(|X,, — X| >¢) — 0 as n — oc.
X,, — X in distribution if, for any z for which the function Fx(z) = P(X < x)
is continuous at x, we have P(X, < z) — P(X < x) as n — oc.

It does not converge in probability, since P(|X, — Y| >¢)=P(|X — (1 - X)| >
e)=P(2X —1]>¢)=1+40.
It does converge in distribution, since P(X,, < z) = P(Y < z) for all n.

It is a well known fact that convergence in probability implies that in distribution.
To see this, suppose Z, — Z in probability, and let z be a continuity point of
Fz(z) = P(Z < z). Using the fact that

(Zo<2} C{Z<z+eyUL|Z ~ Z| > ¢}

we have
P(Z,<2)<PZ<Z+e)+P(|Z—-2,]>¢)

Using {Z <z—¢} C{Z, <z} U{|Z, — Z| > €}, we also have
P(Z,<2)>P(Z<z—¢)—P(|Z—-2,] >¢)
letting n — oo, the above two inequalities imply

PZ<z—e)=Fz(z—¢)< lim P(Z,<z)<Fy(z+¢e)=P(Z<z+¢)

n—oo

then letting ¢ — 0 gives lim,, o, P(Z, < z) = Fz(z).
Since Y,, — Y in probability, we have Y,, — Y in distribution. But X has the same

distribution as Y, and convergence in distribution only depends on distrubtion,
proving that Y,, — X in distribution as well.
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2007 Spring
1. (i) Forany e, {X,/n > e} = {X,, > ne} \,{X, = o0}, so P(X,,/n >¢) \, P(X, =
o0) = 0.
(ii) Using the inequalities

> P(IX,|/e>n) < E|Xi/e| <) P(|Xa|/e > n)

n>1 n>0

We have

E[X)| <00 <= Y P(|X,/n|>¢) < oo
< P(|X,/n|>¢cio.)=0
— X, /n—0as.

The second <= is Borel-Cantelli, and the third follows by intersecting {|X,,/n| >
ex 1.0.} for g, N\, 0.

(iii) Using X,/v/n — 0 <= X2?/n — 0 and the previous problem, the desired
condtion is EX? < oo.

2. (i) We have, using Fubini’s theorem,

™

1 " —ikt . 1 —ikt itx . o . 1 " it(z—k)
%/_We o(t)dt = —— e xezze P(X—x)dt—ZP(X—x)% e dt

T€Z

Consider % ffﬂ e*=k) dt. When x = k, this is clearly 1. When z # k, breaking
the complex exponential into its sinusoidal real and imaginary parts shows that
the integral is zero. Thus, the only positive contribution to the sum is when
X =k, so the sum is P(X = k).

(ii) The c.f. for S, is ¢x (1), so

P(S, =k) = L / ’ e R ()" dt

—T
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3.

(i) («<=) We have, for M > sup ||,

o2 sup o2
P(|X,| > M) < P(||X,, — pn] > M — |u,|) < - < -
(1] ) < P(]] | ) O — [)? = (M —sup ]
SO )
sup o,
sup P(|X,| > M) < N — 0 as M — oo
P> 20 = B ]2

( =) Suppose sup |, | = co. Then for any M, there will be some Xy for which
lun| > M, implying by symmetry of the normal distribution that P(|Xy| >
M) > 3, meaning limsup,, P(|X,| > M) > 1 /4 0.

Suppose sup |u,| = C' < oo, but supo,, = co. Recall that for a normal distrub-
tion, P(| X, — pn| > 0,) = .32. For any M, there will be some Xy for which
on > M + C, so

limsup P(IX,| > M) > P(|Xy| > M)

P
P(I Xy — pn| > M+ |pn])
P(| Xy — pn| > on) > 03 /40

vV 1V

(ii) (<=)If ju, — p and 0,, — o, then et — ¢ and e ¥7n/¢ — e=*7"/2 pointwise,
S0 eitnte=t?on/2 _y cinto—t20%/2 Note that eitnte=t"on/2 is the c.f. of X,,. Since the
limit function is continuous at zero, this implies X,, — some X in distribution,
by the continuity theorem.
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( = ) Suppose X,, — X weakly. This implies the c.f.’s of X, converge pointwise,
so eifnte=*n/2 _y p(t). Taking magnitudes,

jeintemoN2) = PR/ J(t)],

Since X,, — X weakly implies the X, are tight, by part (i), sup o, < 0o, meaning
we must have |¢(t)] > 0. Setting t = 1, we get 0, — /—2log|¢(1)| = 0.
We now have

et = p()e" 7 = p(t)e P = pt), (1)
where |p(t)| = |e*!| = 1. From part (i), we know sup |p,| < 00, s0 {ptn }n>0 has
at least one accumulation point. When ¢ =1 in (1), e’*» — p(1) implies that all
accumulation points of {, },>0 are of the form arg p(1) + 27k.

Suppose, by way of contradiction there were at least two accumulation points.
This would imply there were subsequences fiy,(,) and fig,) so that

Py — arg p(1) + 27k, and Ugny — arg p(1) + 27k,

where ki # ky are integers. Now, setting ¢ = 27 in (1), so that e®™n — p(27),
we can find further subsquences h'(n) of h(n) and ¢'(n) of £(n) so that

1 1
Hb'(n) = o arg p(2m) + K and Ug(n) — o arg p(2m) + K,

for some ki, kl € Z. Setting corresponding limits of subsequences equal to each
other, we get

1
arg p(1) + 2wk, = 5 A8 p(1) + K]

1
arg p(1) + 2mwky = 5. A18 p(1) + kg

so that o
o=+ 2
kv — ks
contradicting the irrationality of 7.
Thus, there is only one acculumation point, u, of { g, }n>0. Since {p,} is bounded,
every subsequence of u, has a further convergent subsequence. Since these sub-
sussequences always converge to p, it follows p, — pu.
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2007 Fall

1. Let A, be the event {L,, > logn + 0 loglogn}. Then
1 logn+0loglogn 1
2 ~ n(logn)?
Since > P(A,) < oo (use the integral test), by Borel-Cantelli, P(A,, i.0.) =0.

2. The continuous form of the inversion formula implies, since [ |¢,| < oo, that X,, have
densities for n < oo, given by f,(x) = % J e ", (t)dt (for a proof of this fact, see
Spring 1997, problem 3). Furthermore, |p,(z)| < g(z) and ¢,(z) = @o(z) implies
|00 ()] < g(z), so we also have that ¢, is integrable, implying the density f., exists,
and is given by a similar formula.

We have that
supl ) — ) =swp | [ gty — [ ot dt'
r€ER x€ER
< sup / € (0 (1) — oo(£))] dt

- / ou(t) — pu(t)] dt

Since |p, — ¢| < 2g € Ly, and |p,(t) — ¢(t)] — 0, by the dominated convergence
theorem,

n—o0

imsup (sup 7,(0) = £0) ) < i [ (0 = (0]t =0

proving sup, | fn(z) — f(z)] = 0, so f, — f uniformly.
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3. Choose Aj so that sup,, W < % when A > Ay. Then for these A,

1
X2 = B(X% |X,| < A)+ B(X3 |X,| > 4) < 42+ _BX?

so rearranging, we get

EX?
Az~

Thus, using Chebychev’s inequality, for A > Ay,

E(X5: | Xn| > A)

sup P(|X,| > A) < sup

/42
 B(XLIX > A) BX?
- P EX2 A2

E(X2;|X,| > A)
< n’ -2

Letting A — oo, the right hand side approaches 0 (by assumption), proving

lim sup P(|X,| > A) =0,
A—oco o

which means the X,,, and therefore their distributions F},, are tight.
4. (a) Take expectations of both sides of the inequality ¢(t)1ly~; < @(Y).
(b) Using (a), with o(t) = e,

Eersn

eAnz

P(S, >nz) <

Since eMr = A1 x ...

expectation, we have

P(S, > na) < B _ (M(A))"

eAnx eAx

x e*¥n and each factor is independent, with the same

Taking logs,
log P(S,, > nx) < n(log M(\) — A\x)

so rearranging and taking the inf over A > 0,

%log P(S, > nz) < )i\l;%—(/\l‘ — M(N) = —sup(A\x — M(N\)) = —1(x)

A>0
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2008 Spring
1. (a) Let S, = X; +---+ X,,. We have

6—)\/52 ()\/82)71

p. = B = 3" E[e"™|N. = n]P(N. = n) = Y _ B[e"5]- -

n>0 n>0

Note that E[e?S"] = (coset)™, since coset is the c.f. for X, and adding random
variable makes their c.f’s multiply. Thus,
Ve = 6*)‘/52 Z (/\/52 ' CO8 gt)n _ ef)\/sge)\/slcosst _ A(coset—1)/e?

n!

e
n>0

(b) As e — 0, using, L'Hoptial’s rule twice, <=5 — =tsinet _th, SO . — €

This is the c.f. of N(0, ), proving ¢. converges in distribution to N (0, \).

—\t?2/2

2. Let x be a continuity point of Fx, and ¢ > 0. Since {X,, + VY, < z} C {X, <
x+etU{|Y,| >} and {X, <z —¢c} C{X,+Y, <z} U{|Y,| > e}, we have

P(X, 2 —2) = PVl > €) € P(X, + Yo €2) < P(X, Sw+6) + P(Ya] > )
Assuming x + ¢ is also a contiuity point of Fy, letting n — oo above shows

F(z —¢) <liminf P(X,, + Y, <z) <limsup P(X,, + Y, <z) < F(x +¢)

n

and letting € — 0 shows P(X,, +Y,, < z) — F(z), completing the proof.
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3. (a) Note that V,, can be written as a function of the U; for which a,_; # 0, and V,, 4,
as a function of the U; for which a,;_; # 0. This means that V,, and V,,; are
functions of disjoint sets of independent variables, since for all i, a,,_;a, ;11 = 0,
so at least one of a,_; and a,_;,1 is zero, meaning there is no U; which both V,,
and V,, .1 both depend on. Since V,,,V,,.; are functions of independent vectors,
they are independent.

(b) Note that V;, ~ N(0,a3 + -+ + a?_;). This is because, when X ~ N(0,0?) and
Y ~ N(0,p?), then X +Y ~ N(0,02 + p?), which can be proven by looking at
characteristic functions.

Let A, = >0 a2, and A = 30°a?. Then V,, ~ N(0,a? + --- +d2), so V,,/V/A,

is standard normal, so (for large enough z),

e (-3) = (-5)
exp | —— exp | ——
e P\ T2 ) =P T

2
v < 2(1—|—e)logn> .
P > /21 Al < — =n 1
(@— (1+e) )-e"p 2 "

P(V,, > avVA) < P(Vo/ /Ay > x) <

Letting x = 1/2(1 4 €) log n,

Since Y n~'"¢ < oo, Borel-Cantelli implies P (\/IVO"ﬂ > /2(14+¢)A i.o.) = 0.

This means that limsup \/1‘/0"@ < /2(14¢)A ass. Letting ¢ — 0 proves that

lim sup \/I‘S—LM < V2A as.

4. The appropriate choice of ¢ is t = % We have

E(X+1)? EX?*+2EX+%

1
(c+1)2 (c+1)? ( a

1
2
%)2 02 + 1

1+
P(X > ¢) < P(X43)* = (c+¢)") < -
c
This solution of course doesn’t help show you how to approach the problem correctly.
Assuming you didn’t know what ¢ was, you would have
E(X+1t)?* 1+¢

P(X 2 ¢) < PUX +1)° 2 (e +1)%) < = s = s

You want to find a ¢t so that (iﬁ; < ﬁ

inequality is how you find ¢ = %

Cross multiplying and simplyifying that
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2008 Fall

1. It does follows that Flog X,, — FElog X. Since X,, — X, in distribution, there exist
variables Y,,, Y with the same distribution as X,,, X, and where Y,, — Y almost surely.

By Fatou’s Lemma, we have that liminf F'logV, > ElogY.
Since EY,, — ¢, we must have that FY,, < K for some constant K and large enough
n. Given € > 0, choose M so x > M implies 10% < & and so P(Y = M) = 0. Then

log Y,

B(log Yy ly, ) = B ( -Ynlyn>M) <E(— Yalyou) € 2BV, <c

n

S0
ElogY, < E(logY,ly,<m) + E(log Y, ly,snm) < E(log Y, 1y, <) + €

Taking limits above, we get

limsup ElogY,, < e+ limsup E(log Y, 1y, <) Pl e 4+ E(logYly<y) <e+ ElogY

To justify the middle equality, realize that Y,, — Y a.s. and P(Y = M) = 0 implies
log Y, 1y, <pr — log Y1y < a.s, and the log Y, 1y, <) are dominated by log M.

Letting ¢ — 0 above, we have shown that
FElogY <liminf F'logY, <limsup E'logY, < ElogVY
which implies F'log X,, = E'logY,, — ElogY = Flog X.

2. ® First, we get an upper lower bound on P(X,, > «):

oo )\k;
k=a

Let a,, be the integer closest to log’lgogn, SO a, = log)ign(l + o(1)). Using Sterling’s

approximation, which says that log(k!) = klogk + O(k), and the fact that O(a,)
implies o(logn),

€_>\€a" log A
an,!

= exp(—ay, log a, + a,(1 +log A) + o(a,))

1
= exp __osen (loglogn — logloglogn) + o(log n)
log logn

= exp(—logn + o(logn)) = n~t+M

The above computation is useless, since > n~'+°(}) can be either finite or infinite.
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3.

(a)

()

The special property is that ¢ will be real. If X and —X have the same distrub-
tion, then
Ee"™* = EcostX + iEsintX

But tX is symmetrically positive and negative, and sin(tz) is an odd function, so
Esin(tX) = 0.

Suppose EeX is real. Using the inversion formula, we have, for any a < b,

P(X € (a,b)) + %P(X € {a,b}) = lim - /T e

Both sides are real, so taking the conjugate of the right preserves equality, re-
sulting in

1 1 [T g—it(—a) _ ,—it(~b)
P(X € (a,b)) + §P(X € {a,b}) = lim —/ o(t)dt

1 [T g=it(=b) _ p—it(=a)
= lim —/ ¢ ¢ o(t) dt
T—o0 27 | _p 1t

_ P(X € (=b,—a)) + %P(X € {—b,—a})
— P(—X € (a,b)) + %P(—X € {a,b})

This holds for all a, b, proving X and —X have the same distribution.
This is given by ¢(t/n)".
Since ¢'(0) = 0, we have that

t/n) —1
i 2=
Furthermore, from calculus it is true that w — 1 as x — 0, implying

log ¢(t/n)
o(t/n)—1

— 1 as n — oo. Multiplying these two limits, we get

iy 108 9(t/n)

=0

Taking exp of both sides, we get ¢(t/n)* — 1. But ¢(t/n)" is the c.f. for S, /n,
and 1 is the c.f. for 0, so the continutity theorem implies S, /n — 0 weakly.
Finally, one can prove that converging weakly to a constant implies convergence
in probability as well, so that S,,/n — 0 in probability.

We have

n—oo

o 1
E|X| = 20/ T — dx = 2¢( lim loglogn — loglog4) = oo
4 x?logx
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(e) Since X is symmetric about 0, we have

E =F

e —1  _cos(tX)—1 /OO cos(tr) — 1
t t -,

tz? log |z

Letting y = tx, this becomes

etX —1 /°° cos(y) — 1 /°° cos(y) — 1
E — 2 dy/t) =20 [ LW =2y
: \ W loaly/ “W =2 Poglyrn

Since, for —1 < t < 1, it’s true that y%ols(y)_l < sl o Ly(dy), the DCT implies

ogly/t] — y2loglyl
lim B :hm2c/ Mdy:%/ lidey:%/ 0dt =0
=0 t =0 J, y*logly/t| 4 o0 y2logly/t| s

proving ¢'(0) =0
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2009 Spring

1. The only thing let to prove is when u = 4oco. Assume WLOG pu = oco. Given
M € N, let X = X, A M. Note that E|XM| < oo, since (XM)* < M, and
E(XM)~ = EX,” < cosince EX,, = EX,;; — FX,, = co. Thus, letting SM = Y7 XM,
and using the regular SLLN,

liminf S, /n > lim SM /n = EXY a.s.

As M — oo, by MCT, EXM — EX;, = oco. Using this, and the fact that the
intersection of countably many almost sure events is almost sure, we have

P(S,/n — o0) =P < m liminf S, /n > EX{VI> =1
M=1

so Sp/n — 00 = 1 a.s.

2. You actually only need to assume X,, — 0 in probability to to this problem.

Since X,, — 0 a.s. implies, for any k, that P(X,, > k~2) — 0, we have that for each
k, there exists an ny such that P(X,, > k~%) < k=2. By Borel-Cantelli, P(X,, >
k=% i.0.) = 0, implying that, almost surely, only finitely many X, will exceed k=2,
meaning » " X, will be finite. Thus, almost surely, lim,,Y,, = >>7°X,, will be
finite.

3. ©
(a)

(b)
()
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4. The first step is to prove that | X,|/n — 0 a.s. The fact that F|X,| < co and X, i.i.d
implies | X,|/n — 0 a.s. has been proven many times in these answers, see for example
1997 Fall, 4(a), or 2007 Spring 1(ii).

Next, we prove that maxj<;<, |X,|/n — 0 a.s. This follows from | X, |/n — 0 a.s, and
the following lemma:

Lemma: if a, > 0 is a sequence of numbers, and a,/n — 0, then %maxlgign a, — 0.

Proof. Given € > 0, choose k so n > k implies a,,/n < . Then

‘ maXj<i<n @ . max(xi,...,T ,
lim sup ——==""" < lim sup (@1, k>—|—max—‘z§0+€
n n n n k<i<n 7
This holds for all £ > 0, so ===t — (), u

Finally, let M,, = max;<;<, |X,|. We have, using what we just showed and the SLLN,

that M .
n

50 a.s. and —

n | S |E X1

Thus, the product of these sequences converges to the product of the limits a.s, proving
that M, /|S,| — 0 a.s.

a.s.
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2009 Fall

1.

2.

3.

See 2011 Fall, problem 2.

Note Var X,, =n"2% so Y. Var X,, < oo < a > % It follows, by the “Kolmogorov

1-series theorem”, that a > % implies > X,, converges a.s. When a < %, the more

subtle 3-series theorem is needed. To check the conditions of this theorem are satisfied,
it suffices to realize that, for any A > 0, if ¥,, = X, 1x,<a}, then > Var Y, = oo,
which follows since Y,, = X, for large enough n.

Note | X,,| = n~® with probability 1, so > X,, converges exactly when o > 1.

(i) You can prove, by induction, that V,,_; is independent of U, for all £ > 0. It
holds when n = 2, since V; = U is independent of all other U;. Assuming V,,_; is
independent of all U, , the inductive step follows since V,, is a function of V,,_;
and U, both of which are independent of U,, 1. for k > 0.

(ii) This problem is unfair, since it requires knowledge of conditional expectation,
which is not covered until 507b. However, you should be able to prove equation
(%), shown in the next part, and this is all you need in order to do part (iii).

Let A= {V,_; €0,3]} and B={V,_; € [1,1]}. Then

Vn - 2Vn_1Un1A + (2Vn—1 - 1)UnlB
= Up(2V,_1 (144 15) — 1p)
- Un(QVn,1 - 13)

Thus, using the independence of U,, and V,,_1,
1
E[Vn|Vn_1] = E[Un|Vn_1]'E[2Vn_1—1B|Vn_1] = E[Un](QVn_l—IB) = 5(2‘/”_1—13)

(iii) Taking the expectation of the equation E[V,|V,_1] = V,,_1 — 15, we get
EVn = EVn_l — P(Vn_l € [%, 1]) (*)

which gives

n 1 n
EVy=EVi+ Y EVi—EVio =5 = P(Vioi €[3,1)

k=2 k=2

Thus, for all n, Y, _, P(Vi—
1 €3

€[3,1]) =3 — EV, < 1 (since V,, > 0), proving in
particular that P(Vj_ (

1
11]) = 0ask — 0o, s0 P(Vjy < 3) — 1.
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2010 Spring
1. (a)

P(|77n‘>5):P<ﬂXi>0):(1—e_>‘)"—>0 as n — 0o
1

(b) They are asking if there is a sebsequence converging in L; to some 7, implying
convergence in probability as well. Since every subsequence converges in proba-
bility to 0, we would need n = 0, so En,, — 0. Since Em,, = A", this is only
possible when \ < 1.

2. Suppose sup X,, < oo a.s. Then {limsup, X,, < A} 7 {sup, X,, < oo} as A — oo,
since if sup,, X,, < oo, then limsup,, X,, is certainy less than some A. It follows that,
for some A, P(limsup, X,, < A) > 0. Since limsup X,, < A implies X,, will be
more than A only finitely many times, this implies P(X,, > A i.0.) < 1. Finally, by
Borel Cantelli, Y P(X,, > A) = oo would imply P(X,, > Aio.) = 1, we have that
Y P(X, >A) < 0.

Suppose that > P(X, > A) < co. By Borel-Cantelli, P(X,, > Aio.) = 0. Thus,
with probability 1, the sequence X,, will be greater that A only finitely times, meaning
sup X,, < oo (since sup X,, will be max(X,,,...,Xn,,A4), where ny,...,n;, are the
indices for which X,, > A). Thus, sup X,, < oo a.s.
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3. We first show that Sy, /o\/an — S,,/0+/a, — 0 in probability. For any €, > 0,

P(|Sn,, — Sa,|/ov/an > €) = P(|SN, — Sa,| > e\/a,0)
0

< P{ISx, = Su,l > ev/anr} 0 {INa = aa| < 8a,}) + PN —4573)

< P(_an%rﬁ)éané |Sk — Sa,| > ev/an0)
The above could use some explaining. The first < follows from P(A) = P(AN B) +
P(AN B°) < P(AN B) + P(B°), and in this case, ﬂGB"’)'rOneans that P(B°¢) — 0 as
n — oo, which follows since N, /a,, — 1 in probability. Finally, given that the random
N, is at most a,0 away from a,, the event |Sy, — S,,| > ca,o that this holds when
N,, = some k.

We know use Kolmogorov’s maximal inequality, which says that, given X;, X5...
independent, EX; = 0, then P(max;<x<p |S,| > ) < 272Var S,,. Thus, applying this
to X4, 6, Xa,641,-.. and X, 5, X4, 6-1,.-., We have

_ < _ _
P(|Sn, — Sa.|/o/a, >¢€) < P(éﬂg{)}(ﬂé |Sk — Sa,| > ev/ano) + p<1gr—n&)§n5 |Sk — Sa,| > ev/ano)
20

(5anVarX,§—2
3

Var (S,, 164, — Sa,) =

~ £202a, e202q,,

Letting & — 0 proves that P(|Sy, — Sa,|/0+v/an > €) — 0 as n — oo, proving

SNn San

o+/a, B o+/ay,

— 0

in probability.

Furthermore,
Sa, /0v/an — N(0,1)
in distribution by the CLT. Thus, using Slutsky’s to add the last two sequences gives

SNn/O\/a—) N(O,l)

in distribution.
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2010 Fall

1. It will converge to zero a.s. We have

EX% 1
P(|Xn/n] >¢) < n2e? < n2e2

Thus, by Borel Cantelli, P(|X,,/n| > ¢ i.0.) = 0, so intersecting the events {|X,,/n| >
gx 1.0.}¢ for some g5, \, 0 givens X,,/n — 0 a.s.

2. Let Y,, = m “Ifx;|<ymiogn}- The Lindberg-Feller CLT has two conditions. For
the first, we fi é

1 vnlogn 1
EY? = : / y* - dy
nlogn 1 Y
2
= -1 1
nlogn og(y/nlogn)

_ 1 (1 N loglogn>
n logn

Thus, we get that Y1 | EY,?, =nEY? =1+ logl% — 1. Since this limit is nonzero,
we can apply Lindeberg, and since it is 1, we have that 02 = 1.

Secondly, we compute

) 1 Vnlogn 1
E(Yy: Ly,s) = ' 2/
g

y = dy
nlogn JnTogn Y
1

== - 2(log(y/nlogn) —log(ey/nlogn))
nlogn
2

= log(1
logn og(1/e)

So, we get > | EY 1y, jse =n-EY? 1y, jsc =n-
Thus, we can apply Lindeberg-Feller CLT to obtain

-log(%) — 0, as required.

nlogn

ZYn,i — N<O7 02) = N(07 1)

=1

Next, we show that >} \/T% —> Y., — 0in probability. Note that this difference
is given by >} Xil|x,|>ynTogn, SO We compute

P< >g) §P<U{|X,~|>\/nlogn}) <n-P(|Xy| >+/nlogn)

But P(|X:| > v/nlogn) = Qfoogn%dx = —L_ 5o the above is at most @ — 0,

; - nl T nlogn’
proving convergence in probability.

> Xiljx, > amegn
1

It can be proven that if A, == A and B, — b (a constant) in probability, than
A, + B, = A+ B. Using this, combined with > " Y,;, = N(0,1) and
S % — > Y,; — 0 in probability gives the desired result.
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3. Let XT = max(X,0). I claim EX' < oco. If not, then for all M € N, we would have
EX*/M = oo, so that

Y P(X[/n>M)=> P(X}/M>n)> / P(X*/M > t)dt = EXT/M =
n=0 n=0 0
implying P(X;7/n > M i.0.) = P(limsup X;"/n > M) = 1. Since this holds for all M,

it follows that limsup X, /n = oo almost surely, contradicting the problem statement.
Finally, using SLLN,

X Xy as
limsupZ b §limsu1pL = EX <o0
n n n n
4. It does follow that F|X| < oo.
Proof 1: Choose M so P(|Y| < M) =& > 0. For all ¢, we have

P(X +Y[>t—-M) > P{[X] >t} n{[Y] < M}) = P(X| > t)P(|Y| < M)
Using this,

= © PIX +Y]>t— M)
FlX| = Pl X| >t dt</ dt
X A (x1>nar< | S

:é(M+/Omp(yX+Y\>t)dt)

1
= (M +E|X+Y]|) < o0
g

Proof 2: Let p be the measure on R induced by X, so u(A) = P(X € A), and v for
Y similarly. Since E|X + Y| < oo, using Fubini’s theorem we have

E\X+Y]:/\x+y[du><1/:/(/]x+y|du)dz/<oo

This implies (f |z 4+ y|du) < oo for v a.e. y, so there is some gy, for which it holds.
Then

ﬂﬂz/MWﬁ/wﬂMHmWZ/m+mw+MKm
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2011 Spring

1. Impossible Problem! You need the additional assumption a, > 0 for this problem to
work; if infinitely many a,, are negative, then > P(|X,| > a,) would be oo!

Asssuming additionally each a,, > 0, then
|Snfan] = | Xn/an + 2222 > X, fa,| — 9222|2222 > | X, fa,| — O 22

an  Gn-—1 an—1

S0
limsup | X, /a,| <limsup|S,/an| + C - |Sh_1/an-1| =0  a.s.

In particular, this shows that P(|X,/a,| > 11i0.) = 0, because |X,,/a,| i.0. would
imply lim sup,, | X,,/a,| > 1. By Borel-Cantelli, we must have > P(|X,| > a,) < oc.

2. Typo! They meant to say P(X,, =1) =p, P(X,, =—-1)=1—0p.

(a) By SSLN, S,,/n — EX; = 2p — 1 # 0 a.s, so with probability 1, for some N,
Sy will be bounded away from 0 for all &£ > 0.

(b) Note that, using y/n(n/e)™ < n! < ey/n(n/e)",

o =0= 55 () > & (i) = v

Thus, >, < P(S2, = 0) = 00, so P(S,, = 01i.0.) = 1. This shows P(7 < 00) =1,
since 7 = oo implies Sy, = 0 not infinitely often. We now compute E7. In order
for 7 to be 2k + 2, the path has to start by moving to 1 (or —1), stay at or above
1 (below —1), then return to 0. The number of ways the middle step can happen

is counted by the Catalan numbers, %H(Zkk) Thus,

Er=) (2k+2)P(r=2k+2)=> (2k+ 2)# : % <2kk>

k>0 k>0

Using the same approximation as before, this sum is infinite.

3. (a) Without loss of generality, we can assum EX, = 0 by replacing X,, with X! =
X, — EX,.
Using Chebychev’s,

E(S!
P(|S,/n| > ¢€) < %

When S}, is expanded out, it contains summands like X!, X2 X?, X} X, X2X; X},

and X;X;X;X,. Only the first two have nonzero expectation (since distinct X;

are independent, and EX; = 0). Thus, letting sup EX?! = M,

ZEX?"'ZZ'# EX?EX? < n-M+n(n—1)M

P(1S,/n| > €) < € O(1/n?)

niet nied
Using Borel Cantelli, we then have P(|S,/n| > € i.0.) = 0. This holds for all ¢,
so intersecting these events for some sequence e \, 0 gives S, /n — 0 a.s.

(b) If E|X;| < oo, then S,,/n — EX; a.s.
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2011 Fall

1.

2.

3.

(a) X,, » X as. if PHw: X, (w) = X(w)}) =1. X,, » X in L, if E|X,, — X| — 0.
(b) i Let Xy, X5... be independent, where P(X,, = n?) = & =1 — P(X,, = 0).
Then X,, — 0 a.s. (since P(X,, > 0i.0.) = 0 by Borel-Cantelli) but FX,, =
14 0.
ii. On the probability space [0, 1], with Lesbegue measure, let X, , = 1[%,%],
for n >0, and 1 < k < n. Then let X/, be the sequence

Xl,la X2,1> X2,2a X3,1> X3,2a X3,37 s

i.e. the result of ordeing X, ; lexicographically by (n, k). Since E|X, x| =
L — 0asn — oo, it follows X, — 0 in L;. However, X/ (w) # 0 for any
w € [0,1], since any w will be contained in at least one of the intervals [£=1, £]
for each each n.
(c) For any & > 0, we have P(|X, — X| > ¢) < ZXo=X Thus, 3 P(|1X,, — X| > ¢) <
1Y E|X, — X| < 00, s0 P(|X, — X| > ¢ i.0.) = 0 by Borel Cantelli. This shows
that X,, — X a.s.

First, note that
P(—log X,/logn>1)=P(X, <n')=1/n

Thus, > P(—log X,,/logn > 1) = 0o, so P(—log X,,/logn > 11i.0.) =1, so
limsup,, —log X,,/logn > 1 a.s.

Now, for any € > 0, we similarly have that

1
ZP(—loan/logn >1+4¢)= Zn1+s < 00

So P(Tog’iff + €1i.0.) = 0, so limsup, % < 1+ ¢ a.s. Intersecting the events
{lim sup,, _llggf" <1+ %} for k € N shows that lim sup,, % <1 as.

(a) Note the constant that X +Y equals must be 1, since EX+Y = EX+EY = $+1.
Thus, the i*" bit of X is the opposite of that of Y.

(b) Suppose that, for each i, vector (X;,Y;, Z;), where X; is the i*" trinary digit of
X, is uniformly distrubted over the 6 permutations of (0,1,2). Then X,Y,Z are

each uniformly distrubted over [0, 1] since each of their trinary digits are 0,1 or 2

with equal probability, and X 4+ Y + Z is always equal to 1 + % + 3% 4= %
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2012 Spring

1. (a) Let X =) X;. By MCT, EX = > \; < 00, so we must have P(X = o0) = 0.
Alternatively, P(X,, > 0) =1 —e* < \,, so >, P(X,, > 0) < o0, so P(X,, >
0 i.0.) = 0, implying only finitely many X,, are nonzero a.s.
(b) P(X, > 0) 1 —e* > (\/2) A3, where a A b = min(a,b). Therefore,

S P(X, >0)> > (M/2)A g =00,50 P(X, >110.)=1,s0 > X, =00 as.

2. Note that Var X = EX? = % By CLT,

>0 X

It = NO.1/3 2
By SLLN,
n 2
21 X7 BWEX?=1/3
n
SO \/_
n a.s.
vV ”
1<%

Using Slutsky’s theorem (X,, = X and Y,, — ¢ in probability implies X,,Y,, — ¢X),
along with (2) and (3) gives

DY RN R

V2 X7
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3. Remark: As far as I can tell, this problem is ridiculously hard, using tricks that aren’t
that common or intuitive. The = direction is reasonable, but I'm almost certain
no one got the <= when this test was given.

(a) = (b) Letting T,, = n=/P 37 &, we have

— 1\i/p
S _p g =D
nl/p nl/p
Letting n — oo above, since T,, — T" a.s, and (";11/);/10 — 1, we get
& _ (n—1)'" _

so that &,/n'/? — 0 a.s. This means P(|&,|/n'/? > 1i.0.) = P(|&,|P > ni.0.) =0, so
(using Borel Cantelli on the last inequality),

Bl = / PP > tydt < 37 P& > n) < oo
n>0

proving E|¢|P < oo. Now, suppose by way of contradiction that p > 1 and E{ # 0.
Using Jensen’s, (E[¢|)P < E|£|P < o0, so E|¢| < oco. By SLLN,

—Zznl &n — BEE#£0

almost surely as n — oco. We also have, since p > 1, that

1

—F — OO
nl/p—1

Multiplying the two above limits implies that
D et §n

— 00 a.s.
nl/P

contradicting that the limit was finite. Thus, we must have p < 1 or E¢ = 0.
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(b) = (a) First, suppose that p < 1. We can actually assume p < 1, since p = 1
follows from SLLN. We will show that » |° % converges a.s. This implies  |° nl v

converges a.s., which by Kronecker’s Lemma implies n~'/? Y1 & — 0 as., the desired
result.

To show $ {° |€{}p, we use the Kolmogorov 3-series test. Let Y,, =
must check that

S L(l&l” < n). We

1) Y P(JénlP > n) < o0 (i) Y77 EY,, converges (iii) >>7° Var Y, < oo

(i) This is true since E|{[} < oo, which holds if and only if Y 7° P(|(]} > k) < oo.

(ii) The below computations uses many clever tricks. For the first equality, we are
using &1 Lig,p<n = 21 [&1|1{k—1<[esjp<k}- For the second, we use Fubini’s, being
careful with the indices. For the third, we bound >-°7, n=1/7 < fkoo /P dx. For
the fourth, realize that when |zi|? < k, then |&;['77 = (|&[P)(/P—1 < g(/p)—1

> BP0 = 3 B e rcinen)
n=1

n=1 k=1

[o¢] o0 1
= Bl k<) Y i
k=1 n=~k
00 kl—l/p
< E P, l=pq,., » -
< ; (STi ST e Sy P gk})l/p 3
1 (o]
< > E<|5|p (k1771 1{k71<|£|p§k}> L
1/p—14~
L pp<
T1p_1 s

(iii) To show Y Var Y,, < oo, we show Y EY,? < oo, using the same tricks.

ST B e < n) ZZ” MPE(IE L p-1<iep i)
n=1

o0
= Bl Lpr<iepny) Z e
k=1 n=k

<> B(e - 6> B
1T Ne—1<jepp<k)
P 2/p—1
1 > EX;
< E(& P11 qciepe) = — 2

This completes the proof in the case p < 1.
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Now, suppose E§; = 0 and p € (1,2). Let Yy = §ly¢, <pr/ey, and let T, = Y1+ -+ Y.
Since

> Pl > K < [ P(ap > it = BlgP < o,
0

it follows that P(& # Y; i.0.) = 0, so it suffices to prove T},/n'/? — 0. We compute

8

S Var (/K1) < S B2
k=1

k=1

Kkl/p 2y
-y / kz/me > y) dy
k=1

[e.9]

< Z k,g/p P(lE] > y) dy

k—1 (n 1)1/17
ub1n1
' Z/ 2yP(I¢] > y) (Z km) dy

by an integral:

g

—1)t/p

We can bound >

m=n kQ/P

for any y € [(n — 1)'/?,n!/?], and some constant C. Therefore,
> Var (vi/k?7) < [ 20y P(E] > ) dy < o0,
k=1 0

with the last inequality following since E[¢[P = [ py? *P(|¢] > y)dy < co. By
Kolmogorov’s theorem for the convergence of random series, letting u, = EYj, we
have Y 5°(Yy — ur,)/kY/P < oo a.s, which by Kronecker’s Lemma implies

n_l/pZYk — . — 0 a.s.
1
To show that n=/? > 1Y, — 0 a.s, completing the proof, we need only show n~/p ST g —

0. Since juy, + E(&; €] > kY/P) = E€, = 0, we have that

|kl < E([E]; €] > KMP) = EMPE(|E) /KM €] > kP
< KYPE(|EP/E; €] > kTP
= k‘Hl/pE(\ﬂp; |§| = k.l/p)

Since Y1 k~HYP < Knl/P and E(|€[P; €] > kY/P) — 0 as k — oo (by DCT), it follows
that n'/? 3"y, — 0, completing the proof.
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2012 Fall

1.

(a)

For any 0 < x < 1, we have

2mn

P(X, <z) :/ 1 +sin2mnt dt = ¢ + =2z, 0 4 ()
0

as n — oco. Thus, X,, = X, where P(X < z) =z, i.e, X is uniform on [0, 1].
Let a, = —logn. Then

P(i logX, >2)=P(X,<n?)=n2+ —1_005(22;:'"_2) =n2+0((n?

Notice ZP(%loan > 2) < oco. By Borel-Cantelli, P(%loan > 21i.0.) =0,
proving lim sup,, ai log X,, < 2 a.s. Furthermore,

P(tlogX,>1)=P(X,<n')=n"2+ Locos(em) _ -1

2mn

So by Borel-Cantelli again, P(i log X,, > 11i.0.) = 1, so the limsup will be at
least 1 almost surely.

possibly wrong solution: The following proof did not at any point use sup Var X,, <
00, so I suspect I made a mistake. Please check to make sure my logic is correct.

Given n, for each m we can variables i.i.d. X!, ..., X" so
1 n 4 1
Xm_|_..._|_Xm_Xm

We first show that the sequence X}, X3, X3 ... is tight. Since X! > A for each i
implies that 3, X!, >nA, and X!, £ 37, Xi  we have

P(X! > A" =P (ﬂX}% > A) < P(X,, > nA) < P(|X,| > nA).
1

Similarly, P(X}, < —A)" < P(|X,,| > nA), so
sup P(|XL] > A) =sup P(X! > A) + P(X}, < —A) < sup2P(|X,| > nA)/"

By tightness of X,,, the right hand side of above approaches 0 as A — oo, proving
the left does as well, so the sequence {X!},, . is tight.

By Helly’s selection theorem, there exists a subsequence X! . and a random vari-
able X' so that X} = X'. Since X}, < X, this means X, = X', where

Xt £ X', Since Zn, — Z,Y, = Y and Z,,Y, being independent implies
Zn+Y, = Z+Y (to prove this, look at characteristic functions), it follows

that . .
X, £ X0 = Y X'
1 1

But we also have X,,, == X so we must have X < >°7 X" This shows X has
been written as a sum of n iid random variables, so X is infinitely divisible.

65



(b)

In general, if X is any varible where | X| < 1 a.s, then X is not infintiely divisible.

IftX,+...X, 4 X, then it must mean that each X; < % a.s. If not, for some
£ > 0 then there would be a possibility that each X; > % +¢, implying > X; > 1,
which is a contradiction, since X has the same distribution as ) X;, and X <1
always. Similarly, X; > —1 a.s, so |X;| < = a.s, implying

Var X; < EXi2 < % (1)
n
However, we also have
Var (X) = Z\/ar (X;) = nVar (X))

so that
Var X

Var (X;) = "

(2)
But (1) and (2) are in contradiction for large enough n, so X is not infinitely
divisible.

We could just run through the same argument above to show that U is not
infinitely divisible.

I think they were going for this argument: if U’ has the same distribution as U,

and is independent of U, then U + U’ <x (you can check this). Thus, if you could
divide U into any number of parts, n, then you could do the same for U’, and

then use this to divide X < U/ + U’ into 2n parts. This, doesn’t quite contradict
the fact that X is non infinitely divisible, but it’s close.
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2013 Spring

1.

(a)

We have that

B(X2, (Xl > 2)) = B(2 5105 > 2) = L ECEL(| > Vi)

SO

ZE L(|Xin| > €)) = E(XT1(IX41| > ev/n))

Since X?1(|X;| > ey/n) — 0 almost surely as n — oo, and EX}? < oo, by the
DCT, the last quantiy approaches 0 as n — oo.

Using Jensen’s inequality, B|X;,|[" = E((X2,)P/?) > (EX},)P/? > EX}

ZE 1(|Xin| > €)) giE|Xi,n|p—>o

—_

Let X;, have normal dsitribution N (0, 2: 1) when ¢ > 2, and X, have dis-
tribution N (0, = 1) Then because Z; ~ N(0,07) and 22 ~ N(0,032) implies
Z1+ Zy ~ N(0,0% + 03), we have that

L1424+ 202
Wn~N<O, Lorert ):N(O,l)

2n—
so that not only does W,, — N(0,1) in distribution, but each W, is equal to
N(0,1) in distibution.

However, the Lindeberg condition does not hold, since X, , ~ N (0,32—_?) =
N(0, %), SO

ZE 21| Xinl > ) > B(X2 51

n,n?

(| Xnn| >¢€)) > eP(Xpn >¢€) A0

where the last quantity does not approach zero since each X, , have the same
N (0, 5) distribution, so P(X,,, > ¢) is constant in n.
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2.

(a)

By definition, a matrix M is nonneggative semidefinite if 27 Mz > 0 when x is
any column vector. Given a column vector x = [ag a1 ... a,-1], expand out the
right side of the inequality

0< E((ao FaX +asX?+ .. .an_lX”_1)2>

then distribute the E over all of the terms, so each X* becomes my. You will
see that the result is exactly 27 H,z, proving 27 H,z > 0, so H, is nonnegative
semidefinite.

First of all, what does AFm,, mean? First of all, they don’t just mean Am,, =
Mpi1 — My, they mean that for any sequence a,, Aa, = a,+1 — a,. So, Aa, is
itselt a sequence, and you can apply A to that, getting A2a,. For example,

AZmn = A(7nn+1 - mn) = (mn+2 - mn+1) - (anrl - mn) = Mpt2 — 2mn+1 + my,

3, _ _
Ay, = My 3—2Myppo+My 1 —(Myy2—2Myy1+My) = My y3—3Mypo+3My 1 —my,
4
A*my, = myq — dmy s+ 6my 0 — 4my 1 +my,

Fans of combinatorics will notice Pascal’s triangle appearing on the RHS of each
equation. In fact, you can prove by induction that

k

k )

AFm, = ( > —1y**m,

> (5) o
]_

Using this, and the binomial theorem, we have that

0<EX"(1-X)F = Ei: (j

k
J=0 J=0

First, we find the c.f. for Y}, which has pdf e™:

1
11—t

1
i —1

ey(it=1)

P(t) = Be™r = / eWe ™V dy =
0

0

This means that the c.f. for Y’vk’l = 1_;t/ke—it/’ﬂ.
Let W,, = v+ > 1, Y’“k*l. Since W,, — W a.s, so that e» — ¢ and each

|eWn| < 1, it follows by DCT that

no _it/k 20 it/k

Y= E itW:1~ E ith:l- iyt € — it
o= e e e [T - 1

1

As far as I can tell, this is the only way to express the characteristic function.
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(b)
0 —it/k —zt/k|

, e 1
e'L’yt : ez'yt
Hl—zt/k; | |H|1—zt/k;| 1:[ /12 1 £2 k2
— 1 1 1
= exp (Z —§log(1 + t2/k2)) < exp (—5 log(1 + %) — §log(1 + t2/4)>

k=1

o) =

Using the concavity of log, so that logx lies above the secant line joining (1,0)
and (1 + % log(1 + %)), for any 1 < x < #? is true that

log(1 + t?) — log(1)
1+t2 -1

log(1 +t?)
12

logz > (r—1)= (x —1),

and setting x = 1 + ¢?/4 implies log(1 + t%/4) > 10%17&2 ;S0

lo(t)| < exp <—%<log(1 + %) + w)> = exp(log(1+t2)7%/%) = (V1 +12) /4

Since V1 + 2 > max(1,¢) it follows that

Jrewa< [ IEE < [ (1|t|i/) <.

— 00

(c) It does follow that W has an absolutely continuous distribution.

(d) ® The inversion formula gives

) = [~ e = [ et a

[e.e] —00
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2013 Fall

1. (a) It does follow that S,/n — X. We first show that X,, — X in L;. Note that
| X| <1 as, because if P(|X| > 1+3d) = >0, then P(|X,, — X|>J) > A0.
In particular, | X,, — X| < 2. Thus, given any ¢ > 0,

limsupE|Xn - X| = limsup E(|Xn - X|1|Xn—X\<a) + E(|Xn - X|1\Xn—X\>a)

<limsup ¢ +2P(|X, — X|>¢)=¢

This holds for all €, proving F|X,, — X| — 0. Let |X,, — X|; = E|X,, — X|, and
given €, choose N so that n > N implies |X,, — X|; < e. Then, for n > N,

|Sn/n— X1 <)X - Xy
1

N n
:%Z|Xi—X|1+Z%|Xi—X|1
1

N+1

N n
LSS S
1

N+1

IN

N
1
<=3 IX - X — — 00
_n1| L+e—e asn

Taking the lim sup of the above inequality, the last sum converges to 0, proving
Sn/n — X in Ly, and therefore in probability.

(b) Now the claim does not follow. Let

Y 0 with probability 1 — +
" |n with probability 1

so that X,, — 0 in probability. However, we can show that P(S,/n > 3) > 3 for
all n. In order for S, /n to be bigger than %, it suffices for some X}, to equal k,

for k > 7. Thus, noting that the below product is telescoping, we get

" k—1 2-1_ 1
P(S,n=H>=P| | X =k :1—HT=1—"/n 23
k=n/2 k=n/2

This shows S,,/n # 0 in probability.
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2. (a) This follows from E(X) = [;* P(X > z)dxz, and applying [, to below:
P(X > [z]) < P(X > ) < P(X > |z])
(b) Applying part (i) to [X,[/k,
> P(IXa| > kn) =) P(IX,|/k > n) > E|X, /k| = oo

Using Borel-Cantelli, this says that for all k, P(|X,|/n > kio.) = 1. Thus,
P (M1 {|Xnl/n >k io0.}) =1, proving that limsup,, | X,|/n = oo a.s,

Note that

[Su/nl = X /n+ 2225 2 X /0] = |51 - 1525 2 X /0] = 1527

n n—1 n—1

SO

limsup [2] 4+ [52=1| > limsup [X,./n| =00 a.s.
n
Thus, almost surely the sequence |22 | + |%\ is unbounded, proving that |S,,/n/|

is unbounded almost surely as well.

3. Note that E(X,Y;) = 0, and Var (X;Y;) = E(X2Y?) = EX? = Var X? + (EX,)? =
0% + u?. Thus, by CLT,

XY,
2 XY — N(0,0” + p?)
vn
Furthermore, we have %ZXk — p a.s. by SLLN, so that
n o 1
— a.s.
X w
Using Slutsky’s to multiply these two gives us
Vi XY

o2
ZXk —)N(O,l—i—p)
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2014 Spring
1. (a) We have Var (S,) = >_ Var X; < nC, so
E(S,/n — u)* < Var (S,/n) < % — 0

proving convergence in Lo.
(b) For all € > 0,
Var (S, /n)

e2

P(Sy/pt— > &) = P((Sn/n — p)? > &%) < 0.

(c) There will be a subsequence S, /n(k) = p a.s. You won'’t have a.s. convergence
in general, since you need independence, not just uncorrelation (I can’t think of
a specific counterexample though).

2. (a) Let E, be the event that he wins games 2n and 2n + 1. The E,, are indpendent,
o 1 — . . .
and > P(E,) =>_ Wmmvey 00, 8o by second Borel Cantelli, P(E,, i.0.). Since

he gets a dollar each time F),, occurs, his winnings will be infinite a.s.

(b) Let F), be the event he wins games n,n+1 and n+ 2. Then P(F, i.0.) = 0, since
Y. P(F,)=>, m < 00. So, almost surely, he only gets finite monies.

3. Let

1 k4
an:§Zk2 bn: ;—2

1
We'll use the Lindeberg-Feller CLT to show that Z%n_a” — N(0,1).
Let Yoi = (Xg — ) /by, s0 EY,;, = 0. We have

X "4 12
ZEij_ZVar Vo) = v Xe | 2 R/12

b b
Furthermore, for any € > 0, consider
> BV gy, e
1
Note that [V, x| < %22 — 0 as n — co. Thus, for large n, Y21y, o >e = 0 always, so

lim,,_,, of the above sum is zero.

Thus, by the Lindberg Feller CLT, we have

n nX o .
R 2 Xk - T — N(0,1)
1 n
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2014 Fall
1. (a) (=) Assume that P(E, i.0.) = 1. Let A be an event where P(A) > 0. Then

1

P(E, i.0.)
P({E, 0.} NA)+ P{E, io.} N A"
P({E, i.0.} N B) + P(A°)

IN

" P({E, i.0.} N A) > 1— P(A°) = P(A) > 0.

Since the event {F, i.0.} N A is the same as the event {E,, N A i.0.}, the above
shows that P(E, N Aio.) > 0. By the (contrapositive of the) Borel-Cantelli
lemma, this means that > P(E, N A) = oc.
(<=) Assume that, whenever P(A) > 0, we have Y P(E, N A) = oco. Let
A ={E, i.0.}¢ and consider

> P(E,NA)

n>1

Notice that only finitely many of the above terms can be nonzero: if w € A, then
w is in only finitely many E,, so only finitely many F, N A are nonempty. Thus,
the above sum is finite. Since such sums are always infintie when P(A) > 0, this
means P(A) =0, so that P(A°) = P(E, i.0.) = 1.

(b) This is false. For the prabability space (0,1) with Lesbegue measure, let E, =
(0,1/n). Then P(E, i.0.) =0, but > P(E,N(0,1)) => 1/n = occ.

2. Given € > 0, choose z so the distribution function of X is continuous at  and P(X <
x) < e. Then

PXy+Y, <)< PHU{X,<2ju{Y,<c—a}) < P(X,<2)+ P, <c—x)

limsup P(X,, +Y, <¢) <limsup P(X,, <z)+ PY,<c—x)=¢c+0

n n

Thus, for all € > 0, limsup,, P(X,, +Y, <c¢) <e,s0 P(X,+Y, <c¢)—0.
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3. The answer is that Y,, — 0 a.s. iff a < e.

Note Y,, = 0 a.s. <= logY, — —o0 a.s. We have
@ 1
FElog X; = / logz - —dx = log(a) — 1
0 a
By SLLN,

logV,
n

1 n
=— g log X; — log(a) — 1 a.s.
n
1

Thus, when a < e, we have %log Y, a.s. converges to a negative constant, so logY,, —
—o0 a.s. When a > e, the same reasoning shows logV,, A —oo. When a = ¢, CLT

tells us that
log Y,

a\v/n
where 02 = Var log X;. In particular, P(logV, > 0) = P(Y,, > 1) — 3. Since ¥, = 0
a.s. would imply P(Y,, > 1) — 0, this means that Y,, / 0 a.s.

= N(0,1)
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