Notation

- When I say S_{n}, I always mean $\sum_{i=1}^{n} X_{n}$.
- If E_{n} are events (or sets), I write $E_{n} \nearrow E$ to mean $E_{n} \subset E_{n+1}$ and $\bigcup E_{n}=E$.
- The notation $a \wedge b$ means $\min (a, b)$, while $a \vee b$ means $\max (a, b)$.
- $X^{+}=\max (X, 0)$ and $X^{-}=-\min (-X, 0)$. Thus, $X=X^{+}-X^{-},|X|=X^{+}+X^{-}$.
- Both 1_{A} and $\mathbf{1}(A)$ refer to the indicator function for the set A. Furthermore, $E(X ; A)$ means $E\left(X 1_{A}\right)$. I will often omit set braces, so for example, all of the below mean the same:

$$
E\left(X 1_{\{|X| \leq M\}}\right)=E\left(X 1_{|X| \leq M}\right)=E(X \mathbf{1}(|X| \leq M))=E(X ;|X| \leq M)
$$

- I use $X_{n} \Longrightarrow X$ to mean X_{n} convreges to X in distribution.
- $o(f(t))$ refers to some function $g(t)$ for which $\lim _{t \rightarrow a} \frac{g(t)}{f(t)} \rightarrow 0$. The number a depends on context, but is usually either 0 or ∞.
- Everyone, including qual writers, makes mistakes. These will be marked in red.
- Problems that I couldn't do will be marked with a \cdot, possibly with a partial solution.

Theorems to Know

In addition to all of the usual theorems (Monotone Convergence Thoerem, Fatou's Lemma, Dominated Convergence Theorem, Fubini's Theorem, Chebyshev's Inequality, Jensen's Inequality, Cauchy-Schwarz Inequality, Borel-Cantelli, Weak Law of Large Numbers, Strong Law of Large Numbers, Kolmogorv's Maximal Inequality, Kolmogorov Three-Series Test, Inversion Formula, Continuity Theorem, Central-Limit Theorem, Linberg Feller Central Limit Theorem), these solutions will assume you know the following theorems:

Theorem 1 (Relations Between Convergence Concepts). If $p>q$, then

Any implication not pictured does not hold in general.

Theorem 2. If $X_{n} \rightarrow X$ in probability, then there is a subsequence $X_{n_{k}} \rightarrow X$ a.s.

Theorem 3. $X_{n} \rightarrow X$ a.s. if and only if for all $\varepsilon>0, \sum_{1}^{\infty} P\left(\left|X_{n}-X\right|>\varepsilon\right)<\infty$.

Theorem 4 ("Layer-Cake" Formula).

$$
E|X|=\int_{0}^{\infty} P(|X|>t) d t
$$

and more generally,

$$
E|X|^{p}=\int_{0}^{\infty} p t^{p-1} P(|X|>t) d t
$$

When $p=1$, the above is used to prove the following very useful fact:

Theorem 5. If X_{1}, X_{2}, \ldots i.i.d, then $E\left|X_{1}\right|<\infty$ if and only if $X_{n} / n \rightarrow 0$ a.s.
The next result is very useful for problems that involve $\max _{1 \leq k \leq n} X_{n}$:

Lemma 1. Let a_{n}, b_{n} be sequences of numbers where $b_{n} \rightarrow \infty$, and $m_{n}=\max _{1 \leq k \leq n} a_{n}$. If $\frac{a_{n}}{b_{n}} \rightarrow 0$, then $\frac{m_{n}}{b_{n}} \rightarrow 0$.

You may not know the next theorem by this name, but it is taught in 507a:

Theorem 6 (Skorohod's Reprentation Theorem). If $X_{n} \rightarrow X$ in distribution, then there exists random variables $X_{n}^{\prime}, X^{\prime}$ with the same distributions as X_{n}, X such that $X_{n}^{\prime} \rightarrow X^{\prime}$ a.s.

Theorem 7 (Slutsky's Theorem). If $X_{n} \Longrightarrow X$ and $Y_{n} \Longrightarrow c$, a constant, then $X_{n}+$ $Y_{n} \Longrightarrow X+c$ and $X_{n} Y_{n} \Longrightarrow X c$.

For a proof of $X_{n}+Y_{n} \Longrightarrow X+c$ when $c=0$, see Spring 2008 Problem 2.
For $X_{n} Y_{n} \Longrightarrow X c$ when $c=1$, see Spring 1997 problem 2.
The next theorem is useful when you what to prove, for example, $\frac{\sum_{1}^{n} X_{k}}{n^{p}} \rightarrow 0$.

Lemma 2 (Kronecker's Lemma). If $a_{n} \rightarrow \infty$ and $\sum_{1}^{\infty} \frac{x_{n}}{a_{n}}$, then

$$
\frac{1}{a_{n}} \sum_{1}^{n} x_{k} \rightarrow 0
$$

Theorem 8. If $E X^{2}<\infty$, and $\varphi(t)=E^{i t X}$, then

$$
\varphi(t)=1+i(E X) t-\left(E X^{2}\right) t^{2} / 2+o\left(t^{2}\right) \quad \text { as } t \rightarrow 0
$$

To make this look cleaner, let $\mu=E X, \sigma^{2}=\operatorname{Var} X=E X^{2}-\mu^{2}$. Then

$$
\varphi(t)=1+i \mu t-\left(\sigma^{2}+\mu^{2}\right) t^{2} / 2+o\left(t^{2}\right) \quad \text { as } t \rightarrow 0
$$

1994 Fall

1. (a) Given $\varepsilon>0$, there exists an M so that $E\left[\left|X_{n}\right| 1_{\left|X_{n}\right|>M}\right]<\varepsilon$ for all n.
(b) Let $X_{n}=n$ with probability $\frac{1}{n}, X_{n}=0$ with probability $1-\frac{1}{n}$.
(c) First, realize that uniform integrability implies that $E X_{n}$ is bounded as $n \rightarrow \infty$, so by Fatou's lemma, $E X \leq \lim \inf E X_{n}<\infty$. In particular, $E\left[X 1_{|X|>M}\right] \rightarrow 0$ as $M \rightarrow \infty$ (by DCT).
Thus, given $\varepsilon>0$, we can choose M so both $E\left[X_{n} 1_{X_{n}>M}\right]<\varepsilon / 2$ for all n and $E\left[X 1_{X>M}\right]<\epsilon / 2$. Let

$$
Y_{n}=X_{n} 1_{X_{n} \leq M} \quad Z_{n}=Z_{n} 1_{X_{n}>M},
$$

so that $X_{n}=Y_{n}+Z_{n}$, and similarly write $X=Y+Z$.
Then $\left|Y_{n}\right| \leq M$, and $Y_{n} \rightarrow Y$ a.s, so by DCT, $E Y_{n} \rightarrow E Y$. Thus, as $n \rightarrow \infty$,

$$
\left|E X_{n}-E X\right| \leq\left|E Y_{n}-E Y\right|+E\left|Z_{n}\right|+E|Z| \leq\left|E Y_{n}-E Y\right|+\varepsilon / 2+\varepsilon / 2 \rightarrow \varepsilon
$$

proving $\lim \sup \left|E X_{n}-E X\right| \leq \varepsilon$ for all $\varepsilon>0$, so $E X_{n} \rightarrow E X$.
(d) Impossible Problem! What they are asking you to prove is just plain wrong. Let X_{1} be any variable with $E X_{1}=\infty$, and let $X_{n}=X=0$, for $n \geq 2$. Then $X_{n} \rightarrow X$ a.s, and $E X_{n} \rightarrow E X$, but $\left\{X_{1}, X_{2} \ldots\right\}$ is not uniformly integrable since $E\left[X_{1} 1_{X_{1} \geq M}\right]=\infty$ for all M.
However, this problem does work with the additional assumptions that $E X_{n}<\infty$, $E X<\infty$, and $E\left|X_{n}-X\right| \rightarrow 0$.
(e) Typo! They meant to say $E f\left(X_{n}\right) \leq c<\infty$.

Given $\varepsilon>0$, choose M so $x>M$ implies $\frac{x}{f(x)}<\varepsilon / c$. Then

$$
E\left(X_{n} 1_{X_{n}>M}\right)=E\left(f\left(X_{n}\right) \cdot \frac{X_{n}}{f\left(X_{n}\right)} 1_{X_{n}>M}\right) \leq E f\left(X_{n}\right) \cdot \varepsilon / c \leq c \cdot \varepsilon / c=\varepsilon
$$

proving uniform integrability.
2. (a) Typo! The phrase "show that $Y_{n} \rightarrow Y_{n}^{\prime}$ converges in distribution" is nonsesnse. They probably meant "show that $Y_{n}-Y_{n}^{\prime}$ converges in distribution."
To see this, let $\varphi_{n}(t)$ be the c.f. for Y_{n}. Since $Y_{n} \rightarrow Y$ in distribution, for some Y, we have $\varphi_{n}(t) \rightarrow \varphi(t)$, where $\varphi(t)=E^{i t Y}$. This implies $\varphi_{n}(t) \varphi_{n}(-t) \rightarrow$ $\varphi(t) \varphi(-t)$. Since $\varphi_{n}(t) \varphi_{n}(-t)$ is the c.f. for $Y_{n}-Y_{n}^{\prime}$, and $\varphi(t) \varphi(-t)$ is continuous at zero, by the continuity theorem, we have that $Y_{n}-Y_{n}^{\prime} \rightarrow Z$, where Z has c.f. $\varphi(t) \varphi(-t)$.
(b) The c.f. for $a_{n} S_{n}$ is $\exp \left(-c\left|a_{n} t\right|^{\alpha}\right)^{n}=\exp \left(-c n\left|a_{n}\right|^{\alpha}|t|^{\alpha}\right)$. If we let $a_{n}=n^{-1 / \alpha}$, then the c.f. for $S_{n} / n^{1 / \alpha}$ becomes $\exp \left(-c|t|^{\alpha}\right)$. Thus, not only will $S_{n} / n^{1 / \alpha}$ converge in distribution, but it will be equal in distribution to X_{1} for each n. So, Z and X_{1} have the same distribution.

1995 Spring

1. Suppose $F_{n} \Longrightarrow F$. Then there are r.v.'s X_{n}, X where X_{n} (resp. X) has distribution F_{n} (resp. F), and that $X_{n} \rightarrow X$ a.s. (Sorokhod's representation theorem). Since h is continuous, this means $h\left(X_{n}\right) \rightarrow h(X)$ a.s, and by bounded convergence theorem, $E h\left(X_{n}\right) \rightarrow E h(X)$, so that $\int h d F_{n} \rightarrow \int h d F$.
Suppose $\int h d F_{n} \rightarrow \int h d F$ for all bounded, continuous h. Let x_{0} be a continuity point of F. Given $\varepsilon>0$, let

$$
h(x)= \begin{cases}1 & x \leq x_{0} \\ \text { linear } & x_{0} \leq x \leq x_{0}+\epsilon \\ 0 & x_{0}+\epsilon \leq x\end{cases}
$$

Then $1_{x \leq x_{0}} \leq h(x) \leq 1_{x \leq x_{0}+\varepsilon}$, so
$\limsup _{n \rightarrow \infty} F_{n}\left(x_{0}\right)=\limsup _{n \rightarrow \infty} \int 1_{x \leq x_{0}} d F_{n} \leq \limsup _{n \rightarrow \infty} \int h d F_{n}=\int h d F \leq \int 1_{\left\{x \leq x_{0}+\epsilon\right\}} d F=F\left(x_{0}+\epsilon\right)$
As $\epsilon \rightarrow 0$, this shows $\lim _{\sup _{n \rightarrow \infty}} F_{n}\left(x_{0}\right) \leq F\left(x_{0}\right)$. Doing a very similar argument using

$$
h(x)= \begin{cases}1 & x \leq x_{0}-\epsilon \\ \text { linear } & x_{0} \leq x-\varepsilon \leq x_{0} \\ 0 & x_{0} \leq x\end{cases}
$$

shows $\lim \inf _{n \rightarrow \infty} F_{n}\left(x_{0}\right) \geq F\left(x_{0}\right)$. Thus, $F_{n}\left(x_{0}\right) \rightarrow F\left(x_{0}\right)$, so $F_{n} \Longrightarrow F$.
2. The condition $E \log X<\infty$ is sufficient and necessary. Suppose $E \log X=\infty$. First, note that $\left(X_{1} \cdots X_{n}\right)^{1 / n}$ converging a.s. is the same as $S_{n} / n=\frac{1}{n}\left(\log X_{1}+\cdots+\log X_{n}\right)$ converging a.s, since the latter is the \log of the former. Now, for $M \geq 0$, let $Y_{n}^{M}=$ $\left(\log X_{n}\right) \wedge M$, and $S_{n}^{M}=Y_{1}^{M}+\cdots+Y_{n}^{M}$. Then $S_{n} \geq S_{n}^{M}$, so

$$
\liminf S_{n} / n \geq \liminf S_{n}^{M} / n=E Y_{1}^{M} \quad \text { (a.s.) }
$$

by SLLN. But as $M \rightarrow \infty, E Y_{1}^{M} \rightarrow E \log X=\infty$ by MCT, so for all $k, P\left(\lim \inf S_{n} / n \geq\right.$ $k)=1$. Thus, $P\left(\liminf S_{n} / n=\infty\right)=P\left(\bigcap_{k \geq 1}\left\{\liminf S_{n} / n \geq k\right\}\right)=1$, so S_{n} / n cannot converge to a finite limit a.s.

1997 Spring

1. (a) First, we show $\left|X_{n}\right| / n^{1 / \alpha} \rightarrow 0$ a.s. We have

$$
\sum_{1}^{\infty} P\left(\left|X_{n}\right| / n^{1 / \alpha}>\varepsilon\right)=\sum_{1}^{\infty} P\left(\frac{\left|X_{n}\right|^{\alpha}}{\varepsilon^{\alpha}}>n\right) \leq \int_{0}^{\infty} P\left(\left|X_{n}\right|^{\alpha} / \varepsilon^{\alpha}>t\right)=E\left|X_{1}\right|^{\alpha} / \varepsilon^{\alpha}<\infty
$$

Thus, by Borel Cantelli, $P\left(\left|X_{n}\right| / n^{1 / \alpha}>\varepsilon\right.$ i.o. $)=0$, and intersecting these events for $\varepsilon \searrow 0$ proves $\left|X_{n}\right| / n^{1 / \alpha} \rightarrow 0$ a.s.
This means that $\left|X_{n}\right|^{\alpha} / n \rightarrow 0$ a.s. as well. Applying the below Lemma, we see that this implies $\max _{1 \leq k \leq n}\left|X_{n}\right|^{\alpha} / n \rightarrow 0$ a.s, so that $\max _{1 \leq k \leq n}\left|X_{n}\right| / n^{1 / \alpha} \rightarrow 0$
(b) Note that $E X_{1}$ is finite implies $E\left|X_{1}\right|<\infty$, since $E|X|=E X^{+}+E X^{-}$.

Since $E\left|X_{1}\right|<\infty$, we have that $X_{n} / n \rightarrow 0$ a.s.
Next, we prove that $\max _{1 \leq i \leq n}\left|X_{n}\right| / n \rightarrow 0$ a.s. This follows from $\left|X_{n}\right| / n \rightarrow 0$ a.s, and the following lemma:
Lemma: If a sequence $a_{n} \geq 0$, and $a_{n} / n \rightarrow 0$, then $\frac{1}{n} \max _{1 \leq i \leq n} a_{n} \rightarrow 0$.
Proof. Given $\varepsilon>0$, choose k so $n>k$ implies $a_{n} / n<\varepsilon$. Then

$$
\limsup _{n} \frac{\max _{1 \leq i \leq n} a_{n}}{n} \leq \limsup _{n} \frac{\max \left(x_{1}, \ldots, x_{k}\right)}{n}+\max _{k \leq i \leq n} \frac{a_{i}}{i} \leq 0+\varepsilon
$$

This holds for all $\varepsilon>0$, so $\frac{\max _{1 \leq i \leq n} a_{n}}{n} \rightarrow 0$.
Finally, let $M_{n}=\max _{1 \leq i \leq n}\left|X_{n}\right|$. The previous lemma shows that

$$
\frac{M_{n}}{n} \rightarrow 0 \quad \text { a.s. }
$$

The SLLN implies $S_{n} / n \rightarrow E X_{1} \neq 0$, so

$$
\frac{n}{\left|S_{n}\right|} \rightarrow \frac{1}{\left|E X_{1}\right|} \quad \text { a.s. }
$$

Thus, the product of these sequences converges to the product of the limits a.s, proving that $M_{n} /\left|S_{n}\right| \rightarrow 0$ a.s.
2. Lemma 1: $X_{n} \Longrightarrow X$ and $Y_{n} \Longrightarrow 0$ implies $X_{n}+Y_{n} \Longrightarrow X$.

Proof. Let x be a continuity point of F_{X}, and $\varepsilon>0$. Since $\left\{X_{n}+Y_{n} \leq x\right\} \subset\left\{X_{n} \leq\right.$ $x+\varepsilon\} \cup\left\{\left|Y_{n}\right|>\varepsilon\right\}$ and $\left\{X_{n} \leq x-\varepsilon\right\} \subset\left\{X_{n}+Y_{n} \leq x\right\} \cup\left\{\left|Y_{n}\right|>\varepsilon\right\}$, we have

$$
P\left(X_{n} \leq x-\varepsilon\right)-P\left(\left|Y_{n}\right|>\varepsilon\right) \leq P\left(X_{n}+Y_{n} \leq x\right) \leq P\left(X_{n} \leq x+\varepsilon\right)+P\left(\left|Y_{n}\right|>\varepsilon\right)
$$

Assuming $x \pm \varepsilon$ is also a contiuity point of F_{X}, letting $n \rightarrow \infty$ above shows

$$
F(x-\varepsilon) \leq P\left(X_{n}+Y_{n} \leq x\right) \leq F(x+\varepsilon)
$$

and letting $\varepsilon \rightarrow 0$ completes the proof.
Lemma 2: $X_{n} \Longrightarrow X$ and $Y_{n} \Longrightarrow 0$ implies $X_{n} Y_{n} \Longrightarrow 0$.
Proof. Let $\varepsilon>0, M \in \mathbb{N}$. Then $\left\{\left|X_{n} Y_{n}\right|>\varepsilon\right\} \subset\left\{\left|X_{n}\right|>\varepsilon M\right\} \cup\left\{\left|Y_{n}\right|>\frac{1}{M}\right\}$, so

$$
P\left(\left|X_{n} Y_{n}\right|>\varepsilon\right) \leq P\left(\left|X_{n}\right|>\varepsilon M\right)+P\left(\left|Y_{n}\right|>\frac{1}{M}\right)
$$

Letting $n \rightarrow \infty$, and assuming $\pm \varepsilon M$ is a continuity point of F_{X}, gives

$$
\underset{n}{\lim \sup } P\left(\left|X_{n} Y_{n}\right|>\varepsilon\right) \leq P(|X|>\varepsilon M)
$$

and letting $M \rightarrow \infty$ gives $\limsup _{n} P\left(\left|X_{n} Y_{n}\right|>\varepsilon\right)=0$, so $X_{n} Y_{n} \rightarrow 0$ in probability, and therefore in distribution.

Finally, assume $X_{n} \Longrightarrow X$ and $Y_{n} \Longrightarrow 1$, so that $Y_{n}-1 \Longrightarrow 0$. Lemma 2 implies that

$$
X_{n}\left(Y_{n}-1\right) \Longrightarrow 0
$$

This, combined with

$$
X_{n} \Longrightarrow X
$$

and Lemma 1, gives that

$$
X_{n}\left(Y_{n}-1\right)+X_{n} \Longrightarrow X
$$

3. (a) The general inversion formula gives, for any $a<b$ (and using the fact that F_{n} is continuous, so $\left.P\left(X_{n}=a\right)=0\right)$,

$$
\begin{align*}
P\left(X_{n} \in(a, b)\right) & =P\left(X_{n} \in(a, b)\right)+\frac{1}{2} P\left(X_{n} \in\{a, b\}\right) \\
& =\lim _{T \rightarrow \infty} \frac{1}{2 \pi} \int_{-T}^{T} \frac{e^{-i t a}-e^{-i t b}}{i t} \varphi_{n}(t) d t \\
& =\lim _{T \rightarrow \infty} \frac{1}{2 \pi} \int 1_{|t| \leq T} \frac{e^{-i t a}-e^{-i t b}}{i t} \varphi_{n}(t) d t
\end{align*}
$$

Since

$$
\left|\frac{e^{-i t a}-e^{-i t b}}{i t}\right|=\left|\int_{a}^{b} e^{-i t y} d y\right| \leq b-a
$$

It follows that the integrand in (\star) is dominated by $(b-a) \varphi_{n}(t) \in L_{1}$, so by the DCT,

$$
\begin{aligned}
P(X \in(a, b)) & =\frac{1}{2 \pi} \int \lim _{T \rightarrow \infty} 1_{|t|<T} \frac{e^{-i t a}-e^{-i t b}}{i t} \varphi_{n}(t) d t \\
& =\frac{1}{2 \pi} \int \frac{e^{-i t a}-e^{-i t b}}{i t} \varphi_{n}(t) d t \\
& =\frac{1}{2 \pi} \int\left(\int_{a}^{b} e^{-i t y} d y\right) \varphi_{n}(t) d t \\
& =\int_{a}^{b} \frac{1}{2 \pi} \int e^{-i t y} \varphi_{n}(t) d t d y
\end{aligned}
$$

The last formula implies by definition that $\frac{1}{2 \pi} \int e^{-i t y} \varphi_{n}(t) d t$ is the density of X_{n}.
(b) We have that

$$
\left|\varphi_{n}(t+h)-\varphi_{n}(t)\right|=\left|E\left(e^{i(t+h) X_{n}}-e^{i t X_{n}}\right)\right| \leq E\left|e^{i(t+h) X_{n}}-e^{i t X_{n}}\right|=E\left|e^{i h X_{n}}-1\right|
$$

since $\left|e^{i t X_{n}}\right|=1$. As $h \rightarrow 0, e^{i h X_{n}}-1 \rightarrow 0$, and is dominated by $\left|e^{i h X_{n}}-1\right| \leq 2$, so by the Dominated Convergence Theorem, $E\left|e^{i h X_{n}}-1\right| \rightarrow 0$. Thus, for small h, and all $t,\left|\varphi_{n}(t+h)-\varphi_{n}(t)\right|<\varepsilon$, $\operatorname{so~}_{\sup _{t}}\left|\varphi_{n}(t+h)-\varphi_{n}(t)\right|<\varepsilon$.
(c) Typo They meant to say $\left|\varphi_{n}(t)\right| \leq g(t)$ for all n and t.

We have that

$$
\begin{aligned}
\sup _{x \in \mathbb{R}}\left|f_{n}(x)-f(x)\right| & =\sup _{x \in \mathbb{R}}\left|\int e^{-i t x} \varphi_{n}(t) d t-\int e^{-i t x} \varphi(t) d t\right| \\
& \leq \sup _{x} \int\left|e^{-i t x}\left(\varphi_{n}(t)-\varphi(t)\right)\right| d t \\
& =\int\left|\varphi_{n}(t)-\varphi(t)\right| d t
\end{aligned}
$$

Noting that $\varphi_{n}(t) \rightarrow \varphi(t)$ and $\left|\varphi_{n}(t)\right| \leq g(t)$ implies $|\varphi(t)| \leq g(t)$, we get that $\left|\varphi_{n}-\varphi\right| \leq\left|\varphi_{n}\right|+|\varphi| \leq 2 g \in L_{1}$. Since $\left|\varphi_{n}(t)-\varphi(t)\right| \rightarrow 0$, by the dominated convergence theorem,

$$
\limsup _{n \rightarrow \infty}\left(\sup _{x}\left|f_{n}(x)-f(x)\right|\right) \leq \lim _{n \rightarrow \infty} \int\left|\varphi_{n}(t)-\varphi(t)\right| d t=0
$$

proving $\sup _{x}\left|f_{n}(x)-f(x)\right| \rightarrow 0$, so $f_{n} \rightarrow f$ uniformly. No need for Arzela-Ascoli.

1997 Fall

1. (a) The first is Fatou's Lemma applied to the sequence $1_{A_{n}}$. The middle is obvious, and the last is Fatou's applied to $1-1_{A_{n}}$: by Fatou's
$E\left(\liminf 1-1_{A_{n}}\right) \leq \liminf E\left(1-1_{A_{n}}\right)=\liminf 1-P\left(A_{n}\right)=1-\limsup P\left(A_{n}\right)$
Then, notice that $E\left(\lim \inf 1-1_{A_{n}}\right)=P\left(\left(\limsup 1_{A_{n}}\right)^{c}\right)=1-P\left(\limsup 1_{A_{n}}\right)$.
(b) Let (Ω, \mathcal{F}, P) be $(0,1)$ with Lebesgue measure, $A_{2 k}=(0,1 / 3)$, and $A_{2 k+1}=$ $(1 / 3,1)$, for all $k \in \mathbb{N}$. Then $0<1 / 3<2 / 3<1$.
(c) (\Longrightarrow) Assume that $P\left(A_{n}\right.$ i.o. $)=1$. Let B be an event where $P(B)>0$. Then

$$
\begin{aligned}
1 & =P\left(A_{n} \text { i.o. }\right) \\
& =P\left(\left\{A_{n} \text { i.o. }\right\} \cap B\right)+P\left(\left\{A_{n} \text { i.o. }\right\} \cap B^{c}\right) \\
& \leq P\left(\left\{A_{n} \text { i.o. }\right\} \cap B\right)+P\left(B^{c}\right)
\end{aligned}
$$

so

$$
P\left(\left\{A_{n} \text { i.o. }\right\} \cap B\right) \geq 1-P\left(B^{c}\right)=P(B)>0
$$

Since the event $\left\{A_{n}\right.$ i.o. $\} \cap B$ is the same as the event $\left\{A_{n} \cap B\right.$ i.o. $\}$, the above shows that $P\left(A_{n} \cap B\right.$ i.o. $)>0$. By the (contrapositive of the) Borel-Cantelli lemma, this means that $\sum P\left(A_{n} \cap B\right)=\infty$.
(\Longleftarrow) Assume that, whenever $P(B)>0$, we have $\sum P\left(A_{n} \cap B\right)=\infty$. Let $B=\left\{A_{n} \text { i.o. }\right\}^{c}$, and consider

$$
\sum_{n \geq 1} P\left(A_{n} \cap B\right)
$$

Notice that only finitely many of the above terms can be nonzero: if $\omega \in B$, then ω is in only finitely many A_{n}, so only finitely many $A_{n} \cap B$ are nonempty. Thus, the above sum is finite. Since we assumed the sum would be infinite when $P(B)>0$, this means $P(B)=0$, so that $P\left(B^{c}\right)=P\left(A_{n}\right.$ i.o. $)=1$.
2. (a) Var $S_{n}=E S_{n}^{2}=\sum_{i} E X_{i}^{2}+\sum_{i \neq j} E X_{i} X_{j} \leq K n+0=O(n)$.
(b) By Chebychev's, $S_{n}^{2}, P\left(\left|S_{n}\right|>n \varepsilon\right)=P\left(S_{n}^{2}>n^{2} \varepsilon^{2}\right) \leq \frac{E S_{n}^{2}}{n^{2} \varepsilon^{2}}=\frac{O(n)}{\epsilon^{2} n^{2}}=O\left(\frac{1}{n}\right)$
(c) Since $\sum P\left(B_{n}\right)=\sum O\left(\frac{1}{n^{2}}\right)<\infty$, by Borel Cantelli, $P\left(B_{n}\right.$ i.o. $)=0$.
(d) We will show that, for all $\varepsilon>0, P\left(D_{n} / n^{2}>\varepsilon\right.$ i.o. $)=0$, which proves $D_{n} / n^{2} \rightarrow 0$ a.s. since $\left\{D_{n} / n^{2} \rightarrow 0\right\}=\cap_{k \geq 1}\left\{D / n^{2}>\frac{1}{k} \text { i.o. }\right\}^{c}$. Note that $\left\{D_{n}>n^{2} \varepsilon\right\}=\bigcup_{k=n^{2}+1}^{(n+1)^{2}-1}\left\{\left|S_{k}-S_{n^{2}}\right|>n^{2} \varepsilon\right\}$, so

$$
P\left(D_{n}>n^{2} \varepsilon\right)<\sum_{k=n^{2}+1}^{(n+1)^{2}-1} P\left(\left|S_{k}-S_{n^{2}}\right|>n^{2} \varepsilon\right)<\sum_{\ell=1}^{2 n} P\left(\left|S_{n^{2}+\ell}-S_{n^{2}}\right|>\ell^{2} \varepsilon\right)
$$

By the same reasoning as in part (a), we have that $\operatorname{Var}\left(S_{n^{2}+\ell}-S_{n^{2}}\right)=\operatorname{Var}\left(X_{n^{2}+1}+\right.$ $\left.\cdots+X_{n^{2}+\ell}\right)=O(\ell)$, so using Chebychev's,

$$
P\left(\left|S_{n^{2}+\ell}-S_{n^{2}}\right|>\ell^{2} \varepsilon\right) \leq \frac{\operatorname{Var}\left(S_{n^{2}+\ell}-S_{n^{2}}\right)}{\ell^{4} \epsilon^{2}}=O\left(\frac{1}{\ell^{3}}\right)
$$

Thus,

$$
P\left(D_{n}>n^{2} \varepsilon\right)<\sum_{\ell=1}^{2 n} O\left(\frac{1}{\ell^{3}}\right)=O\left(\frac{1}{\ell^{2}}\right)
$$

so by Borel-Cantelli, $P\left(D_{n}>n^{2} \varepsilon\right.$ i.o. $)=0$.
3. (a) Since $\phi^{\prime}(0)=i a$, we have that

$$
\lim _{n \rightarrow \infty} \frac{\phi(t / n)-1}{t / n}=i a
$$

Furthermore, from calculus it is true that $\frac{\log (1+x)}{x} \rightarrow 1$ as $x \rightarrow 0$, implying $\frac{\log \phi(t / n)}{\phi(t / n)-1} \rightarrow 1$ as $n \rightarrow \infty$. Multiplying these two limits, we get

$$
\lim _{n \rightarrow \infty} \frac{\log \phi(t / n)}{t / n}=i a
$$

Taking exp of both sides, we get $\phi(t / n)^{n} \rightarrow e^{i a t}$. But $\phi(t / n)^{n}$ is the c.f. for S_{n} / n, and $e^{i a t}$ is the c.f. for a, so the continutity theorem implies $S_{n} / n \rightarrow a$ weakly. Finally, one can prove that converging weakly to a constant implies convergence in probability as well, so that $S_{n} / n \rightarrow a$ in probability.
(b) Since $S_{n} / n \rightarrow a$ in probability, and therefore in distribution, it follows that the c.f.'s also converge, so $\phi(t / n)^{n} \rightarrow e^{i a t}$ (uniformly on compact sets). Taking log's,

$$
\lim _{n} \frac{\log \phi(t / n)}{t / n}=\lim _{n} \frac{\phi(t / n)-1}{t / n}=i a
$$

also uniformly on compact sets. So, given $\varepsilon>0$, we can choose n so $\left|\frac{\phi(t / n)-1}{t / n}-i a\right|<$ ε for $|t| \leq 1$, implying $\left|\frac{\phi(h)-1}{h}-i a\right|<\varepsilon$ for $|h|<\frac{1}{n}$, so that $\phi^{\prime}(0)=i a$.
4. (a) For any $\varepsilon>0$,

$$
\sum_{n} P\left(\left|X_{n} / n\right|>\varepsilon\right)=\sum_{n} P(|X / \varepsilon|>n) \leq \int_{0}^{\infty} P(|X / \varepsilon|>x) d x=E|X / \varepsilon|<\infty,
$$

so by Borel Cantelli, $P\left(\left|X_{n} / n\right|>\varepsilon\right.$ i.o. $)=0$. Thus,

$$
P\left(\left|X_{n} / n\right| \rightarrow 0\right)=P\left(\bigcap_{k \geq 1}\left\{\left|X_{n} / n\right|>\frac{1}{k} \text { i.o. }\right\}^{c}\right)=1
$$

so $X_{n} / n \rightarrow 0$ a.s.
(b)

$$
\sum_{n} P\left(X_{n} / n>A\right)=\sum_{n} P(X / A>n) \geq \int_{1}^{\infty} P(X / A>x) d x=E\left(X / A \cdot 1_{X / A>1}\right)=\infty
$$

Thus, by the second Borel-Cantelli lemma, $P\left(X_{n} / n>A\right.$ i.o. $)=1$, so $P\left(\lim \sup X_{n} / n=\right.$ $\infty)=P\left(\bigcap_{k \geq 1}\left\{\lim \sup X_{n} / n \geq k\right\}\right)=1$.
I'm not sure why what we just proved implies $S_{n} / n \rightarrow \infty$ a.s, but you can prove this as follows. Let $Y_{n}^{M}=X_{n} \wedge M$, and $S_{n}^{M}=\sum Y_{1}^{M}+\cdots+Y_{n}^{M}$. Then

$$
\lim \inf S_{n} / n \geq \liminf S_{n}^{M} / n=E Y_{1}^{M} \quad \text { a.s. }
$$

As $M \rightarrow \infty$, by MCT, $E Y_{1}^{M} \rightarrow E X=\infty$, so for all $k, P\left(\liminf S_{n} / n \geq k\right)=1$. Thus, $P\left(\liminf S_{n} / n=\infty\right)=P\left(\bigcap_{k \geq 1}\left\{\liminf S_{n} / n \geq k\right\}\right)=1$, so $S_{n} / n \rightarrow \infty$ a.s.

1998 Fall

1. See 1997 Fall 1(c)
2. First note that

$$
E\left(S_{n}-n f(n)\right)^{2}=\operatorname{Var} S_{n}=\sum \operatorname{Var} X_{i} \leq n
$$

since $\left|X_{i}\right| \leq 1$. Thus,

$$
P\left(\left|S_{n}-n f(n)\right|>n \varepsilon\right) \leq \frac{\operatorname{Var}\left(S_{n}\right)}{n^{2} \varepsilon^{2}} \leq \frac{n}{\varepsilon^{2} n^{2}} \rightarrow 0
$$

proving $S_{n} / n-f(n) \rightarrow 0$ in probability.

1999 Spring

1. By Borel-Cantelli, $P\left(X_{n} \neq c_{n}\right.$ i.o. $)=0$. With probability 1 , only finitely many X_{n} will not be c_{n}, so the set of values that S_{n} can take is

$$
\bigcup_{n \geq 0}\left\{b_{1}+\cdots+b_{n}+\sum_{k \geq n+1} c_{k}: b_{j} \in B\right\}
$$

This is a countable union of countable sets, so is countable.
2. (a) This is $\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-x^{2} / 2} e^{i x t} d x=e^{-t^{2} / 2} \int \frac{1}{\sqrt{2 \pi}} e^{-(x-i t)^{2} / 2} d x=e^{-t^{2} / 2}$.
(b) We have

$$
\begin{aligned}
\phi_{k}(u) & =E\left(e^{i u\left(X_{k}-\frac{1}{k}\right)}\right)=e^{i u\left(1-\frac{1}{k}\right)} \cdot \frac{1}{k}+e^{-i u / k} \cdot\left(1-\frac{1}{k}\right) \\
& =\frac{1}{k} \cos \frac{u(k-1)}{k}+\frac{k-1}{k} \cos \frac{u}{k}+\frac{i}{k} \sin \frac{u(k-1)}{k}-\frac{i(k-1)}{k} \sin \frac{u}{k}
\end{aligned}
$$

(c) Since $\sin t=t-o\left(t^{2}\right)$ and $\cos t=1-t^{2} / 2+o\left(t^{2}\right)$, we have

$$
\begin{aligned}
& \frac{i}{k} \sin \frac{t(k-1)}{k}-\frac{i(k-1)}{k} \sin \frac{t}{k}=\left(i \frac{(k-1) t}{k^{2}}+o\left(t^{2}\right)\right)-\left(i \frac{(k-1) t}{k^{2}}+o\left(t^{2}\right)\right)=o\left(t^{2}\right) \\
& \begin{aligned}
\frac{1}{k} \cos \frac{t(k-1)}{k}+\frac{k-1}{k} \cos \frac{t}{k} & =\frac{1}{k}\left(1-\frac{t^{2}(k-1)^{2}}{2 k^{2}}+o\left(t^{2}\right)\right)+\frac{k-1}{k}\left(1-\frac{t^{2}}{2 k^{2}}+o\left(t^{2}\right)\right) \\
& =1-\frac{(k-1)^{2}+(k-1)}{k^{3}} \cdot \frac{t^{2}}{2}+o\left(t^{2}\right) \\
& =1-\frac{k-1}{k^{2}} \cdot \frac{t^{2}}{2}+o\left(t^{2}\right)
\end{aligned}
\end{aligned}
$$

Thus, adding the above two together, we get

$$
\varphi_{k}(t)=o\left(t^{2}\right)+1-\frac{k-1}{k^{2}} \cdot \frac{t^{2}}{2}+o\left(t^{2}\right)=1-\frac{k-1}{k^{2}} \cdot \frac{t^{2}}{2}+o\left(t^{2}\right)
$$

(d) Since $S_{n}-h(n)=\sum X_{k}-\frac{1}{k}$, and characteristic functions multiply when variables add, the c.f. for $S_{n}-h(n)$ is $\prod_{1}^{n} \phi_{k}(u)$, implying the c.f. for $\left(S_{n}-h(n)\right) / \sqrt{h(n)}$ is

$$
\varphi_{n}^{*}(u)=\prod_{1}^{n} \phi_{k}(u / \sqrt{h(n)})
$$

(e) Writing the previous formula for φ_{n}^{*} in little oh notation, and using in the third equality that $\log (1+x)=x+o(x)$,

$$
\begin{aligned}
\varphi_{n}^{*}(u) & =\prod_{1}^{n}\left(1-\frac{k-1}{k^{2}} \cdot \frac{u^{2} / h(n)}{2}+o\left(u^{2}\right) / h(n)\right) \\
& =\exp \left(\sum_{1}^{n} \log \left(1-\frac{k-1}{k^{2}} \cdot \frac{u^{2} / h(n)}{2}+o\left(u^{2}\right) / h(n)\right)\right) \\
& =\exp \left(\sum_{1}^{n}-\frac{k-1}{k^{2}} \cdot \frac{u^{2} / h(n)}{2}+o\left(u^{2}\right) / h(n)\right) \\
& =\exp \left(-\frac{u^{2}}{2} \cdot\left(\frac{1}{h(n)} \sum_{1}^{n} \frac{k-1}{k^{2}}\right)+n \cdot o\left(u^{2}\right) / h(n)\right)
\end{aligned}
$$

Since $\sum_{1}^{n} \frac{k-1}{k^{2}}=h(n)-O(1)$, and $n / h(n) \rightarrow 0$, it follows that the above approaches $\exp \left(-u^{2} / 2\right)$ as $n \rightarrow \infty$, as desired.

1999 Fall

1. Since $X_{n} \rightarrow X$ a.s, it must be true that X_{n} is Cauchy almost surely. Since X_{n}^{\prime} has the same distrubtion, this means X_{n}^{\prime} is Cauchy almost surely, and since Cauchy sequences converege, X_{n}^{\prime} converges a.s.
To elaborate: $\left(X_{1}, X_{2}, \ldots\right)$ and ($X_{1}^{\prime}, X_{2}^{\prime}, \ldots$) having the same distribution on \mathbb{R}^{∞} means, for any event E in the product sigma algebra on \mathbb{R}^{∞}, then $P\left(\left(X_{1}, X_{2}, \ldots\right) \in\right.$ $A)=P\left(\left(X_{1}^{\prime}, X_{2}^{\prime}, \ldots\right) \in A\right)$. Thus,

$$
\begin{aligned}
1=P\left(X_{n} \text { is Cauchy }\right) & =P\left(\bigcap_{k \geq 0} \bigcup_{M \geq 0} \bigcap_{m, n \geq M}\left\{\left|X_{n}-X_{m}\right| \leq \frac{1}{k}\right\}\right) \\
& =P\left(\bigcap_{k \geq 0} \bigcup_{M \geq 0} \bigcap_{m, n \geq M}\left\{\left|X_{n}^{\prime}-X_{m}^{\prime}\right| \leq \frac{1}{k}\right\}\right) \\
& =P\left(X_{n}^{\prime} \text { is Cauchy }\right)
\end{aligned}
$$

where the third equality follows since the enclosed event is in the product sigma algebra on \mathbb{R}^{∞}.
2. Let $f(x)$ be the pdf of X, let $\mu_{X}=f(x) d x$ (so $\mu_{X}(A)=P\left(X \in A\right.$), and μ_{Y} be the measure that Y induces on \mathbb{R} (namely, $\mu(A)=P(X \in A)$). Then, using Fubini's (allowed since everything is nonnegative):

$$
\begin{aligned}
P(X+Y \leq z)=\int 1_{x+y \leq z} d \mu_{X} \times \mu_{Y}=\iint 1_{x \leq z-y} d \mu_{X} d \mu_{Y} & =\iint_{-\infty}^{z-y} f(x) d x d \mu_{Y} \\
& =\iint_{-\infty}^{z} f(x-y) d x d \mu_{Y} \\
& =\int_{-\infty}^{z} \int f(x-y) d \mu_{Y} d x
\end{aligned}
$$

Differentiating the last equation with respect to z shows that $X+Y$ has density given by $f_{Z}(z)=\int f(x-y) d \mu_{Y}$, so $X+Y$ is absolutely continuous.
3. $(\Longrightarrow) S_{n} \rightarrow S$ a.s. implies $S_{n} \rightarrow S$ in distribution, so that the c.f. of $S_{n}, \prod_{1}^{n} \phi_{k}(u)$, converges pointwise to the c.f. of $S, h(u)$. That $h(u) \neq 0$ in a neighborhood of 0 follows since $h(0)=e^{i S .0}=1$, and h is continuous.
$(\Longleftarrow) \cdot$ This problem is very similar to problem 3.3.21 in Durrett (4th edition), and this problem gives a hint that involves looking at other problems.
4. (a) Since $E Z=\frac{1}{2} e^{i t}+\frac{1}{2} e^{-i t}=\cos t$, the desired c.f. is

$$
\prod_{1}^{n} \cos \left(c_{k} t\right)
$$

(b) It is a standard result that, for $a_{n} \geq 0, \lim _{n} \prod_{1}^{n}\left(1-a_{n}\right)$ exists and is nonzero if and only if $\sum_{1}^{\infty} a_{n}<\infty$. So, we will show

$$
\sum_{1}^{\infty} c_{k}^{2}<\infty \Longleftrightarrow \sum_{1}^{\infty} 1-\cos c_{k} t<\infty \text { for }|t|<t_{0}
$$

This will complete the proof, since the second condition holds iff $\prod_{1}^{n} \cos c_{k} t$ converges for $|t|<t_{0}$, which as shown in problem 3 holds iff $\sum_{1}^{\infty} c_{k} Z_{k}$ converges. Suppose $\sum_{1}^{\infty} c_{k}^{2}$. Since $1-\cos c_{k} \leq \frac{c_{k}^{2} t^{2}}{2}$, it follows $\sum_{1}^{\infty} 1-\cos c_{k} t<\infty$ for all t. Suppose $\sum_{1}^{\infty} 1-\cos c_{k} t<\infty$ for $t<t_{0}$. Since $\frac{1-\cos x-x^{2} / 2}{x^{2}} \rightarrow 0$ as $x \rightarrow 0$, for small enough t, we have, for any $0<\varepsilon<1$,

$$
\frac{1-\cos c_{k} t-c_{k}^{2} t^{2} / 2}{c_{k}^{2} t_{k}^{2}}>-\varepsilon
$$

proving

$$
c_{k}^{2} t^{2} / 2 \leq \frac{1-\cos c_{k} t}{(1-\varepsilon)}
$$

Since the right hand side has finite sum, so the the left, proving $\sum_{1}^{\infty} c_{k}^{2}<\infty$.

2000 Spring

1. (a) $\left\{A_{n}\right.$ i.o. $\}=\bigcap_{n=1}^{\infty} \bigcup_{k \geq n} A_{k}$.
(b) Let $A_{1} \supset A_{2} \supset \ldots$, where $P\left(A_{n}\right)=n^{-1}$. Then $e_{n}=\sum_{1}^{n} k^{-1} \approx \log n$, but

$$
f_{n}=\sum_{i, j} P\left(A_{i} \cap A_{j}\right)=\sum_{i, j}(\max (i, j))^{-1}=\sum_{k=1}^{n}(2 k-1) \cdot k^{-1} \approx 2 n-\log n
$$

The third equality follows since there are $2 k-1$ pairs (i, j) for which $\max (i, j)=k$. Thus, we see that $f_{n} / e_{n}^{2} \sim(2 n-\log n) /(\log n)^{2} \rightarrow \infty$.
(c) Since $E Y_{n}=1$, we have that

$$
1-E\left(Y_{n} Z_{n}\right)=E\left(Y_{n}-Y_{n} Z_{n}\right)=E Y_{n}\left(1-Z_{n}\right)=E\left(Y_{n} 1_{Y_{n} \leq \varepsilon}\right) \leq \varepsilon
$$

so that $E\left(Y_{n} Z_{n}\right) \geq 1-\varepsilon$. Using Cauchy-Schwarz,

$$
E Y_{n} Z_{n} \leq E Y_{n}^{2} \cdot E Z_{n}^{2}=\frac{E X_{n}^{2}}{e_{n}^{2}} \cdot E Z_{n}=\frac{f_{n}}{e_{n}^{2}} E Z_{n}
$$

so $E Z_{n} \geq \frac{e_{n}^{2}}{f_{n}}(1-\varepsilon)$. Letting $n \rightarrow \infty$, we get $\limsup \sup _{n} E Z_{n} \geq \frac{1-\varepsilon}{\beta}$ Applying Fatou's Lemma to $1-Z_{n}$, we get that

$$
P\left(Y_{n} \geq \varepsilon \text { i.o. }\right)=E \lim \sup Z_{n} \geq \lim \sup E Z_{n} \geq \frac{1-\varepsilon}{\beta}
$$

Finally, realize that $Y_{n} \geq \varepsilon$ i.o. implies A_{n} i.o. (if A_{n} happens finitely often, then $Y_{n}=X_{n} / e_{n} \rightarrow 0$, since $\left.e_{n} \rightarrow \infty\right)$. Thus, $P\left(A_{n}\right.$ i.o. $) \geq P\left(Y_{n} \geq \varepsilon\right.$ i.o. $)$, so the above also implies $P\left(A_{n}\right.$ i.o. $) \geq \frac{1-\varepsilon}{\beta}$. Letting $\varepsilon \rightarrow 0$ proves $P\left(A_{n}\right.$ i.o. $) \geq \frac{1}{\beta}$.
2. (a) One can prove that, if $E|X|^{n}<\infty$, then $\varphi(t)$ is n times continuously differentiable, and $\phi^{(n)}(0)=E(i X)^{n}$. Taylor's theorem then gives that

$$
\varphi(t)=1+\varphi^{\prime}(t) t+\frac{\varphi^{\prime \prime}(t)}{2} t^{2}+O\left(t^{3}\right)=1+0-\frac{\sigma^{2} t^{2}}{2}+O\left(t^{3}\right)
$$

(b) The CLT says that, if $X_{1}, X_{2} \ldots$ i.i.d, $E X=\mu$, $\operatorname{Var} X=\sigma^{2}<\infty$, then

$$
\frac{S_{n}-n \mu}{\sigma \sqrt{n}} \Longrightarrow N(0,1)
$$

Here's a sketch of the proof. We can assume $E X=0$, by applying the theorem to $X_{n}-\mu$. If φ is the c.f. for X, then the characteristic function for S_{n} / \sqrt{n} is

$$
\varphi(t / \sqrt{n})^{n}=\left(1-\sigma^{2} t^{2} / 2(\sqrt{n})^{2}+O\left(t^{3} /(\sqrt{n})^{3}\right)\right)^{n} \approx\left(1-\frac{\sigma^{2} t^{2}}{2 n}\right)^{n}
$$

So

$$
\lim _{n \rightarrow \infty} \varphi(t / \sqrt{n})^{n}=\lim _{n \rightarrow \infty}\left(1-\frac{\sigma^{2} t^{2}}{2 n}\right)^{n}=e^{-t^{2} \sigma^{2} / 2}
$$

Since $e^{-t^{2} \sigma^{2} / 2}$ is the c.f. for $N\left(0, \sigma^{2}\right)$, the continuity theorem implies $S_{n} / \sqrt{n} \Longrightarrow$ $N\left(0, \sigma^{2}\right)$, which means that $S_{n} /(\sigma \sqrt{n}) \Longrightarrow N(0,1)$.

2001 Spring

1. (a) $B=\bigcap_{n \geq 1} \bigcup_{k \geq n}\left\{\left|X_{k}\right| \geq k\right\}$.
(b)

$$
1+\sum_{1}^{\infty} P\left(\left|X_{n}\right| \geq n\right) \geq \int_{0}^{\infty} P(|X|>t) d t=E|X|=\infty
$$

proving $P\left(\left|X_{n}\right| \geq n\right.$ i.o. $)=1$ by Borel-Cantelli.
(c) If $M_{n} \rightarrow m$, then it would be true that $X_{n+1} /(n+1)=M_{n+1}-M_{n}+M_{n} /(n+1) \rightarrow$ $m-m+0=0$, so that it wouldn't be true $\left|X_{n}\right| / n \geq 1$ i.o..
(d) $P(A)=P(A \cap B)+P\left(A \cap B^{c}\right) \leq P(\varnothing)+P\left(B^{c}\right)=0+1-1=0$.
2. (a) To show a set is an interval, you need only show $s, t \in I$ and $s<r<t$ implies $r \in I$. Suppose $s, t \in I$. Let $s<r<t$. If $r>0$, then $t>0$ as well, and whenever $X>0$, we have $e^{r X}<e^{t X}$. When $X<0, e^{r X}<1$. Using both these bounds,

$$
E e^{r X}=E\left(e^{r X} 1_{X<0}\right)+E\left(e^{r X} 1_{X \geq 0}\right) \leq 1+E e^{t X} 1_{X>0} \leq 1+E e^{t X}<\infty
$$

If on the other hand $r<0$, then

$$
E e^{r X}=E\left(e^{r X} 1_{X<0}\right)+E\left(e^{r X} 1_{X \geq 0}\right) \leq E e^{s X} 1_{X<0}+1 \leq 1+E e^{s X}<\infty
$$

Either way, we have $r \in I$, implying I is an interval.
(b) We use the fact that f is continuous at x if and only if, for every sequence x_{n} such that $x_{n} \rightarrow x$, it is true that $f\left(x_{n}\right) \rightarrow f(x)$.
Given t in the interior of I, let t_{n} be any sequence in I where $t_{n} \rightarrow t$. Choose some $T^{+}, T^{-} \in I$ so that $T^{-} \leq t_{n} \leq T^{+}$for all n. Then $e^{t_{n} X} \leq e^{T^{+} X} 1_{X>0}+e^{T^{-} X} 1_{X \leq 0}$, and $e^{t_{n} X} \rightarrow e^{t X}$ pointwise, so by the DCT, we have

$$
\lim _{n} E e^{t_{n} X}=E \lim _{n} e^{t_{n} X}=E e^{t X}
$$

This proves M is continuous at t.
(c) Let Y be a random variable where $P(Y>y)=\frac{1}{y}$ when $y>1$, and let $X=\log Y$. For $t>0$,

$$
E e^{t X}=E Y^{t}=\int_{0}^{\infty} t y^{t-1} P(Y>y) d y=t \int_{0}^{\infty} y^{t-2} d y
$$

This integral is only finite for $t<1$. When $t<0$, then $E e^{t X} \leq 1$ since $t X \leq 0$ always. Thus, the interval for which $e^{t X}$ exists is $(-\infty, 1)$.
3. (a) We have that

$$
\operatorname{Var} X_{k}=E X_{k}^{2}=1^{2} \cdot\left(1-\frac{1}{k^{2}}\right)+k^{2} \cdot \frac{1}{k^{2}}=2-\frac{1}{k^{2}}
$$

Thus,

$$
\operatorname{Var} S_{n}^{*}=\operatorname{Var}\left(S_{n}\right) /(\sqrt{n})^{2}=\frac{1}{n} \sum_{1}^{n}\left(2-\frac{1}{k^{2}}\right)=2-\frac{\sum_{1}^{n} k^{-2}}{n} \longrightarrow 2
$$

since $\sum_{1}^{n} k^{-2} \rightarrow \pi^{2} / 6$.
(b) This proof was figured out by Gene Kim.

We first compute the c.f. for X_{n}. This is given by

$$
E e^{i X_{n} t}=\frac{1}{2}\left(1-\frac{1}{n^{2}}\right)\left(e^{i t \cdot 1}+e^{-i t \cdot 1}\right)+\frac{1}{2 n^{2}}\left(e^{i t n}+e^{-i t n}\right)=\left(1-\frac{1}{n^{2}}\right) \cos t+\frac{1}{n^{2}} \cos n t
$$

This implies the c.f. for S_{n}^{*} is

$$
\begin{aligned}
\varphi_{n}^{*}=E e^{i t S_{n} / \sqrt{n}} & =\prod_{k=1}^{n}\left(1-\frac{1}{k^{2}}\right) \cos \left(\frac{t}{\sqrt{n}}\right)+\frac{1}{k^{2}} \cos \left(\frac{k t}{\sqrt{n}}\right) \\
& =\cos ^{n}\left(\frac{t}{\sqrt{n}}\right) \prod_{k=1}^{n}\left(1+\frac{1}{k^{2}}\left(\frac{\cos (k t / \sqrt{n})}{\cos (t / \sqrt{n})}-1\right)\right) \\
& =\cos ^{n}\left(\frac{t}{\sqrt{n}}\right) \exp \left(\sum_{k=1}^{\infty} 1_{k \leq n} \log \left(1+\frac{1}{k^{2}}\left(\frac{\cos (k t / \sqrt{n})}{\cos (t / \sqrt{n})}-1\right)\right)\right)
\end{aligned}
$$

We will show the enclosed sum approaches zero as $n \rightarrow \infty$, for a fixed t. Note that $\frac{\cos (k t / \sqrt{n})}{\cos (t / \sqrt{n})}-1$ is $O(1)$ as $n \rightarrow \infty$, and $\log (1+x)$ is $O(x)$. Thus, we have that $1_{k \leq n} \log (\cdots) \leq \frac{C_{t}}{k^{2}}$, for some constant C_{t}, so by DCT,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} 1_{k \leq n} \log \left(1+\frac{1}{k^{2}}\left(\frac{\cos (k t / \sqrt{n})}{\cos (t / \sqrt{n})}-1\right)\right) \\
= & \sum_{k=1}^{\infty} \lim _{n \rightarrow \infty} 1_{k \leq n} \log \left(1+\frac{1}{k^{2}}\left(\frac{\cos (k t / \sqrt{n})}{\cos (t / \sqrt{n})}-1\right)\right)=\sum_{1}^{\infty} 0=0 .
\end{aligned}
$$

Next, we consider the $\cos ^{n}(t / \sqrt{n})$. We have

$$
\cos ^{n}\left(\frac{t}{\sqrt{n}}\right)=\left(1-\frac{t^{2} / 2}{n}+o\left(t^{2} / n\right)\right)^{n} \rightarrow e^{-t^{2} / 2}
$$

These last two results imply that $\varphi_{n}^{*} \rightarrow e^{-t^{2} / 2}$. Since this is the c.f. for $N(0,1)$, we have that $S_{n}^{*} \Longrightarrow N(0,1)$.

2001 Fall

1. (a) First, choose constants M_{n} so $P\left(\left|X_{n}\right|>M_{n}\right)<\frac{1}{n^{2}}$, then let $c_{n}=\frac{M_{n}^{2} n^{2}}{\epsilon^{2}}$. Letting $Y_{n}=X_{n} 1_{\left|X_{n}\right| \leq M}$, we have, for any $\varepsilon>0$,

$$
P\left(\left|Y_{n} / c_{n}\right|>\epsilon\right)=P\left(Y_{n}^{2} / \epsilon^{2}>c_{n}^{2}\right) \leq \frac{\frac{1}{\varepsilon^{2}} E Y_{n}^{2}}{c_{n}^{2}} \leq \frac{M_{n}^{2}}{\varepsilon^{2} c_{n}^{2}} \leq \frac{1}{n^{2}}
$$

Thus, by Borel-Cantelli, $P\left(\left(\left|Y_{n} / c_{n}\right|>\epsilon\right.\right.$ i.o. $)=0$. This holds for all $\varepsilon>0$, which allows you to show $Y_{n} / c_{n} \rightarrow 0$ a.s. Furthermore, since $P\left(X_{n} \neq Y_{n}\right)<\frac{1}{n^{2}}$, we have $P\left(X_{n} \neq Y_{n}\right.$ i.o. $)=0$, so that with probability 1 we also have $X_{n} / c_{n} \rightarrow 0$.
(b) No. Consider the probability space (0,1), with Lesbesgue measure. Let Ω_{0} be set where $P\left(\Omega_{0}\right)=0$ and whose cardinality is $2^{\aleph_{0}}$ (for example, the Cantor set). Now, choose X_{n} so every possible sequence of real numbers c_{1}, c_{2}, \ldots occurs as $X_{1}(\omega), X_{2}(\omega), \ldots$ for some $\omega \in \Omega_{0}$, and $X_{n}(\omega)=0$ for $\omega \notin \Omega_{0}$. This can be done since the number of such sequences is $\left(2^{\aleph_{0}}\right)^{\aleph_{0}}=2^{\aleph_{0}}=\left|\Omega_{0}\right|$, and the X_{n} will indeed be measurable since they are 0 a.e. Then, no matter what constants c_{1}, c_{2}, \ldots you choose, there will be some ω for which $X_{n}(\omega) / c_{n}=1$ for all n.
(c) See 1997 Fa, 4(a).
2. (a) The special property is that φ will be real. If X and $-X$ have the same distrubtion, then

$$
E e^{i t X}=E \cos t X+i E \sin t X
$$

But $t X$ is symmetrically positive and negative, and $\sin (t x)$ is an odd function, so $E \sin (t X)=0$.
Suppose $E e^{i t X}$ is real. Using the inversion formula, we have, for any $a<b$,

$$
P(X \in(a, b))+\frac{1}{2} P(X \in\{a, b\})=\lim _{T \rightarrow \infty} \frac{1}{2 \pi} \int_{-T}^{T} \frac{e^{-i t a}-e^{-i t b}}{i t} \varphi(t) d t
$$

Both sides are real, so taking the conjugate of the right preserves equality, resulting in

$$
\begin{aligned}
P(X \in(a, b))+\frac{1}{2} P(X \in\{a, b\}) & =\lim _{T \rightarrow \infty} \frac{1}{2 \pi} \int_{-T}^{T} \frac{e^{-i t(-a)}-e^{-i t(-b)}}{-i t} \varphi(t) d t \\
& =\lim _{T \rightarrow \infty} \frac{1}{2 \pi} \int_{-T}^{T} \frac{e^{-i t(-b)}-e^{-i t(-a)}}{i t} \varphi(t) d t \\
& =P(X \in(-b,-a))+\frac{1}{2} P(X \in\{-b,-a\}) \\
& =P(-X \in(a, b))+\frac{1}{2} P(-X \in\{a, b\})
\end{aligned}
$$

This holds for all a, b, proving X and $-X$ have the same distribution.
(b) This is given by $\phi(t / n)^{n}$.
(c) Since $\phi^{\prime}(0)=0$, we have that

$$
\lim _{n \rightarrow \infty} \frac{\phi(t / n)-1}{t / n}=0
$$

Furthermore, from calculus it is true that $\frac{\log (1+x)}{x} \rightarrow 1$ as $x \rightarrow 0$, implying $\frac{\log \phi(t / n)}{\phi(t / n)-1} \rightarrow 1$ as $n \rightarrow \infty$. Multiplying these two limits, we get

$$
\lim _{n \rightarrow \infty} \frac{\log \phi(t / n)}{t / n}=0
$$

Taking \exp of both sides, we get $\phi(t / n)^{n} \rightarrow 1$. But $\phi(t / n)^{n}$ is the c.f. for S_{n} / n, and 1 is the c.f. for 0 , so the continutity theorem implies $S_{n} / n \rightarrow 0$ weakly. Finally, one can prove that converging weakly to a constant implies convergence in probability as well, so that $S_{n} / n \rightarrow 0$ in probability.
(d) We have

$$
E|X|=2 c \int_{4}^{\infty} x \cdot \frac{1}{x^{2} \log x} d x=2 c\left(\lim _{n \rightarrow \infty} \log \log n-\log \log 4\right)=\infty
$$

(e) Since X is symmetric about 0 , we have

$$
E \frac{e^{i t X}-1}{t}=E \frac{\cos (t X)-1}{t}=2 c \int_{4}^{\infty} \frac{\cos (t x)-1}{t x^{2} \log |x|} d x
$$

Letting $y=t x$, this becomes

$$
E \frac{e^{i t X}-1}{t}=2 c \int_{4}^{\infty} \frac{\cos (y)-1}{t(y / t)^{2} \log |y / t|} d(y / t)=2 c \int_{4}^{\infty} \frac{\cos (y)-1}{y^{2} \log |y / t|} d y
$$

Since, for $-1<t<1$, it's true that $\frac{\cos (y)-1}{y^{2} \log |y / t|} \leq \frac{\cos (y)-1}{y^{2} \log |y|} \in L_{1}(d y)$, the DCT implies

$$
\lim _{t \rightarrow 0} 2 c \int_{4}^{\infty} \frac{\cos (y)-1}{y^{2} \log |y / t|} d y=2 c \int_{4}^{\infty} \lim _{t \rightarrow 0} \frac{\cos (y)-1}{y^{2} \log |y / t|} d y=2 c \int_{4}^{\infty} 0 d t=0
$$

Which proves that

$$
\lim _{t \rightarrow \infty} E \frac{e^{i t X}-1}{t}=\lim _{t \rightarrow 0} 2 c \int_{4}^{\infty} \frac{\cos (y)-1}{y^{2} \log |y / t|} d y=0
$$

proving $\phi^{\prime}(0)=0$.

2002 Spring

1. First, realize that $E\left|X_{1}\right|^{2}<\infty$ implies $\left|X_{n}\right|^{2} / n \rightarrow 0$ a.s, which in turn implies $\left|X_{n}\right| / \sqrt{n} \rightarrow 0$ a.s. The first fact is proven by using $\sum_{n \geq 1} P\left(\left|X_{n}\right|^{2} / n \geq \varepsilon\right) \leq \int_{0}^{\infty} P\left(\left|X_{1}^{2} / \varepsilon\right|>\right.$ $t) d t=E\left|X_{1} / \varepsilon\right|^{2}<\infty$, then using Borel-Cantelli to argue $P\left(\left|X_{n}^{2}\right| / n>\varepsilon\right.$ i.o. $)=0$ for all $\varepsilon>0$, which then gives $X_{n}^{2} / n \rightarrow 0$ a.s.
Once you have $\left|X_{n}\right| / \sqrt{n} \rightarrow 0$ a.s, we use the below lemma:
Lemma Let $\left\{a_{n}\right\}_{n \geq 0}$ be a nonrandom, nonnegative sequence, where $a_{n} / \sqrt{n} \rightarrow 0$. Let $m_{n}=\max _{1 \leq k \leq n} a_{n}$. Then $m_{n} / \sqrt{n} \rightarrow 0$.

Proof. Given $\varepsilon>0$, choose K so $n>K$ implies $a_{n} / \sqrt{n}<\varepsilon$. Then

$$
\frac{m_{n}}{\sqrt{n}} \leq \frac{m_{K}}{\sqrt{n}}+\max _{K \leq j \leq n} \frac{a_{j}}{\sqrt{n}} \leq \frac{m_{K}}{\sqrt{n}}+\max _{K \leq j \leq n} \frac{a_{j}}{\sqrt{j}} \leq \frac{m_{K}}{\sqrt{n}}+\varepsilon
$$

Letting $n \rightarrow \infty$ shows, since $m_{K} / \sqrt{n} \rightarrow 0$, that $\lim \sup m_{n} / \sqrt{n} \leq \varepsilon$. This holds for all $\varepsilon>0$, so $m_{n} / \sqrt{n} \rightarrow 0$.

Thus, $\left|X_{n}\right| / \sqrt{n} \rightarrow 0$ a.s. implies $\max _{1 \leq k \leq n}\left|X_{n}\right| / \sqrt{n} \rightarrow 0$ a.s, and therefore in probability.
2. By Borel-Cantelli, $P\left(\left|X_{n}\right|>\varepsilon_{n}\right.$ i.o. $)=0$. Thus, with probability 1 , there will be some K where $n>K$ implies $\left|X_{n}\right|<\varepsilon_{n}$, meaning $\sum\left|X_{n}\right| \leq \sum_{1}^{K}\left|X_{n}\right|+\sum_{K+1}^{\infty} \varepsilon_{n}<\infty$.

2002 Fall

1. The desired α is $\alpha=3$. Let $X_{n, k}=\frac{X_{k}}{n^{3}}$. We prove convergence using the Lindberg-Feller CLT. Then, using the fact that $\operatorname{Var}\left(X_{k}\right)=\int_{-k}^{k} x^{2} \cdot \frac{1}{2 k} d x=\frac{k^{2}}{3}$,

$$
\sum_{k=1}^{n} E X_{n, k}^{2}=\frac{1}{n^{3}} \sum_{k=1}^{n} \operatorname{Var} X_{k}=\frac{1}{n^{3}} \sum_{k=1}^{n} \frac{k^{2}}{3}
$$

Then, since $\sum_{k=1}^{n} \frac{k^{2}}{3} \approx \int_{0}^{n} \frac{x^{2}}{3} d x=\frac{n^{3}}{9}$, we have that

$$
\sum_{k=1}^{n} E X_{n, k}^{2} \approx \frac{1}{n^{3}} \cdot \frac{n^{3}}{9} \rightarrow \frac{1}{9} \quad \text { as } n \rightarrow \infty
$$

The above use of \approx can be made more precise, either by finding an closed form for $\sum_{1}^{n} \frac{k^{2}}{3}$, or by using and upper and lower integral bound.
This gives the first condition of the Lindberg Feller CLT. For the second, we must show

$$
\sum_{k=1}^{n} E\left(X_{n, k}^{2} \cdot 1_{\left|X_{n, k}\right|>\varepsilon}\right)=\sum_{k=1}^{n} E\left(\frac{X_{k}^{2}}{n^{3}} \cdot 1_{\left|X_{k}\right|>\varepsilon n^{3}}\right) \rightarrow 0 .
$$

Notice that, for large enough n, we have that $\varepsilon n^{3}>n^{2} \geq\left|X_{k}\right|$. Thus, for large n, the above sum will be zero, since all the indicator variables $1_{\left|X_{k}\right|>\varepsilon n^{3}}$ will all be zero.
By the Lindberg Feller CLT, this shows

$$
S_{n} / n^{3}=\sum_{k=1}^{n} X_{n, k} \rightarrow N\left(0, \frac{1}{9}\right) .
$$

2. (a) We first show that $P(Y>n$ i.o. $)=0$. We have

$$
\sum_{n \geq 1} P\left(Y_{n}>n\right) \leq \int_{0}^{\infty} P(Y>t) d t=E Y<\infty
$$

By Borel Cantelli, $P(Y>n$ i.o. $)=0$.
Thus, with probability one, we have

$$
\limsup _{n}\left(Y_{n}\right)^{1 / n} \leq \limsup _{n}(n)^{1 / n}=1
$$

By the root test, the radius convergence of $\sum Y_{k} \alpha^{k}$ is at least 1 , so that it converges when $|\alpha|<1$.
(b) Choose Y so that $P\left(Y>y^{y}\right)=\frac{1}{y}$ when $y>1$. In other words, letting $f(y)$ by the inverse function of $g(y)=y^{y}$, let Y be the random variable whose distribution is

$$
P(Y \leq y)=1-\frac{1}{f(y)} \quad(y>1)
$$

Then $\sum P\left(Y_{n}>n^{n}\right)=\sum \frac{1}{n}=\infty$, so by Borel-Cantelli, $P\left(Y_{n}>n^{n}\right.$ i.o. $)=1$, proving that, with probability one,

$$
\limsup _{n}\left(Y_{n}\right)^{1 / n} \geq \lim \sup \left(n^{n}\right)^{1 / n}=\infty
$$

Thus, almost surely the radius of convergence will be 0 , proving $S=\infty$.
3. Proof 1: Let μ be the measure on \mathbb{R} induced by X, so $\mu(A)=P(X \in A)$, and ν for Y similarly. Since $E|X+Y|^{p}<\infty$, using Fubini's theorem we have

$$
E|X+Y|^{p}=\int|x+y|^{p} d \mu \times \nu=\int\left(\int|x+y|^{p} d \mu\right) d \nu<\infty
$$

This implies $\left(\int|x+y|^{p} d \mu\right)<\infty$ for ν a.e. y, so there is some y_{0} for which it holds. Then, using $|x|^{p}=\left|x+y_{0}-y_{0}\right|^{p} \leq 2^{p}\left(\left|x+y_{0}\right|^{p}+\left|-y_{0}\right|^{p}\right)$,

$$
E|X|^{p}=\int|x|^{p} d \mu \leq \int 2^{p}\left|x+y_{0}\right|^{p}+2^{p}\left|y_{0}\right|^{p} d \mu=2^{p} \int\left|x+y_{0}\right|^{p} d \mu+2^{p}\left|y_{0}\right|^{p}<\infty
$$

Proof 2: Choose M so $P(|Y| \leq M)=\varepsilon>0$. For all t, we have

$$
\begin{aligned}
P(|X+Y|>t-M) & \geq P(\{|X|>t\} \cap\{|Y| \leq M\}) \\
& =P(|X|>t) P(|Y| \leq M)
\end{aligned}
$$

Using this,

$$
\begin{aligned}
E|X|^{p}=\int_{0}^{\infty} p t^{p-1} P(|X|>t) d t & \leq \int_{0}^{\infty} p t^{p-1} \frac{P(|X+Y|>t-M)}{P(|Y| \leq M)} d t \\
& =\frac{1}{\varepsilon}\left(\int_{0}^{M} p t^{p-1} d t+\int_{M}^{\infty} p t^{p-1} P(|X+Y|>t-M) d t\right)
\end{aligned}
$$

The first integral, $\int_{0}^{M} p t^{p-1} d t$, is some $K<\infty$. For the second, we use the chagne of variables $u=t-M$, obtaining

$$
E|X|^{p} \leq \frac{1}{\varepsilon}\left(K+\int_{0}^{\infty} p(u+M)^{p-1} P(|X+Y|>u) d u\right)
$$

Notice that, when $u>M$, we have $(u+M)^{p-1} \leq 2^{p-1} u^{p-1}$, so 1

$$
\begin{aligned}
E|X|^{p} & \leq \frac{1}{\varepsilon}\left(K+\int_{0}^{M} p(u+M)^{p-1} d u+2^{p-1} \int_{M}^{\infty} p u^{p-1} P(|X+Y|>u) d u\right) \\
& \leq \frac{1}{\varepsilon}\left(K+\int_{0}^{M} p(u+M)^{p-1} d u+2^{p-1} E|X+Y|^{p}\right)<\infty
\end{aligned}
$$

[^0]4. Note that F_{∞} being continuous implies that, for some $m, P\left(X_{\infty} \leq m\right)=\frac{1}{2}$, implying also that $P\left(X_{\infty} \geq m\right)=P\left(X_{\infty}>m\right)=1-\frac{1}{2}=\frac{1}{2}$. This m is a median, so $m=m_{\infty}$. Furthermore, for any $\varepsilon>0$, we must have $P\left(X_{\infty} \leq m_{\infty}-\varepsilon\right)<\frac{1}{2}$: if it equaled $\frac{1}{2}$, that would mean $m_{\infty}-\varepsilon$ was another median, violating uniqueness. By the same logic, $P\left(X_{\infty} \leq m_{\infty}+\varepsilon\right)>\frac{1}{2}$.
For any $\varepsilon>0$, we have
$$
\lim _{n \rightarrow \infty} P\left(X_{n} \leq m_{\infty}-\varepsilon\right)=P\left(X \leq m_{\infty}-\varepsilon\right)<\frac{1}{2}
$$

The above shows that, for large enough n, we have $P\left(X_{n} \leq m_{\infty}-\varepsilon\right)<\frac{1}{2}$, so that for large enough $n, m_{n} \geq m_{\infty}-\varepsilon$.
Similarly,

$$
\lim _{n \rightarrow \infty} P\left(X_{n} \leq m_{\infty}+\varepsilon\right)=P\left(X \leq m_{\infty}+\varepsilon\right)>\frac{1}{2}
$$

proving $P\left(X_{n} \leq m_{\infty}+\varepsilon\right)>\frac{1}{2}$ eventually, so that $m_{n} \leq m_{\infty}+\varepsilon$ eventually.
We have shown

$$
m_{\infty}-\varepsilon \leq \liminf _{n} m_{n} \leq \limsup _{n} m_{n} \leq m_{\infty}+\varepsilon
$$

for all $\varepsilon>0$, proving $m_{n} \rightarrow m_{\infty}$.

2003 Spring

1. Since $\phi^{\prime}(0)=i a$, we have that

$$
\lim _{n \rightarrow \infty} \frac{\phi(t / n)-1}{t / n}=i a
$$

Furthermore, from calculus it is true that $\frac{\log (1+x)}{x} \rightarrow 1$ as $x \rightarrow 0$, implying $\frac{\log \phi(t / n)}{\phi(t / n)-1} \rightarrow 1$ as $n \rightarrow \infty$. Multiplying these two limits, we get

$$
\lim _{n \rightarrow \infty} \frac{\log \phi(t / n)}{t / n}=i a
$$

Taking exp of both sides, we get $\phi(t / n)^{n} \rightarrow e^{i a t}$. But $\phi(t / n)^{n}$ is the c.f. for S_{n} / n, and $e^{i a t}$ is the c.f. for a, so the continutity theorem implies $S_{n} / n \rightarrow a$ weakly. Finally, one can prove that converging weakly to a constant implies convergence in probability as well, so that $S_{n} / n \rightarrow a$ in probability.
2. Let $a_{n}=\inf \left\{x: F_{n}(x) \geq \frac{1}{2}\right\}$. This implies $F_{n}\left(a_{n}\right) \geq \frac{1}{2}$ by right continuity of F_{n}. Since $X_{n}-X_{n}^{\prime} \rightarrow 0$ in distribution, we have that $P\left(\left|X_{n}-X_{n}^{\prime}\right|>\varepsilon\right) \rightarrow 0$. Since $X_{n}>a_{n}+e$ and $X_{n}^{\prime} \leq a_{n}$ implies $X_{n}-X_{n}^{\prime}>\varepsilon$, we have that

$$
\begin{aligned}
P\left(\left|X_{n}-X_{n}^{\prime}\right|>\varepsilon\right) & \geq P\left(\left\{X_{n}>a_{n}+\varepsilon\right\} \cap\left\{X_{n}^{\prime} \leq a_{n}\right\}\right) \\
& =P\left(X_{n}>a_{n}+\varepsilon\right) P\left(X_{n}^{\prime} \leq a_{n}\right) \\
& \geq P\left(X_{n}>a_{n}+\varepsilon\right) \cdot \frac{1}{2}
\end{aligned}
$$

The last inequality follows since $P\left(X_{n}^{\prime} \leq a_{n}\right)=P\left(X_{n} \leq a_{n}\right)=F_{n}\left(a_{n}\right) \geq \frac{1}{2}$.
Since $P\left(\left|X_{n}-X_{n}^{\prime}\right|>\varepsilon\right) \rightarrow 0$, the displayed string of inequalities implies $P\left(X_{n}>\right.$ $\left.a_{n}+\varepsilon\right) \rightarrow 0$ as well.
By the same logic, we have

$$
\begin{aligned}
P\left(\left|X_{n}-X_{n}^{\prime}\right|>\varepsilon / 2\right) & \geq P\left(X_{n} \leq a_{n}-\varepsilon\right) P\left(X_{n}^{\prime}>a_{n}-\frac{\varepsilon}{2}\right) \\
& =P\left(X_{n} \leq a_{n}-\varepsilon\right)\left(1-P\left(X_{n} \leq a_{n}-\frac{\varepsilon}{2}\right)\right) \\
& \geq P\left(X_{n} \leq a_{n}-\varepsilon\right) \cdot \frac{1}{2}
\end{aligned}
$$

The last inequlaity follows from the definition of a_{n} : since $a_{n}-\frac{\varepsilon}{2}<a_{n}$, and $a_{n}=$ $\inf \left\{x: F_{n}(x) \geq \frac{1}{2}\right\}$, we must have $P\left(X_{n} \leq a_{n}-\frac{\varepsilon}{2}\right)<\frac{1}{2}$.
Thus, the above shows that $\left.P\left(X_{n} \leq a_{n}-\varepsilon\right) \rightarrow 0\right)$. Finally, we have that

$$
P\left(\left|X_{n}-a_{n}\right| \geq \varepsilon\right) \leq P\left(X_{n}>a_{n}+\varepsilon\right)+P\left(X_{n} \leq a_{n}-\varepsilon\right) \rightarrow 0
$$

proving $X_{n} \rightarrow a_{n}$ in probability.
3. Let $a_{n}=\frac{1}{\alpha} \log n$, and $\beta=1$. Since $P\left(X_{n}>x\right)=x^{-\alpha}$, we have that

$$
P\left(\frac{\log X_{n}}{(\log n) / \alpha}>1\right)=P\left(X_{n}>n^{1 / \alpha}\right)=n^{-1}
$$

Since $\sum n^{-1}=\infty$, by Borel-Cantelli, $P\left(\frac{\log X_{n}}{(\log n) / \alpha}>1\right.$ i.o. $)=1$. This proves that $\limsup \frac{\log X_{n}}{(\log n) / \alpha} \geq 1$ a.s.
Furthermore, for any $e>0$, we have

$$
P\left(\frac{\log X_{n}}{(\log n) / \alpha}>1+\varepsilon\right)=P\left(X_{n}>n^{(1+\varepsilon) / \alpha}\right)=n^{-1-\varepsilon}
$$

Since $\sum n^{-1-\varepsilon}<\infty$, by Borel-Cantelli, $P\left(\frac{\log X_{n}}{(\log n) / \alpha}>1+\varepsilon\right.$ i.o. $)=0$. This proves that $\lim \sup \frac{\log X_{n}}{(\log n) / \alpha} \leq 1+\varepsilon$ a.s. Since this holds for all $\varepsilon>0$, this additionally proves that $\lim \sup \frac{\log X_{n}}{(\log n) / \alpha} \leq 1$ a.s.
We have proven $\lim \sup \frac{\log X_{n}}{(\log n) / \alpha}=1$ a.s, and would like to prove the same for M_{n}. Since $M_{n} \geq X_{n}$, we certainly now know that

$$
\limsup \frac{\log M_{n}}{(\log n) / \alpha} \geq 1 \quad \text { a.s. }
$$

For the other inequality, we use the following Lemma:
Lemma: Let $\left\{a_{n}\right\}$ be a (nonrandom) sequence, and $\left\{b_{n}\right\}$ be an increasing sequence where $b_{n} \rightarrow \infty$. Let $m_{n}=\max _{1 \leq k \leq n} a_{k}$. If $\lim \sup a_{n} / b_{n} \leq 1$, then $\limsup m_{n} / b_{n} \leq 1$.

Proof. Given $\varepsilon>0$, choose N so $n>N$ implies $a_{n} / b_{n} \leq 1+\varepsilon$. Then

$$
\frac{m_{n}}{b_{n}} \leq \frac{m_{N}}{b_{n}}+\max _{N \leq k \leq n} \frac{a_{k}}{b_{n}} \leq \frac{m_{N}}{b_{n}}+\max _{N \leq k \leq n} \frac{a_{k}}{b_{k}} \leq \frac{m_{N}}{b_{n}}+1+\varepsilon
$$

Since $m_{N} / b_{n} \rightarrow 0$, the above proves $\limsup m_{n} / b_{n} \leq 1+\varepsilon$. Letting $\varepsilon \rightarrow 0$ completes the proof.

This lemma shows $\lim \sup \frac{\log X_{n}}{(\log n) / \alpha}=1$ a.s. implies $\lim \sup \frac{\log M_{n}}{(\log n) / \alpha} \leq 1$ a.s, so we are done.
4. (i) Let $\|X\|_{p}$ denote $\left(E X^{p}\right)^{1 / p}$. By Minkowski's inequality, $\|X+Y\|_{p} \leq\|X\|_{p}+\|Y\|_{p}$. Therefore,

$$
\left\|X_{n}-X_{m}\right\|_{p} \leq\left\|X_{n}-X\right\|_{p}+\left\|X-X_{m}\right\|_{p}
$$

The right side approaches zero since $E\left|X_{n}-X\right|^{p} \rightarrow 0$, proving $\left\|X_{n}-X\right\|_{p} \rightarrow 0$. Raising both sides to p then implies that $E\left|X_{n}-X_{m}\right|^{p} \rightarrow 0$.
(ii) This proof is due to Gene Kim.

Choose a subsequence $X_{n(k)}$ so that $\left\|X_{n(k)}-X_{n(k+1)}\right\|_{p}<\frac{1}{2^{k}}$. Let

$$
\phi_{m}=\left|X_{n(1)}\right|+\sum_{k=2}^{m}\left|X_{n(k)}-X_{n(k-1)}\right| \quad \phi=\lim _{m \rightarrow \infty} \phi_{m}
$$

By the MCT,

$$
\|\phi\|_{p}=\lim _{m \rightarrow \infty}\left\|\phi_{m}\right\|_{p} \leq\left\|X_{n(1)}\right\|_{p}+\sum_{k=2}^{\infty}\left\|X_{n(k)}-X_{n(k-1)}\right\|_{p} \leq\left\|X_{n(1)}\right\|_{p}+\sum_{k=2}^{\infty} \frac{1}{2^{k}}<\infty
$$

Since $\|\phi\|_{p}<\infty$, it must be true that $\phi<\infty$ almost surely, which proves that the series

$$
X=X_{n(1)}+\sum_{k=2}^{\infty} X_{n(k)}-X_{n(k-1)}
$$

converges absolultely, and therefore converges. Also,

$$
X=\lim _{m \rightarrow \infty} X_{n(1)}+\sum_{k=2}^{m} X_{n(k)}-X_{n(k-1)}=\lim _{n \rightarrow \infty} X_{n(m)}
$$

so $X_{n(m)}$ is a sequence converging almost surely to X.
(iii) Letting X be defined as before, for any m we have $X=X_{n(m)}+\sum_{k=m+1}^{\infty} X_{n(k)}-$ $X_{n(k+1)}$, so

$$
\left\|X-X_{n(m)}\right\|_{p} \leq \sum_{k=m+1}^{\infty}\left\|X_{n(k)}-X_{n(k+1)}\right\|_{p} \leq \sum_{k=m+1}^{\infty} \frac{1}{2^{k}} \xrightarrow{m \rightarrow \infty} 0
$$

proving $X_{n(m)} \rightarrow X$ in L_{p}. Since X_{n} is Cauchy in L_{p}, and has a subsequence converging to X, this implies $X_{n} \rightarrow X$ in L_{p}.

2003 Fall

1. This proof is due to Gene Kim.

Let $M_{n}=\frac{1}{n} \max _{j \leq n} X_{j}$, and let $F_{X}(x)=P(X \leq x)$. Since $M_{n} \leq x$ exactly when each $X_{j} \leq n x$, we have that $P\left(M_{n} \leq m\right)=F_{X}(n x)^{n}$. Thus,

$$
\begin{aligned}
E M_{n} & =\int_{0}^{\infty} P\left(M_{n}>x\right) d x \\
& =\int_{0}^{\infty} 1-F_{X}(n x)^{n} d x \\
& =\int_{0}^{\infty} \frac{1-F_{X}(t)^{n}}{n} d t \\
& =\int_{0}^{\infty}\left(1-F_{X}(t)\right)\left(\frac{1+F_{X}(t)+F_{X}(t)^{2}+\cdots+F_{X}(t)^{n-1}}{n}\right) d t
\end{aligned}
$$

Since $\left(\frac{1+F_{X}(t)+F_{X}(t)^{2}+\cdots+F_{X}(t)^{n-1}}{n}\right) \leq 1$, the above integrand is bounded by $1-F_{X}(t)$, which is integrable since $\int_{0}^{\infty} 1-F_{X}(t)=E X<\infty$. Thus, by the DCT,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} E M_{n} & =\int_{0}^{\infty} \lim _{n \rightarrow \infty}\left(1-F_{X}(t)\right)\left(\frac{1+F_{X}(t)+F_{X}(t)^{2}+\cdots+F_{X}(t)^{n-1}}{n}\right) d t \\
& =\int_{0}^{\infty}\left(1-F_{X}(t)\right) 1_{\left\{F_{X}(t)=1\right\}} d t=\int_{0}^{\infty} 0 d t=0
\end{aligned}
$$

2. Impossible Problem!! Let $U \sim \operatorname{Unif}(0,1)$, and $f(x)=0$ when $x \leq 1$ and $f(x)=x$ when $x>1$. Then $f(X)=0$ always, so X and $f(X)$ are independent, but f is not constant.

The problem is possible when reworded as follows: if X and $f(X)$ are independent, then $f(X)$ is constant a.s.
Since X is independent of $f(X)$, this implies $f(X)$ is independent of $f(X)$ (this comes from the theorem which says that, if Y independent of Z, then $g(Y)$ independent of $h(Z))$. This means that, for any $x \in \mathbb{R}$, the event $\{f(X) \leq x\}$ is independent of itself. Thus, $P(f(X) \leq x)=0$ or 1 , since A independent of itselft implies $P(A)=P(A \cap A)=$ $P(A) P(A)$. This implies $f(X)$ is constant a.s; if it were nonconstant, there would be some x where $P(f(X) \leq x)$ was neither 0 nor 1 .
3. Unclear wording: They should have mentioned that σ^{2} was finite.
(a) Let $S=\sum_{1}^{N_{\lambda}} X_{i}$, and $S_{n}=\sum_{1}^{n} X_{i}$. We first find the c.f. for S. Let φ be the c.f. for X_{1}. Then

$$
\begin{aligned}
E e^{i t S} & =E \sum_{n=0}^{\infty} e^{i t S} 1_{N_{\lambda}=n}=\sum_{n=0}^{\infty} E\left(e^{i t S_{n}} 1_{N_{\lambda}=n}\right)=\sum_{n=0}^{\infty} E\left(e^{i t S_{n}}\right) P\left(N_{\lambda}=n\right) \\
& =\sum_{n=0}^{\infty} \varphi(t)^{n} \frac{e^{-\lambda} \lambda^{n}}{n!}=e^{-\lambda} \sum_{n=0}^{\infty} \frac{(\lambda \varphi(t))^{n}}{n!}=e^{-\lambda} e^{\lambda \varphi(t)}=\exp (\lambda(\varphi(t)-1))
\end{aligned}
$$

Since the c.f. for N_{λ} is $\exp \left(\lambda\left(e^{i t}-1\right)\right)$, this means the c.f for $\frac{S-N_{\lambda} \mu}{\sqrt{\lambda}}$ is

$$
\begin{aligned}
E\left(\exp \left(i t \cdot \frac{S-N_{\lambda} \mu}{\sqrt{\lambda}}\right)\right) & =\exp (\lambda(\varphi(t / \sqrt{\lambda})-1)) \cdot \exp \left(\lambda\left(e^{-i t \mu / \sqrt{\lambda}}-1\right)\right) \\
& =\exp \left(\lambda\left(\varphi\left(\frac{t}{\sqrt{\lambda}}\right)+\left(e^{-i t \mu / \sqrt{\lambda}}-1\right)-1\right)\right)
\end{aligned}
$$

Now, note that that

$$
e^{-i t \mu / \sqrt{\lambda}}-1=\frac{-i t \mu}{\sqrt{\lambda}}-\frac{t^{2} \mu^{2}}{2 \lambda}+o\left(t^{2} / \lambda\right)
$$

and

$$
\begin{aligned}
\varphi(t / \sqrt{\lambda}) & =1+i t \mu-\frac{t^{2}}{2} E X^{2}+o\left(t^{2} / \lambda\right) \\
& =1+\frac{i t \mu}{\sqrt{\lambda}}-\frac{t^{2}}{2 \lambda}\left(\sigma^{2}+\mu^{2}\right)+o\left(t^{2} / \lambda\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
E\left(\exp \left(i t \cdot \frac{S-N_{\lambda} \mu}{\sqrt{\lambda}}\right)\right) & =\exp \left(\lambda\left(\frac{i t \mu}{\sqrt{\lambda}}-\frac{t^{2}}{2 \lambda}\left(\sigma^{2}+\mu^{2}\right)+\frac{-i t \mu}{\sqrt{\lambda}}-\frac{t^{2} \mu^{2}}{2 \lambda}+o\left(t^{2} / \lambda\right)\right)\right) \\
& =\exp \left(-t^{2}\left(\sigma^{2}+2 \mu^{2}\right) / 2-\lambda o\left(t^{2} / \lambda\right)\right) \rightarrow \exp \left(-t^{2}\left(\sigma^{2}+2 \mu^{2}\right) / 2\right)
\end{aligned}
$$

The last expression is the c.f. for $N\left(0, \sigma^{2}+2 \mu^{2}\right)$, which is the limit distribution.
(b) Since the c.f. for $\sqrt{\lambda} \mu$ is $\exp (i t \mu \sqrt{\lambda})$, the c.f for $\frac{S-\lambda \mu}{\sqrt{\lambda}}$ is

$$
E\left(\exp \left(i t \cdot \frac{S-\lambda \mu}{\sqrt{\lambda}}\right)\right)=\exp (\lambda(\varphi(t / \sqrt{\lambda})-1)) \exp (-i t \mu \sqrt{\lambda})=\exp \left(\lambda\left(\varphi(t / \sqrt{\lambda})-\frac{i t \mu}{\sqrt{\lambda}}-1\right)\right)
$$

Using the same asymptotics,

$$
E\left(\exp \left(i t \cdot \frac{S-\lambda \mu}{\sqrt{\lambda}}\right)\right)=\exp \left(\lambda\left(\frac{-t^{2}\left(\sigma^{2}+\mu^{2}\right)}{2 \lambda}+o\left(t^{2} / \lambda\right)\right)\right) \rightarrow \exp \left(-t^{2}\left(\sigma^{2}+\mu^{2}\right) / 2\right)
$$

The latter is the c.f. for $N\left(0, \sigma^{2}+\mu^{2}\right)$, which is therefore the desired limit distrubution.
(c) The two limit distriubtions are only the same when $\mu=0$.
4. (a) We have that

$$
\begin{aligned}
E[X+Y \mid X, Y>0]=E[X \mid X, Y>0]+E[Y \mid X, Y>0] & =E[X \mid X>0]+E[Y \mid Y>0] \\
& =2 E[X \mid X>0]
\end{aligned}
$$

The second $=$ follows since X is independent of Y. We then have

$$
E[X \mid X>0]=\frac{E\left[X 1_{X>0}\right]}{P(X>0)}=2 \int_{0}^{\infty} x \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x=\left.\frac{2}{\sqrt{2 \pi}}\left(-e^{-x^{2} / 2}\right)\right|_{0} ^{\infty}=\sqrt{2 / \pi}
$$

Thus, $E[Z \mid X, Y>0]=2 \sqrt{2 / \pi}$.
(b) This problem is a little misleading: you can't really get a closed form for the dsitribution of Z. However, you can get an expression in terms of the distribution of X.

$$
P(Z \leq z \mid X, Y>0)=\frac{P(Z \leq z, X>0, Y>0)}{P(X>0, Y>0)}
$$

Let T be the event that $Z \leq z, X>0, Y>0$. Let S be the event that (X, Y) is in the square with vertices $(\pm z, 0)$ and $(0, \pm z)$. By symmetry, $P(T)=\frac{1}{4} P(S)$. Now, let S^{\prime} be the event that (X, Y) is in this same square, but rotated 45 degrees about the orgin; this is the square with vertices $\left(\pm \frac{z}{\sqrt{2}}, \pm \frac{z}{\sqrt{2}}\right)$. Since the pdf of (X, Y) is

$$
\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \cdot \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}=\frac{1}{2 \pi} e^{-r^{2} / 2},
$$

where $r^{2}=x^{2}+y^{2}$, it follows that the pdf has rotational symmetry, so that $P(S)=P\left(S^{\prime}\right)$. Finally,

$$
\begin{aligned}
P\left(S^{\prime}\right) & =P\left(|X| \leq \frac{z}{\sqrt{2}}\right) P\left(|Y| \leq \frac{z}{\sqrt{2}}\right) \\
& =\left(\frac{1}{\sqrt{2 \pi}} \int_{-z / \sqrt{2}}^{z / \sqrt{2}} e^{-x^{2} / 2} d x\right)^{2} \\
& =4\left(\frac{1}{\sqrt{2 \pi}} \int_{0}^{z / \sqrt{2}} e^{-x^{2} / 2} d x\right)^{2}=4\left(F_{X}(z / \sqrt{2})-\frac{1}{2}\right)^{2}
\end{aligned}
$$

so

$$
P(Z \mid \leq z X, Y>0)=\frac{\frac{1}{4} P\left(S^{\prime}\right)}{P(X>0) P(Y>0)}=P\left(S^{\prime}\right)=4\left(F_{X}(z / \sqrt{2})-\frac{1}{2}\right)^{2}
$$

Differentiating with respect to z gives the density $f_{Z}(z)$ of Z :

$$
f_{Z}(z)=\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2 \pi}} e^{-(z / \sqrt{2})^{2} / 2} \cdot 8\left(F_{X}(z / \sqrt{2})-\frac{1}{2}\right)=\frac{4}{\sqrt{\pi}} e^{-z^{2} / 4} \cdot\left(F_{X}(z / \sqrt{2})-\frac{1}{2}\right)
$$

2004 Spring

The $\pi-\lambda$ theorem: A π-system is a collection of subsets of Ω which is closed under intersection. A λ-system, \mathcal{L}, is a collection of subsets of Ω where
(i) $\Omega \in \mathcal{L}$
(ii) if $A, B \in \mathcal{L}, A \subset B$, then $B \backslash A \in \mathcal{L}$
(iii) if $A_{n} \nearrow A$, and each $A_{n} \in \mathcal{L}$, then $A \in \mathcal{L}$.

The $\pi-\lambda$ theorem says that, if \mathcal{P} is a π-system, \mathcal{L} is a λ-system, and $\mathcal{P} \subset \mathcal{L}$, then $\sigma(P) \subset \mathcal{L}$, where $\sigma(P)$ is the sigma algebra generated by P.

1. (a) Let \mathcal{A} be the sets of the form $\{X \leq x\}$, for $x \in[-\infty,+\infty]$, and B be sets of the form $\{Y \leq y\}$. Note that \mathcal{A} is a π-system, since $\{X \leq a\} \cap\{X \leq b\}=\{X \leq a \wedge b\}$. Let

$$
\mathcal{L}=\{E \in \sigma(X): P(E \cap B)=P(E) P(B) \text { for all } B \in \mathcal{B}\}
$$

Note that by assumtion, $\mathcal{A} \subset \mathcal{L}$.
We will show \mathcal{L} is a Lambda system, by checking each of the above three conditions
(i) $P(\Omega \cap B)=P(B)=P(\Omega) P(B)$, so $\Omega \in \mathcal{L}$.
(ii) If $E, F \in \mathcal{L}$, and $E \subset F$, then

$$
\begin{aligned}
P((E \backslash F) \cap B) & =P(E \cap B)-P(F \cap B)=P(E) P(B)-P(F) P(B) \\
& =(P(E)-P(F)) P(B)=P(E \backslash F) P(B)
\end{aligned}
$$

so $E \backslash F \in \mathcal{L}$.
(iii) If $E_{n} \nearrow E$, then $E_{n} \cap B \nearrow E \cap B$, proving that $P\left(E_{n} \cap B\right)=P\left(E_{n}\right) P(B) \nearrow$ $P(E \cap B)$. Since we also have $P\left(E_{n}\right) P(B) \nearrow P(E)(B)$, this implies $P(E \cap$ $B)=P(E) P(B)$.
Applying the $\pi-\lambda$ theorem gives that $\sigma(\mathcal{A})=\sigma(X) \subset \mathcal{L}$. We the apply the $\pi-\lambda$ theorem again to

$$
\mathcal{L}^{\prime}=\{E \in \sigma(Y): P(E \cap A)=P(E) P(A) \text { for all } A \in \sigma(X)\}
$$

Since $\mathcal{B} \subset \mathcal{L}^{\prime}$, we have that $\sigma(B)=\sigma(Y) \subset \mathcal{L}^{\prime}$. Now, notice that $\sigma(Y) \subset \mathcal{L}$ means that, for all $A \in \sigma(X)$, and all $B \in \sigma(Y), P(A \cap B)=P(A) P(B)$, proving that X, Y are independent.
(b) It is sufficient to show that, for all k,

$$
P\left(B_{1}=b_{1}, \ldots, B_{k}=b_{k}\right)=P\left(B_{1}=b_{1}\right) \cdots P\left(B_{k}=b_{k}\right)
$$

since the sets $\left\{B_{i}=b_{i}\right\}$, for $b_{1}=0,1$, generate $\sigma\left(B_{i}\right)$. Note that the right hand side is $(1 / 2)^{k}$, since $\left\lfloor 2^{k} U\right\rfloor$ will be odd half the time. The left hand side is also $(1 / 2)^{k}$, since the event $\left\{B_{1}=b_{1}, \ldots, B_{k}=b_{k}\right\}$ is exactly the event that the first k binary digits of U are b_{1}, \ldots, b_{k}, and the set of possible values of U for which that occurs form an interval of length $(1 / 2)^{k}$.
2. Note that $s_{n}^{2}=\sum E X_{i}^{2}=1+1+2+\cdots+2^{n-2}=2^{n-1}$. This means that

$$
X_{n} / s_{n} \sim N\left(0, \frac{2^{n-2}}{s_{n}^{2}}\right)=N\left(0, \frac{1}{2}\right)
$$

so that $P\left(\left|X_{n}\right| / s_{n}>\varepsilon\right)$ is constant in n, so $P\left(\left|X_{n}\right| / s_{n}>\varepsilon\right) \nrightarrow 0$. Thus,

$$
\sum_{k=1}^{n} \int_{\left|X_{n}\right|>\varepsilon s_{n}} X_{n}^{2} d P \geq \int_{\left|X_{n}\right| / s_{n}>\varepsilon} X_{n}^{2} d P \geq \varepsilon^{2} P\left(\left|X_{n}\right| / s_{n} \geq \varepsilon\right) \nrightarrow 0
$$

so the Lindberg condtion doesn't hold.
Note that, if $Z_{1} \sim N\left(0, \sigma_{1}^{2}\right)$ and $Z_{2} \sim N\left(0, \sigma_{2}^{2}\right)$, then $Z_{1}+Z_{2} \sim N\left(0, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$. This is because the c.f. for $N\left(0, \sigma^{2}\right)$ is $\exp \left(-t^{2} \sigma^{2} / 2\right)$, so the c.f. for $Z_{1}+Z_{2}$ is

$$
\exp \left(-t^{2} \sigma_{1}^{2} / 2\right) \cdot \exp \left(-t^{2} \sigma_{2}^{2} / 2\right)=\exp \left(-t^{2}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) / 2\right)
$$

This means that

$$
S_{n} \sim N\left(0,1+1+2+\cdots+2^{n-2}\right)=N\left(0,2^{n-1}\right)
$$

so $S_{n} / s_{n} \sim N(0,1)$. So, not only does $S_{n} / s_{n} \rightarrow N(0,1)$ in distribution, but in fact each S_{n} / s_{n} is equal to $N(0,1)$ in distribution!
3. Recall Kronecker's Lemma: if $a_{n} \nearrow \infty$, and $\sum_{1}^{\infty} \frac{x_{n}}{a_{n}}$ converges, then $\frac{1}{a_{n}} \sum_{1}^{n} x_{k} \rightarrow 0$. Thus, it suffices to show that $\sum_{1}^{\infty} \frac{X_{n}^{2}}{n^{2}}$ converges. To do this, we use the Kolmogorov 3 -series test. Let $Y_{n}=\frac{X_{n}^{2}}{n^{2}} \mathbf{1}\left(\frac{X_{n}^{2}}{n^{2}} \leq 1\right)=\frac{X_{n}^{2}}{n^{2}} \mathbf{1}\left(X_{n} \leq n\right)$. We must check that
(i) $\sum_{1}^{\infty} P\left(\frac{X_{n}^{2}}{n^{2}}>1\right)<\infty$
(ii) $\sum_{1}^{\infty} E Y_{n}$ converges
(iii) $\sum_{1}^{\infty} \operatorname{Var} Y_{n}<\infty$
(i) This is true since $E X_{1}<\infty$, which holds if and only if $\sum_{1}^{\infty} P\left(X_{k}>k\right)<\infty$, which is the same as $\sum_{1}^{\infty} P\left(X_{k}^{2} / k^{2}>1\right)<\infty$.
(ii) The below computation uses many clever tricks. For the first equality, we are using $X_{1} 1_{X_{1} \leq n}=\sum_{1}^{n} X_{1} 1_{\left\{k-1<X_{1} \leq k\right\}}$. For the second, we use Fubini's, vaild since all summands are positive. For the third, we bound $\sum_{n=k}^{\infty} n^{-2} \leq \int_{k}^{\infty} x^{-2} d x=\frac{1}{k}$. For the fourth, note that $X_{1}^{2} 1_{(k-1, k]} \leq k X_{1} 1_{(k-1, k]}$.

$$
\begin{aligned}
\sum_{n=1}^{\infty} E\left(\frac{X_{n}^{2}}{n^{2}} ;|X| \leq n\right)=\sum_{n=1}^{\infty} \sum_{k=1}^{n} \frac{1}{n^{2}} E\left(X_{1}^{2} 1_{\{k-1<X \leq k\}}\right) & =\sum_{k=1}^{\infty} E\left(X_{1}^{2} ; 1_{(k-1, k]}\right) \sum_{n=k}^{\infty} \frac{1}{n^{2}} \\
& \leq \sum_{k=1}^{\infty} E\left(X_{1}^{2} ; 1_{(k-1, k]}\right) \frac{1}{k} \\
& \leq \sum_{k=1}^{\infty} E\left(X_{1} ; 1_{(k-1, k]}\right) \\
& =E X_{1}<\infty
\end{aligned}
$$

(iii) To show $\sum \operatorname{Var} Y_{n}<\infty$, we show $\sum E Y_{n}^{2}<\infty$, using the same tricks.

$$
\begin{aligned}
\sum_{n=1}^{\infty} E\left(\frac{X_{n}^{4}}{n^{4}} ;|X| \leq n\right)=\sum_{n=1}^{\infty} \sum_{k=1}^{n} n^{-4} E\left(X_{1}^{4} 1_{(k-1, k]}\right) & =\sum_{k=1}^{\infty} E\left(X_{1}^{4} 1_{(k-1, k]}\right) \sum_{n=k}^{\infty} n^{-4} \\
& \leq \sum_{k=1}^{\infty} E\left(X_{1}^{4} 1_{(k-1, k]}\right) \frac{3}{k^{3}} \\
& \leq 3 \sum_{k=1}^{\infty} E\left(X_{1} 1_{(k-1, k]}\right)=3 E X_{1}<\infty
\end{aligned}
$$

This completes the proof!

2004 Fall

Lemma If y_{n} is a sequence of real numbers, and every subsequence has a further subsequence converging to y, then $y_{n} \rightarrow y$.

Proof. Suppose $y_{n} \nrightarrow y$. Then there is an $\varepsilon>0$, and a subsequence $y_{n(k)}$ where $\left|y-y_{n(k)}\right|>\varepsilon$. This means no subsequence of $y_{n(k)}$ can approach y, contradicting the assumtion.

1. (a) \Longrightarrow (b) We are given that $X_{n} \rightarrow 0$ in probability, which implies every subsequence $X_{n(k)}$ has a further subsequence $X_{n\left(k_{m}\right)}$ converging almost surely to 0 . Since f is continuous, this means $f\left(X_{n\left(k_{m}\right)}\right) \rightarrow f(0)$ a.s, and since f is bounded, by DCT, $E f\left(X_{n\left(k_{m}\right)}\right) \rightarrow f(0)$. We have shown every subsequence of $E f\left(X_{n}\right)$ has a further subsequence converging to $f(0)$: by the above lemma, this implies $E f\left(X_{n}\right) \rightarrow f(0)$.
$(\mathrm{b}) \Longrightarrow$ (a) Given $\varepsilon>0$, let $h(x)=(|x| / \varepsilon) \wedge 1=\min (|x| / \varepsilon, 1)$. The idea is that h is bounded, continuous, and $1_{|x| \geq \varepsilon} \leq h(x)$. Thus,

$$
P\left(\left|X_{n}\right|>\varepsilon\right)=E 1_{\left|X_{n}\right|>\varepsilon} \leq E h\left(X_{n}\right)
$$

So letting $n \rightarrow \infty$, we get

$$
\limsup _{n} P\left(\left|X_{n}\right|>\varepsilon\right) \leq \lim _{n} E h\left(X_{n}\right)=h(0)=0 .
$$

2. (a) The c.f. of S_{n} / n is always $\varphi(t / n)^{n}$, so in this case, $\left(e^{-|t / n|}\right)^{n}=e^{-|t|}$.
(b) The law of large numbers does not hold since $E\left|X_{1}\right|=\infty$.

Also, the law of large numbers would imply $S_{n} / n \rightarrow \mu$, but the previous result, and the continuity theorem, show that $S_{n} / n \rightarrow X_{1}$ in distribution.
3. (a) We have that $P\left(X_{n} \geq \log n\right)=e^{-\log n}=n^{-1}$, and $\sum n^{-1}=\infty$, so by BorelCantelli, $P\left(X_{n} / \log n \geq 1\right.$ i.o. $)=1$, which proves $P\left(\lim \sup _{n} X_{n} / \log n \geq 1\right)=1$. For any $\varepsilon>0$, we have $P\left(X_{n} / \log n>1+\varepsilon\right)=n^{-(1+\varepsilon)}$, which is now summable, so again by Borel Cantelli, $P\left(X_{n} / \log n>1+\varepsilon\right.$ i.o. $)=0$. This shows

$$
\limsup _{n} X_{n} / \log n \leq 1+\varepsilon \quad \text { a.s. }
$$

Letting $L=\limsup X_{n} / \log n$, since $\{L \leq 1\}=\bigcap_{k \geq 1}\left\{L \leq 1+\frac{1}{k}\right\}$, the above implies $L \leq 1$ a.s, so we have shown $L=1$ a.s.
(b) We first show:

Lemma Given a (non random) sequence a_{1}, a_{2}, \ldots, where $a_{n} \geq 0$, and $\lim \sup _{n} \frac{a_{n}}{\log n}=$ 1 , let $m_{n}=\max _{1 \leq k \leq n} a_{k}$. Then $\lim \sup _{n} \frac{m_{n}}{\log n} \leq 1$.
Proof. Given $\varepsilon>0$, choose K so $n>K$ implies $\frac{a_{n}}{\log n}<1+\varepsilon$. Then

$$
\frac{m_{n}}{\log n} \leq \frac{m_{K}}{\log n}+\max _{K+1 \leq j \leq n} \frac{a_{j}}{\log j} \leq \frac{m_{K}}{\log n}+1+\varepsilon
$$

Letting $n \rightarrow \infty$, we have $m_{K} / \log n \rightarrow 0$, so the above shows $\lim \sup \frac{m_{n}}{\log n} \leq$ $1+\varepsilon$.

Thus, using $\lim \sup \frac{X_{n}}{\log n}=1$ a.s. and the Lemma proves $\lim \sup \frac{M_{n}}{\log n} \leq 1$ a.s. Secondly, we show $\lim \inf \frac{M_{n}}{\log n} \geq 1$ a.s. For any $\varepsilon>0$, we have
$P\left(M_{n} / \log n<1-\varepsilon\right)=P\left(X_{i} \leq(1-\varepsilon) \log n\right)^{n}=\left(1-e^{-(1-\varepsilon) \log n}\right)^{n}=\left(1-\frac{n^{\varepsilon}}{n}\right)^{n} \leq e^{-n^{\varepsilon}}$
Since $\sum\left(\frac{1}{e^{\varepsilon}}\right)^{n}<\infty$, this implies that $P\left(M_{n} / \log n<1-\varepsilon\right.$ i.o. $)=0$. Thus, almost surely we will have $M_{n} / \log n$ is eventually greater than $1-\varepsilon$, so $\lim \inf M_{n} / \log n \geq$ $1-\varepsilon$ a.s, so $\lim \inf M_{n} / \log n \geq 1$ a.s.

2006 Spring

1. (a) The condition is $p_{n} \rightarrow 0$, since $P\left(\left|X_{n}\right|>\varepsilon\right)=P\left(X_{n}=1\right)=p_{n}$, so $X_{n} \rightarrow 0$ in probability iff $p_{n} \rightarrow 0$.
(b) The condition is $\sum p_{n}<\infty$, since

$$
X_{n} \rightarrow 0 \text { a.s. } \Longleftrightarrow P\left(X_{n}=1 \text { i.o. }\right)=0 \Longleftrightarrow \sum P\left(X_{n}=1\right)<\infty
$$

with the last \Longleftrightarrow following from Borel-Cantelli.
2. (a) Note that $E I_{1}=P\left(Y_{1} \leq f\left(X_{1}\right)\right)=J$ (since $\left(X_{1}, Y_{1}\right)$ is uniform over the unit square, and the area for which $y \leq f(x)$ is J, and $E f\left(X_{1}\right)=\int_{0}^{1} f(x) d x=J$. Thus, by SLLN, $\frac{1}{n} \sum I_{i}$ and $\frac{1}{n} f\left(X_{i}\right)$ both converge to J a.s.
(b) Since $J_{n}-J=\frac{1}{n} \sum_{1}^{n}\left(I_{i}-J\right)$, and each $I_{i}-J$ has mean 0 , we have

$$
E\left(J_{n}-J\right)^{2}=\operatorname{Var}\left(J_{n}-J\right)=\frac{1}{n^{2}} \sum_{1}^{n} \operatorname{Var}\left(I_{i}-J\right)=\frac{n}{n^{2}} \operatorname{Var}\left(I_{1}\right)=\frac{1}{n}\left(E I_{1}^{2}-\left(E I_{1}\right)^{2}\right)=\frac{1}{n}\left(J-J^{2}\right)
$$

The last step follows since $I_{i}^{2}=I_{i}$ (it is always 0 or 1).
In the same vein,
$E\left(J_{n}^{*}-J\right)=\frac{n}{n^{2}} \sum \operatorname{Var} f\left(X_{i}\right)=\frac{1}{n}\left(E f\left(X_{i}\right)^{2}-\left(E f\left(X_{i}\right)\right)^{2}\right)=\frac{1}{n}\left(\int_{0}^{1} f(x)^{2} d x-J^{2}\right)$
Thus, in order to prove $E\left(J_{n}^{*}-J\right) \leq E\left(J_{n}-J\right)^{2}$, it suffices to prove $\int_{0}^{1} f(x)^{2} d x \leq$ $J=\int_{0}^{1} f(x) d x$, which is true since $f(x) \in[0,1]$, so that $f(x)^{2} \leq f(x)$. In the previous inequality, equality only holds when $f(x)$ is 0 or 1 , and the only two continuous functions which are always 0 or 1 are $f(x)=0$ and $f(x)=1$.
(c) Note this distribution of $\frac{\sqrt{n}\left(J_{n}-J\right)}{\sigma}$ is approximately the standard normal, for large n, where $\sigma=\operatorname{Var} I_{i}=J-J^{2}$. Thus,

$$
\begin{gathered}
P\left(\frac{\sqrt{n}\left|J_{n}-J\right|}{\sigma}<3\right) \approx 0.95 \\
P\left(\left|J_{n}-J\right|<3\left(J-J^{2}\right) / \sqrt{n}\right) \approx 0.95
\end{gathered}
$$

Solving $3\left(J-J^{2}\right) / \sqrt{n}=0.01$ for n, we get $n=90,000 \cdot\left(J-J^{2}\right) \leq 90,000$, so choosing $n=90,000$ should sort of work.
3. (a) $X_{n} \rightarrow X$ in probability if, for all $\varepsilon>0, P\left(\left|X_{n}-X\right|>\varepsilon\right) \rightarrow 0$ as $n \rightarrow \infty$.
$X_{n} \rightarrow X$ in distribution if, for any x for which the function $F_{X}(x)=P(X \leq x)$ is continuous at x, we have $P\left(X_{n} \leq x\right) \rightarrow P(X \leq x)$ as $n \rightarrow \infty$.
(b) It does not converge in probability, since $P\left(\left|X_{n}-Y\right|>\varepsilon\right)=P(|X-(1-X)|>$ $\varepsilon)=P(|2 X-1|>\varepsilon)=1 \nrightarrow 0$.
It does converge in distribution, since $P\left(X_{n} \leq x\right)=P(Y \leq x)$ for all n.
(c) It is a well known fact that convergence in probability implies that in distribution. To see this, suppose $Z_{n} \rightarrow Z$ in probability, and let z be a continuity point of $F_{Z}(z)=P(Z \leq z)$. Using the fact that

$$
\left\{Z_{n} \leq z\right\} \subset\{Z \leq z+\varepsilon\} \cup\left\{\left|Z-Z_{n}\right|>\varepsilon\right\}
$$

we have

$$
P\left(Z_{n} \leq z\right) \leq P(Z \leq Z+\varepsilon)+P\left(\left|Z-Z_{n}\right|>\varepsilon\right)
$$

Using $\{Z \leq z-\varepsilon\} \subset\left\{Z_{n} \leq z\right\} \cup\left\{\left|Z_{n}-Z\right|>\varepsilon\right\}$, we also have

$$
P\left(Z_{n} \leq z\right) \geq P(Z \leq z-\varepsilon)-P\left(\left|Z-Z_{n}\right|>\varepsilon\right)
$$

letting $n \rightarrow \infty$, the above two inequalities imply

$$
P(Z \leq z-\varepsilon)=F_{Z}(z-\varepsilon) \leq \lim _{n \rightarrow \infty} P\left(Z_{n} \leq z\right) \leq F_{Z}(z+\varepsilon)=P(Z \leq z+\varepsilon)
$$

then letting $\varepsilon \rightarrow 0$ gives $\lim _{n \rightarrow \infty} P\left(Z_{n} \leq z\right)=F_{Z}(z)$.
Since $Y_{n} \rightarrow Y$ in probability, we have $Y_{n} \rightarrow Y$ in distribution. But X has the same distribution as Y, and convergence in distribution only depends on distrubtion, proving that $Y_{n} \rightarrow X$ in distribution as well.

2007 Spring

1. (i) For any $\varepsilon,\left\{X_{n} / n>\varepsilon\right\}=\left\{X_{n}>n \varepsilon\right\} \searrow\left\{X_{n}=\infty\right\}$, so $P\left(X_{n} / n>\varepsilon\right) \searrow P\left(X_{n}=\right.$ $\infty)=0$.
(ii) Using the inequalities

$$
\sum_{n \geq 1} P\left(\left|X_{n}\right| / \varepsilon>n\right) \leq E\left|X_{1} / \varepsilon\right| \leq \sum_{n \geq 0} P\left(\left|X_{n}\right| / \varepsilon>n\right)
$$

We have

$$
\begin{aligned}
E\left|X_{1}\right|<\infty & \Longleftrightarrow \sum P\left(\left|X_{n} / n\right|>\varepsilon\right)<\infty \\
& \Longleftrightarrow P\left(\left|X_{n} / n\right|>\varepsilon \text { i.o. }\right)=0 \\
& \Longleftrightarrow X_{n} / n \rightarrow 0 \text { a.s. }
\end{aligned}
$$

The second \Longleftrightarrow is Borel-Cantelli, and the third follows by intersecting $\left\{\left|X_{n} / n\right|>\right.$ ε_{k} i.o. $\}$ for $\varepsilon_{k} \searrow 0$.
(iii) Using $X_{n} / \sqrt{n} \rightarrow 0 \Longleftrightarrow X_{n}^{2} / n \rightarrow 0$ and the previous problem, the desired condtion is $E X_{1}^{2}<\infty$.
2. (i) We have, using Fubini's theorem,
$\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i k t} \phi(t) d t=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i k t} \sum_{x \in \mathbb{Z}} e^{i t x} P(X=x) d t=\sum_{x \in \mathbb{Z}} P(X=x) \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i t(x-k)} d t$
Consider $\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i t(x-k)} d t$. When $x=k$, this is clearly 1 . When $x \neq k$, breaking the complex exponential into its sinusoidal real and imaginary parts shows that the integral is zero. Thus, the only positive contribution to the sum is when $X=k$, so the sum is $P(X=k)$.
(ii) The c.f. for S_{n} is $\phi_{X}(t)^{n}$, so

$$
P\left(S_{n}=k\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i t k} \phi_{X}(t)^{n} d t
$$

3. (i) ($\Longleftarrow)$ We have, for $M>\sup \left|\mu_{n}\right|$,

$$
P\left(\left|X_{n}\right|>M\right) \leq P\left(| | X_{n}-\mu_{n}\left|>M-\left|\mu_{n}\right|\right) \leq \frac{\sigma_{n}^{2}}{\left(M-\left|\mu_{n}\right|\right)^{2}} \leq \frac{\sup \sigma_{n}^{2}}{\left(M-\sup \left|\mu_{n}\right|\right)^{2}}\right.
$$

so

$$
\sup _{n} P\left(\left|X_{n}\right|>M\right) \leq \frac{\sup \sigma_{n}^{2}}{\left(M-\sup \left|\mu_{n}\right|\right)^{2}} \rightarrow 0 \quad \text { as } M \rightarrow \infty
$$

(\Longrightarrow) Suppose sup $\left|\mu_{n}\right|=\infty$. Then for any M, there will be some X_{N} for which $\left|\mu_{N}\right|>M$, implying by symmetry of the normal distribution that $P\left(\left|X_{N}\right|>\right.$ $M)>\frac{1}{2}$, meaning $\lim \sup _{n} P\left(\left|X_{n}\right|>M\right) \geq \frac{1}{2} \nrightarrow 0$.
Suppose $\sup \left|\mu_{n}\right|=C<\infty$, but $\sup \sigma_{n}=\infty$. Recall that for a normal distrubtion, $P\left(\left|X_{n}-\mu_{n}\right|>\sigma_{n}\right) \approx .32$. For any M, there will be some X_{N} for which $\sigma_{N}>M+C$, so

$$
\begin{aligned}
\limsup _{n} P\left(\left|X_{n}\right|>M\right) & \geq P\left(\left|X_{N}\right|>M\right) \\
& \geq P\left(\left|X_{N}-\mu_{N}\right|>M+\left|\mu_{N}\right|\right) \\
& \geq P\left(\left|X_{N}-\mu_{N}\right|>\sigma_{N}\right)>0.3 \nrightarrow 0
\end{aligned}
$$

(ii) (\Longleftarrow) If $\mu_{n} \rightarrow \mu$ and $\sigma_{n} \rightarrow \sigma$, then $e^{i \mu_{n} t} \rightarrow e^{i \mu t}$ and $e^{-t^{2} \sigma_{n}^{2} / e} \rightarrow e^{-t^{2} \sigma^{2} / 2}$ pointwise, so $e^{i \mu_{n} t} e^{-t^{2} \sigma_{n}^{2} / 2} \rightarrow e^{i \mu t} e^{-t^{2} \sigma^{2} / 2}$. Note that $e^{i \mu_{n} t} e^{-t^{2} \sigma_{n}^{2} / 2}$ is the c.f. of X_{n}. Since the limit function is continuous at zero, this implies $X_{n} \rightarrow$ some X in distribution, by the continuity theorem.
(\Longrightarrow) Suppose $X_{n} \rightarrow X$ weakly. This implies the c.f.'s of X_{n} converge pointwise, so $e^{i \mu_{n} t} e^{-t^{2} \sigma_{n}^{2} / 2} \rightarrow \varphi(t)$. Taking magnitudes,

$$
\left|e^{i \mu_{n} t} e^{-t^{2} \sigma_{n}^{2} / 2}\right|=e^{-t^{2} \sigma_{n}^{2} / 2} \rightarrow|\varphi(t)|,
$$

Since $X_{n} \rightarrow X$ weakly implies the X_{n} are tight, by part (i), sup $\sigma_{n}<\infty$, meaning we must have $|\phi(t)|>0$. Setting $t=1$, we get $\sigma_{n} \rightarrow \sqrt{-2 \log |\varphi(1)|}=\sigma$.
We now have

$$
\begin{equation*}
e^{i \mu_{n} t}=\varphi(t) e^{t^{2} \sigma_{n}^{2} / 2} \rightarrow \varphi(t) e^{t^{2} \sigma^{2} / 2}=\rho(t) \tag{1}
\end{equation*}
$$

where $|\rho(t)|=\left|e^{i \mu_{n} t}\right|=1$. From part (i, we know sup $\left|\mu_{n}\right|<\infty$, so $\left\{\mu_{n}\right\}_{n \geq 0}$ has at least one accumulation point. When $t=1$ in (1), $e^{i \mu_{n}} \rightarrow \rho(1)$ implies that all accumulation points of $\left\{\mu_{n}\right\}_{n \geq 0}$ are of the form $\arg \rho(1)+2 \pi k$.
Suppose, by way of contradiction there were at least two accumulation points. This would imply there were subsequences $\mu_{h(n)}$ and $\mu_{\ell(n)}$ so that

$$
\mu_{h(n)} \rightarrow \arg \rho(1)+2 \pi k_{1} \quad \text { and } \quad u_{\ell(n)} \rightarrow \arg \rho(1)+2 \pi k_{2}
$$

where $k_{1} \neq k_{2}$ are integers. Now, setting $t=2 \pi$ in (1), so that $e^{i 2 \pi \mu_{n}} \rightarrow \rho(2 \pi)$, we can find further subsquences $h^{\prime}(n)$ of $h(n)$ and $\ell^{\prime}(n)$ of $\ell(n)$ so that

$$
\mu_{h^{\prime}(n)} \rightarrow \frac{1}{2 \pi} \arg \rho(2 \pi)+k_{1}^{\prime} \quad \text { and } \quad u_{\ell(n)} \rightarrow \frac{1}{2 \pi} \arg \rho(2 \pi)+k_{2}^{\prime}
$$

for some $k_{1}^{\prime}, k_{2}^{\prime} \in \mathbb{Z}$. Setting corresponding limits of subsequences equal to each other, we get

$$
\begin{aligned}
& \arg \rho(1)+2 \pi k_{1}=\frac{1}{2 \pi} \arg \rho(1)+k_{1}^{\prime} \\
& \arg \rho(1)+2 \pi k_{2}=\frac{1}{2 \pi} \arg \rho(1)+k_{2}^{\prime}
\end{aligned}
$$

so that

$$
2 \pi=\frac{k_{1}^{\prime}-k_{2}^{\prime}}{k_{1}-k_{2}}
$$

contradicting the irrationality of π.
Thus, there is only one acculumation point, μ, of $\left\{\mu_{n}\right\}_{n \geq 0}$. Since $\left\{\mu_{n}\right\}$ is bounded, every subsequence of μ_{n} has a further convergent subsequence. Since these subsussequences always converge to μ, it follows $\mu_{n} \rightarrow \mu$.

2007 Fall

1. Let A_{n} be the event $\left\{L_{n}>\log n+\theta \log \log n\right\}$. Then

$$
P\left(A_{n}\right)=\frac{1}{2}^{\log n+\theta \log \log n}=\frac{1}{n(\log n)^{\theta}}
$$

Since $\sum P\left(A_{n}\right)<\infty$ (use the integral test), by Borel-Cantelli, $P\left(A_{n}\right.$ i.o. $)=0$.
2. The continuous form of the inversion formula implies, since $\int\left|\phi_{n}\right|<\infty$, that X_{n} have densities for $n<\infty$, given by $f_{n}(x)=\frac{1}{2 \pi} \int e^{-i t x} \varphi_{n}(t) d t$ (for a proof of this fact, see Spring 1997, problem 3). Furthermore, $\left|\varphi_{n}(x)\right| \leq g(x)$ and $\varphi_{n}(x) \rightarrow \varphi_{\infty}(x)$ implies $\left|\varphi_{\infty}(x)\right| \leq g(x)$, so we also have that φ_{∞} is integrable, implying the density f_{∞} exists, and is given by a similar formula.

We have that

$$
\begin{aligned}
\sup _{x \in \mathbb{R}}\left|f_{n}(x)-f(x)\right| & =\sup _{x \in \mathbb{R}}\left|\int e^{-i t x} \varphi_{n}(t) d t-\int e^{-i t x} \varphi_{\infty}(t) d t\right| \\
& \leq \sup _{x} \int\left|e^{-i t x}\left(\varphi_{n}(t)-\varphi_{\infty}(t)\right)\right| d t \\
& =\int\left|\varphi_{n}(t)-\varphi_{\infty}(t)\right| d t
\end{aligned}
$$

Since $\left|\varphi_{n}-\varphi\right| \leq 2 g \in L_{1}$, and $\left|\varphi_{n}(t)-\varphi(t)\right| \rightarrow 0$, by the dominated convergence theorem,

$$
\limsup _{n \rightarrow \infty}\left(\sup _{x}\left|f_{n}(x)-f(x)\right|\right) \leq \lim _{n \rightarrow \infty} \int\left|\varphi_{n}(t)-\varphi_{\infty}(t)\right| d t=0
$$

proving $\sup _{x}\left|f_{n}(x)-f(x)\right| \rightarrow 0$, so $f_{n} \rightarrow f$ uniformly.
3. Choose A_{0} so that $\sup _{n} \frac{E\left(X_{n}^{2} ;\left|X_{n}\right|>A\right)}{E X_{n}^{2}}<\frac{1}{2}$ when $A>A_{0}$. Then for these A,

$$
E X_{n}^{2}=E\left(X_{n}^{2} ;\left|X_{n}\right| \leq A\right)+E\left(X_{n}^{2} ;\left|X_{n}\right|>A\right) \leq A^{2}+\frac{1}{2} E X_{n}^{2}
$$

so rearranging, we get

$$
\frac{E X_{n}^{2}}{A^{2}} \leq 2
$$

Thus, using Chebychev's inequality, for $A>A_{0}$,

$$
\begin{aligned}
\sup _{n} P\left(\left|X_{n}\right|>A\right) & \leq \sup _{n} \frac{E\left(X_{n}^{2} ;\left|X_{n}\right|>A\right)}{A^{2}} \\
& =\sup _{n} \frac{E\left(X_{n}^{2} ;\left|X_{n}\right|>A\right)}{E X_{n}^{2}} \cdot \frac{E X_{n}^{2}}{A^{2}} \\
& \leq \sup _{n} \frac{E\left(X_{n}^{2} ;\left|X_{n}\right|>A\right)}{E X_{n}^{2}} \cdot 2
\end{aligned}
$$

Letting $A \rightarrow \infty$, the right hand side approaches 0 (by assumption), proving

$$
\lim _{A \rightarrow \infty} \sup _{n} P\left(\left|X_{n}\right|>A\right)=0
$$

which means the X_{n}, and therefore their distributions F_{n}, are tight.
4. (a) Take expectations of both sides of the inequality $\varphi(t) 1_{Y>t} \leq \varphi(Y)$.
(b) Using (a), with $\varphi(t)=e^{\lambda t}$,

$$
P\left(S_{n}>n x\right) \leq \frac{E e^{\lambda S_{n}}}{e^{\lambda n x}}
$$

Since $e^{\lambda S_{n}}=e^{\lambda X_{1}} \times \cdots \times e^{\lambda X_{n}}$, and each factor is independent, with the same expectation, we have

$$
P\left(S_{n}>n x\right) \leq \frac{\left(E e^{\lambda X_{1}}\right)^{n}}{e^{\lambda n x}}=\left(\frac{M(\lambda)}{e^{\lambda x}}\right)^{n}
$$

Taking logs,

$$
\log P\left(S_{n}>n x\right) \leq n(\log M(\lambda)-\lambda x)
$$

so rearranging and taking the \inf over $\lambda>0$,

$$
\frac{1}{n} \log P\left(S_{n}>n x\right) \leq \inf _{\lambda>0}-(\lambda x-M(\lambda))=-\sup _{\lambda>0}(\lambda x-M(\lambda))=-I(x)
$$

2008 Spring

1. (a) Let $S_{n}=X_{1}+\cdots+X_{n}$. We have

$$
\varphi_{\varepsilon}=E e^{i t S_{\varepsilon}}=\sum_{n \geq 0} E\left[e^{i t S_{\varepsilon}} \mid N_{\varepsilon}=n\right] P\left(N_{\varepsilon}=n\right)=\sum_{n \geq 0} E\left[e^{i t S_{n}}\right] \cdot \frac{e^{-\lambda / \varepsilon^{2}}\left(\lambda / \varepsilon^{2}\right)^{n}}{n!}
$$

Note that $E\left[e^{i t S_{n}}\right]=(\cos \varepsilon t)^{n}$, since $\cos \varepsilon t$ is the c.f. for X_{n}, and adding random variable makes their c.f's multiply. Thus,

$$
\varphi_{\varepsilon}=e^{-\lambda / \varepsilon^{2}} \sum_{n \geq 0} \frac{\left(\lambda / \varepsilon^{2} \cdot \cos \varepsilon t\right)^{n}}{n!}=e^{-\lambda / \varepsilon^{2}} e^{\lambda / \varepsilon^{2} \cdot \cos \varepsilon t}=e^{\lambda(\cos \varepsilon t-1) / \varepsilon^{2}}
$$

(b) As $\varepsilon \rightarrow 0$, using, L'Hoptial's rule twice, $\frac{\cos \varepsilon t-1}{\varepsilon^{2}} \rightarrow \frac{-t \sin \varepsilon t}{2 \varepsilon} \rightarrow \frac{-t^{2}}{2}$, so $\varphi_{\varepsilon} \rightarrow e^{-\lambda t^{2} / 2}$. This is the c.f. of $N(0, \lambda)$, proving φ_{ε} converges in distribution to $N(0, \lambda)$.
2. Let x be a continuity point of F_{X}, and $\varepsilon>0$. Since $\left\{X_{n}+Y_{n} \leq x\right\} \subset\left\{X_{n} \leq\right.$ $x+\varepsilon\} \cup\left\{\left|Y_{n}\right|>\varepsilon\right\}$ and $\left\{X_{n} \leq x-\varepsilon\right\} \subset\left\{X_{n}+Y_{n} \leq x\right\} \cup\left\{\left|Y_{n}\right|>\varepsilon\right\}$, we have

$$
P\left(X_{n} \leq x-\varepsilon\right)-P\left(\left|Y_{n}\right|>\varepsilon\right) \leq P\left(X_{n}+Y_{n} \leq x\right) \leq P\left(X_{n} \leq x+\varepsilon\right)+P\left(\left|Y_{n}\right|>\varepsilon\right)
$$

Assuming $x \pm \varepsilon$ is also a contiuity point of F_{X}, letting $n \rightarrow \infty$ above shows

$$
F(x-\varepsilon) \leq \liminf _{n} P\left(X_{n}+Y_{n} \leq x\right) \leq \limsup _{n} P\left(X_{n}+Y_{n} \leq x\right) \leq F(x+\varepsilon)
$$

and letting $\varepsilon \rightarrow 0$ shows $P\left(X_{n}+Y_{n} \leq x\right) \rightarrow F(x)$, completing the proof.
3. (a) Note that V_{n} can be written as a function of the U_{i} for which $a_{n-i} \neq 0$, and V_{n+1} as a function of the U_{i} for which $a_{n+1-i} \neq 0$. This means that V_{n} and V_{n+1} are functions of disjoint sets of independent variables, since for all $i, a_{n-i} a_{n-i+1}=0$, so at least one of a_{n-i} and a_{n-i+1} is zero, meaning there is no U_{i} which both V_{n} and V_{n+1} both depend on. Since V_{n}, V_{n+1} are functions of independent vectors, they are independent.
(b) Note that $V_{n} \sim N\left(0, a_{0}^{2}+\cdots+a_{n-1}^{2}\right)$. This is because, when $X \sim N\left(0, \sigma^{2}\right)$ and $Y \sim N\left(0, \rho^{2}\right)$, then $X+Y \sim N\left(0, \sigma^{2}+\rho^{2}\right)$, which can be proven by looking at characteristic functions.
Let $A_{n}=\sum_{0}^{n-1} a_{i}^{2}$, and $A=\sum_{0}^{\infty} a_{i}^{2}$. Then $V_{n} \sim N\left(0, a_{1}^{2}+\cdots+a_{n}^{2}\right)$, so $V_{n} / \sqrt{A_{n}}$ is standard normal, so (for large enough x),

$$
P\left(V_{n} \geq x \sqrt{A}\right) \leq P\left(V_{n} / \sqrt{A_{n}} \geq x\right) \leq \frac{1}{\sqrt{2 \pi x}} \exp \left(-\frac{x^{2}}{2}\right) \leq \exp \left(-\frac{x^{2}}{2}\right)
$$

Letting $x=\sqrt{2(1+\varepsilon) \log n}$,

$$
P\left(\frac{V_{n}}{\sqrt{\log n}} \geq \sqrt{2(1+\varepsilon) A}\right) \leq \exp \left(-\frac{(\sqrt{2(1+\varepsilon) \log n})^{2}}{2}\right)=n^{-1-\varepsilon}
$$

Since $\sum n^{-1-\varepsilon}<\infty$, Borel-Cantelli implies $P\left(\frac{V_{n}}{\sqrt{\log n}} \geq \sqrt{2(1+\varepsilon) A}\right.$ i.o. $)=0$.
This means that $\lim \sup \frac{V_{n}}{\sqrt{\log n}} \leq \sqrt{2(1+\varepsilon) A}$ a.s. Letting $\varepsilon \rightarrow 0$ proves that $\lim \sup \frac{V_{n}}{\sqrt{\log n}} \leq \sqrt{2 A}$ a.s.
4. The appropriate choice of t is $t=\frac{1}{c}$. We have

$$
P(X \geq c) \leq P\left(\left(X+\frac{1}{c}\right)^{2} \geq\left(c+\frac{1}{c}\right)^{2}\right) \leq \frac{E\left(X+\frac{1}{c}\right)^{2}}{\left(c+\frac{1}{c}\right)^{2}}=\frac{E X^{2}+\frac{2}{c} E X+\frac{1}{c^{2}}}{\left(c+\frac{1}{c}\right)^{2}}=\frac{1+\frac{1}{c^{2}}}{\left(c+\frac{1}{c}\right)^{2}}=\frac{1}{c^{2}+1}
$$

This solution of course doesn't help show you how to approach the problem correctly. Assuming you didn't know what t was, you would have

$$
P(X \geq c) \leq P\left((X+t)^{2} \geq(c+t)^{2}\right) \leq \frac{E(X+t)^{2}}{(c+t)^{2}}=\frac{1+t^{2}}{(c+t)^{2}}
$$

You want to find a t so that $\frac{1+t^{2}}{(c+t)^{2}} \leq \frac{1}{c^{2}+1}$. Cross multiplying and simplyifying that inequality is how you find $t=\frac{1}{c}$.

2008 Fall

1. It does follows that $E \log X_{n} \rightarrow E \log X$. Since $X_{n} \rightarrow X$, in distribution, there exist variables Y_{n}, Y with the same distribution as X_{n}, X, and where $Y_{n} \rightarrow Y$ almost surely. By Fatou's Lemma, we have that $\lim \inf E \log Y_{n} \geq E \log Y$.
Since $E Y_{n} \rightarrow c$, we must have that $E Y_{n} \leq K$ for some constant K and large enough n. Given $\varepsilon>0$, choose M so $x>M$ implies $\frac{\log y}{y} \leq \frac{\varepsilon}{K}$ and so $P(Y=M)=0$. Then

$$
E\left(\log Y_{n} 1_{Y_{n}>M}\right)=E\left(\frac{\log Y_{n}}{Y_{n}} \cdot Y_{n} 1_{Y_{n}>M}\right) \leq E\left(\frac{\varepsilon}{K} \cdot Y_{n} 1_{Y_{n}>M}\right) \leq \frac{\varepsilon}{K} E Y_{n} \leq \varepsilon
$$

so

$$
E \log Y_{n} \leq E\left(\log Y_{n} 1_{Y_{n} \leq M}\right)+E\left(\log Y_{n} 1_{Y_{n}>M}\right) \leq E\left(\log Y_{n} 1_{Y_{n} \leq M}\right)+\varepsilon
$$

Taking limits above, we get

$$
\limsup _{n} E \log Y_{n} \leq \varepsilon+\limsup _{n} E\left(\log Y_{n} 1_{Y_{n} \leq M}\right) \stackrel{D C T}{=} \varepsilon+E\left(\log Y 1_{Y \leq M}\right) \leq \varepsilon+E \log Y
$$

To justify the middle equality, realize that $Y_{n} \rightarrow Y$ a.s. and $P(Y=M)=0$ implies $\log Y_{n} 1_{Y_{n} \leq M} \rightarrow \log Y 1_{Y \leq M}$ a.s, and the $\log Y_{n} 1_{Y_{n} \leq M}$ are dominated by $\log M$.
Letting $\varepsilon \rightarrow 0$ above, we have shown that

$$
E \log Y \leq \liminf E \log Y_{n} \leq \limsup _{n} E \log Y_{n} \leq E \log Y
$$

which implies $E \log X_{n}=E \log Y_{n} \rightarrow E \log Y=E \log X$.
2. © First, we get an upper lower bound on $P\left(X_{n} \geq \alpha\right)$:

$$
P\left(X_{n} \geq \alpha\right)=\sum_{k=\alpha}^{\infty} \frac{\lambda^{k}}{k!}
$$

Let a_{n} be the integer closest to $\frac{\log n}{\log \log n}$, so $a_{n}=\frac{\log n}{\log \log n}(1+o(1))$. Using Sterling's approximation, which says that $\log (k!)=k \log k+O(k)$, and the fact that $O\left(a_{n}\right)$ implies $o(\log n)$,

$$
\begin{aligned}
P\left(X_{n}=a_{n}\right) & =\frac{e^{-\lambda} e^{a_{n} \log \lambda}}{a_{n}!} \\
& =\exp \left(-a_{n} \log a_{n}+a_{n}(1+\log \lambda)+o\left(a_{n}\right)\right) \\
& =\exp \left(-\frac{\log n}{\log \log n} \cdot(\log \log n-\log \log \log n)+o(\log n)\right) \\
& =\exp (-\log n+o(\log n))=n^{-1+o(1)}
\end{aligned}
$$

The above computation is useless, since $\sum n^{-1+o(1)}$ can be either finite or infinite.
3. (a) The special property is that φ will be real. If X and $-X$ have the same distrubtion, then

$$
E e^{i t X}=E \cos t X+i E \sin t X
$$

But $t X$ is symmetrically positive and negative, and $\sin (t x)$ is an odd function, so $E \sin (t X)=0$.
Suppose $E e^{i t X}$ is real. Using the inversion formula, we have, for any $a<b$,

$$
P(X \in(a, b))+\frac{1}{2} P(X \in\{a, b\})=\lim _{T \rightarrow \infty} \frac{1}{2 \pi} \int_{-T}^{T} \frac{e^{-i t a}-e^{-i t b}}{i t} \varphi(t) d t
$$

Both sides are real, so taking the conjugate of the right preserves equality, resulting in

$$
\begin{aligned}
P(X \in(a, b))+\frac{1}{2} P(X \in\{a, b\}) & =\lim _{T \rightarrow \infty} \frac{1}{2 \pi} \int_{-T}^{T} \frac{e^{-i t(-a)}-e^{-i t(-b)}}{-i t} \varphi(t) d t \\
& =\lim _{T \rightarrow \infty} \frac{1}{2 \pi} \int_{-T}^{T} \frac{e^{-i t(-b)}-e^{-i t(-a)}}{i t} \varphi(t) d t \\
& =P(X \in(-b,-a))+\frac{1}{2} P(X \in\{-b,-a\}) \\
& =P(-X \in(a, b))+\frac{1}{2} P(-X \in\{a, b\})
\end{aligned}
$$

This holds for all a, b, proving X and $-X$ have the same distribution.
(b) This is given by $\phi(t / n)^{n}$.
(c) Since $\phi^{\prime}(0)=0$, we have that

$$
\lim _{n \rightarrow \infty} \frac{\phi(t / n)-1}{t / n}=0
$$

Furthermore, from calculus it is true that $\frac{\log (1+x)}{x} \rightarrow 1$ as $x \rightarrow 0$, implying $\frac{\log \phi(t / n)}{\phi(t / n)-1} \rightarrow 1$ as $n \rightarrow \infty$. Multiplying these two limits, we get

$$
\lim _{n \rightarrow \infty} \frac{\log \phi(t / n)}{t / n}=0
$$

Taking \exp of both sides, we get $\phi(t / n)^{n} \rightarrow 1$. But $\phi(t / n)^{n}$ is the c.f. for S_{n} / n, and 1 is the c.f. for 0 , so the continutity theorem implies $S_{n} / n \rightarrow 0$ weakly. Finally, one can prove that converging weakly to a constant implies convergence in probability as well, so that $S_{n} / n \rightarrow 0$ in probability.
(d) We have

$$
E|X|=2 c \int_{4}^{\infty} x \cdot \frac{1}{x^{2} \log x} d x=2 c\left(\lim _{n \rightarrow \infty} \log \log n-\log \log 4\right)=\infty
$$

(e) Since X is symmetric about 0 , we have

$$
E \frac{e^{i t X}-1}{t}=E \frac{\cos (t X)-1}{t}=2 c \int_{4}^{\infty} \frac{\cos (t x)-1}{t x^{2} \log |x|} d x
$$

Letting $y=t x$, this becomes

$$
E \frac{e^{i t X}-1}{t}=2 c \int_{4}^{\infty} \frac{\cos (y)-1}{t(y / t)^{2} \log |y / t|} d(y / t)=2 c \int_{4}^{\infty} \frac{\cos (y)-1}{y^{2} \log |y / t|} d y
$$

Since, for $-1<t<1$, it's true that $\frac{\cos (y)-1}{y^{2} \log |y / t|} \leq \frac{\cos (y)-1}{y^{2} \log |y|} \in L_{1}(d y)$, the DCT implies
$\lim _{t \rightarrow 0} E \frac{e^{i t X}-1}{t}=\lim _{t \rightarrow 0} 2 c \int_{4}^{\infty} \frac{\cos (y)-1}{y^{2} \log |y / t|} d y=2 c \int_{4}^{\infty} \lim _{t \rightarrow 0} \frac{\cos (y)-1}{y^{2} \log |y / t|} d y=2 c \int_{4}^{\infty} 0 d t=0$
proving $\phi^{\prime}(0)=0$.

2009 Spring

1. The only thing let to prove is when $\mu= \pm \infty$. Assume WLOG $\mu=\infty$. Given $M \in \mathbb{N}$, let $X_{n}^{M}=X_{n} \wedge M$. Note that $E\left|X_{n}^{M}\right|<\infty$, since $\left(X_{n}^{M}\right)^{+}<M$, and $E\left(X_{n}^{M}\right)^{-}=E X_{n}^{-}<\infty$ since $E X_{n}=E X_{n}^{+}-E X_{n}^{-}=\infty$. Thus, letting $S_{n}^{M}=\sum_{1}^{n} X_{i}^{M}$, and using the regular SLLN,

$$
\liminf _{n} S_{n} / n \geq \lim _{n} S_{n}^{M} / n=E X_{1}^{M} \quad \text { a.s. }
$$

As $M \rightarrow \infty$, by MCT, $E X_{1}^{M} \rightarrow E X_{1}=\infty$. Using this, and the fact that the intersection of countably many almost sure events is almost sure, we have

$$
P\left(S_{n} / n \rightarrow \infty\right)=P\left(\bigcap_{M=1}^{\infty} \liminf _{n} S_{n} / n>E X_{1}^{M}\right)=1
$$

so $S_{n} / n \rightarrow \infty=\mu$ a.s.
2. You actually only need to assume $X_{n} \rightarrow 0$ in probability to to this problem.

Since $X_{n} \rightarrow 0$ a.s. implies, for any k, that $P\left(X_{n}>k^{-2}\right) \rightarrow 0$, we have that for each k, there exists an n_{k} such that $P\left(X_{n_{k}}>k^{-2}\right)<k^{-2}$. By Borel-Cantelli, $P\left(X_{n_{k}}>\right.$ k^{-2} i.o.) $=0$, implying that, almost surely, only finitely many $X_{n_{k}}$ will exceed k^{-2}, meaning $\sum_{1}^{\infty} X_{n_{k}}$ will be finite. Thus, almost surely, $\lim _{m} Y_{m}=\sum_{1}^{\infty} X_{n_{k}}$ will be finite.
3. ©
(a)
(b)
(c)
4. The first step is to prove that $\left|X_{n}\right| / n \rightarrow 0$ a.s. The fact that $E\left|X_{n}\right|<\infty$ and X_{n} i.i.d implies $\left|X_{n}\right| / n \rightarrow 0$ a.s. has been proven many times in these answers, see for example 1997 Fall, 4(a), or 2007 Spring 1(ii).
Next, we prove that $\max _{1 \leq i \leq n}\left|X_{n}\right| / n \rightarrow 0$ a.s. This follows from $\left|X_{n}\right| / n \rightarrow 0$ a.s, and the following lemma:
Lemma: if $a_{n} \geq 0$ is a sequence of numbers, and $a_{n} / n \rightarrow 0$, then $\frac{1}{n} \max _{1 \leq i \leq n} a_{n} \rightarrow 0$.
Proof. Given $\varepsilon>0$, choose k so $n>k$ implies $a_{n} / n<\varepsilon$. Then

$$
\limsup _{n} \frac{\max _{1 \leq i \leq n} a_{n}}{n} \leq \limsup _{n} \frac{\max \left(x_{1}, \ldots, x_{k}\right)}{n}+\max _{k \leq i \leq n} \frac{a_{i}}{i} \leq 0+\varepsilon
$$

This holds for all $\varepsilon>0$, so $\frac{\max _{1 \leq i \leq n} a_{n}}{n} \rightarrow 0$.
Finally, let $M_{n}=\max _{1 \leq i \leq n}\left|X_{n}\right|$. We have, using what we just showed and the SLLN, that

$$
\frac{M_{n}}{n} \rightarrow 0 \quad \text { a.s. } \quad \text { and } \quad \frac{n}{\left|S_{n}\right|} \rightarrow \frac{1}{\left|E X_{1}\right|} \quad \text { a.s. }
$$

Thus, the product of these sequences converges to the product of the limits a.s, proving that $M_{n} /\left|S_{n}\right| \rightarrow 0$ a.s.

2009 Fall

1. See 2011 Fall, problem 2.
2. Note $\operatorname{Var} X_{n}=n^{-2 \alpha}$, so $\sum \operatorname{Var} X_{n}<\infty \Longleftrightarrow \alpha>\frac{1}{2}$. It follows, by the "Kolmogorov 1 -series theorem", that $\alpha>\frac{1}{2}$ implies $\sum X_{n}$ converges a.s. When $\alpha \leq \frac{1}{2}$, the more subtle 3 -series theorem is needed. To check the conditions of this theorem are satisfied, it suffices to realize that, for any $A>0$, if $Y_{n}=X_{n} 1_{\left\{\left|X_{n}\right| \leq A\right\}}$, then $\sum \operatorname{Var} Y_{n}=\infty$, which follows since $Y_{n}=X_{n}$ for large enough n.
Note $\left|X_{n}\right|=n^{-\alpha}$ with probability 1 , so $\sum X_{n}$ converges exactly when $\alpha>1$.
3. (i) You can prove, by induction, that V_{n-1} is independent of U_{n+k} for all $k \geq 0$. It holds when $n=2$, since $V_{1}=U_{1}$ is independent of all other U_{i}. Assuming V_{n-1} is independent of all U_{n+k}, the inductive step follows since V_{n} is a function of V_{n-1} and U_{n}, both of which are independent of U_{n+1+k} for $k \geq 0$.
(ii) This problem is unfair, since it requires knowledge of conditional expectation, which is not covered until 507b. However, you should be able to prove equation $(*)$, shown in the next part, and this is all you need in order to do part (iii).
Let $A=\left\{V_{n-1} \in\left[0, \frac{1}{2}\right]\right\}$ and $B=\left\{V_{n-1} \in\left[\frac{1}{2}, 1\right]\right\}$. Then

$$
\begin{aligned}
V_{n} & =2 V_{n-1} U_{n} 1_{A}+\left(2 V_{n-1}-1\right) U_{n} 1_{B} \\
& =U_{n}\left(2 V_{n-1}\left(1_{A}+1_{B}\right)-1_{B}\right) \\
& =U_{n}\left(2 V_{n-1}-1_{B}\right)
\end{aligned}
$$

Thus, using the independence of U_{n} and V_{n-1},
$E\left[V_{n} \mid V_{n-1}\right]=E\left[U_{n} \mid V_{n-1}\right] \cdot E\left[2 V_{n-1}-1_{B} \mid V_{n-1}\right]=E\left[U_{n}\right] \cdot\left(2 V_{n-1}-1_{B}\right)=\frac{1}{2}\left(2 V_{n-1}-1_{B}\right)$
(iii) Taking the expectation of the equation $E\left[V_{n} \mid V_{n-1}\right]=V_{n-1}-1_{B}$, we get

$$
\begin{equation*}
E V_{n}=E V_{n-1}-P\left(V_{n-1} \in\left[\frac{1}{2}, 1\right]\right) \tag{}
\end{equation*}
$$

which gives

$$
E V_{n}=E V_{1}+\sum_{k=2}^{n} E V_{k}-E V_{k-1}=\frac{1}{2}-\sum_{k=2}^{n} P\left(V_{k-1} \in\left[\frac{1}{2}, 1\right]\right)
$$

Thus, for all $n, \sum_{k=2}^{n} P\left(V_{k-1} \in\left[\frac{1}{2}, 1\right]\right)=\frac{1}{2}-E V_{n} \leq \frac{1}{2}$ (since $V_{n} \geq 0$), proving in particular that $P\left(V_{k-1} \in\left[\frac{1}{2}, 1\right]\right) \rightarrow 0$ as $k \rightarrow \infty$, so $P\left(V_{k-1}<\frac{1}{2}\right) \rightarrow 1$.

2010 Spring

1. (a)

$$
P\left(\left|\eta_{n}\right|>\varepsilon\right)=P\left(\bigcap_{1}^{n} X_{i}>0\right)=\left(1-e^{-\lambda}\right)^{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

(b) They are asking if there is a sebsequence converging in L_{1} to some η, implying convergence in probability as well. Since every subsequence converges in probability to 0 , we would need $\eta=0$, so $E \eta_{n_{k}} \rightarrow 0$. Since $E \eta_{n_{k}}=\lambda^{n_{k}}$, this is only possible when $\lambda<1$.
2. Suppose $\sup X_{n}<\infty$ a.s. Then $\left\{\limsup _{n} X_{n}<A\right\} \nearrow\left\{\sup _{n} X_{n}<\infty\right\}$ as $A \rightarrow \infty$, since if $\sup _{n} X_{n}<\infty$, then $\lim \sup _{n} X_{n}$ is certainy less than some A. It follows that, for some $A, P\left(\lim \sup _{n} X_{n}<A\right)>0$. Since $\limsup X_{n}<A$ implies X_{n} will be more than A only finitely many times, this implies $P\left(X_{n}>A\right.$ i.o. $)<1$. Finally, by Borel Cantelli, $\sum P\left(X_{n}>A\right)=\infty$ would imply $P\left(X_{n}>A\right.$ i.o. $)=1$, we have that $\sum P\left(X_{n}>A\right)<\infty$.
Suppose that $\sum P\left(X_{n}>A\right)<\infty$. By Borel-Cantelli, $P\left(X_{n}>A\right.$ i.o. $)=0$. Thus, with probability 1 , the sequence X_{n} will be greater that A only finitely times, meaning $\sup X_{n}<\infty\left(\right.$ since $\sup X_{n}$ will be $\max \left(X_{n_{1}}, \ldots, X_{n_{k}}, A\right)$, where n_{1}, \ldots, n_{k} are the indices for which $X_{n}>A$). Thus, $\sup X_{n}<\infty$ a.s.
3. We first show that $S_{N_{n}} / \sigma \sqrt{a_{n}}-S_{a_{n}} / \sigma \sqrt{a_{n}} \rightarrow 0$ in probability. For any $\varepsilon, \delta>0$,

$$
\begin{aligned}
P\left(\left|S_{N_{n}}-S_{a_{n}}\right| / \sigma \sqrt{a_{n}}>\varepsilon\right) & =P\left(\left|S_{N_{n}}-S_{a_{n}}\right|>\varepsilon \sqrt{a_{n}} \sigma\right) \\
& \leq P\left(\left\{\left|S_{N_{n}}-S_{a_{n}}\right|>\varepsilon \sqrt{a_{n}} \sigma\right\} \cap\left\{\left|N_{n}-a_{n}\right| \leq \delta a_{n}\right\}\right)+P\left(\mid \xrightarrow[N_{n}]{a_{n}}-1>\delta\right) \\
& \leq P\left(\max _{-a_{n} \delta \leq k \leq a_{n} \delta}\left|S_{k}-S_{a_{n}}\right|>\varepsilon \sqrt{a_{n}} \sigma\right)
\end{aligned}
$$

The above could use some explaining. The first \leq follows from $P(A)=P(A \cap B)+$ $P\left(A \cap B^{c}\right) \leq P(A \cap B)+P\left(B^{c}\right)$, and in this case, $P\left(B^{c} \rightarrow 0\right.$ means that $P\left(B^{c}\right) \rightarrow 0$ as $n \rightarrow \infty$, which follows since $N_{n} / a_{n} \rightarrow 1$ in probability. Finally, given that the random N_{n} is at most $a_{n} \delta$ away from a_{n}, the event $\left|S_{N_{n}}-S_{a_{n}}\right|>\varepsilon a_{n} \sigma$ that this holds when $N_{n}=$ some k.
We know use Kolmogorov's maximal inequality, which says that, given $X_{1}, X_{2} \ldots$ independent, $E X_{i}=0$, then $P\left(\max _{1 \leq k \leq n}\left|S_{n}\right|>x\right) \leq x^{-2} \operatorname{Var} S_{n}$. Thus, applying this to $X_{a_{n} \delta}, X_{a_{n} \delta+1}, \ldots$ and $X_{a_{n} \delta}, X_{a_{n} \delta-1}, \ldots$, we have

$$
\begin{aligned}
P\left(\left|S_{N_{n}}-S_{a_{n}}\right| / \sigma \sqrt{a_{n}}>\varepsilon\right) & \leq P\left(\max _{1 \leq k \leq a_{n} \delta}\left|S_{k}-S_{a_{n}}\right|>\varepsilon \sqrt{a_{n}} \sigma\right)+P\left(\max _{1 \leq-k \leq a_{n} \delta}\left|S_{k}-S_{a_{n}}\right|>\varepsilon \sqrt{a_{n}} \sigma\right) \\
& \leq \frac{2}{\varepsilon^{2} \sigma^{2} a_{n}} \operatorname{Var}\left(S_{a_{n}+\delta a_{n}}-S_{a_{n}}\right)=\frac{2}{\varepsilon^{2} \sigma^{2} a_{n}} \cdot \delta a_{n} \cdot \operatorname{Var} X_{i} \leq \frac{2 \delta}{\varepsilon^{2}}
\end{aligned}
$$

Letting $\delta \rightarrow 0$ proves that $P\left(\left|S_{N_{n}}-S_{a_{n}}\right| / \sigma \sqrt{a_{n}}>\varepsilon\right) \rightarrow 0$ as $n \rightarrow \infty$, proving

$$
\frac{S_{N_{n}}}{\sigma \sqrt{a_{n}}}-\frac{S_{a_{n}}}{\sigma \sqrt{a_{n}}} \rightarrow 0
$$

in probability.
Furthermore,

$$
S_{a_{n}} / \sigma \sqrt{a_{n}} \rightarrow N(0,1)
$$

in distribution by the CLT. Thus, using Slutsky's to add the last two sequences gives

$$
S_{N_{n}} / \sigma \sqrt{a_{n}} \rightarrow N(0,1)
$$

in distribution.

2010 Fall

1. It will converge to zero a.s. We have

$$
P\left(\left|X_{n} / n\right|>\varepsilon\right) \leq \frac{E X_{n}^{2}}{n^{2} \varepsilon^{2}} \leq \frac{1}{n^{2} \varepsilon^{2}}
$$

Thus, by Borel Cantelli, $P\left(\left|X_{n} / n\right|>\varepsilon\right.$ i.o. $)=0$, so intersecting the events $\left\{\left|X_{n} / n\right|>\right.$ ε_{k} i.o. $\}^{c}$ for some $\varepsilon_{k} \searrow 0$ givens $X_{n} / n \rightarrow 0$ a.s.
2. Let $Y_{n, i}=\frac{X_{i}}{\sqrt{n \log n}} \cdot 1_{\left\{\left|X_{i}\right|<\sqrt{n \log n\}}\right.}$. The Lindberg-Feller CLT has two conditions. For the first, we find

$$
\begin{aligned}
E Y_{n, i}^{2} & =\frac{1}{n \log n} \cdot 2 \int_{1}^{\sqrt{n \log n}} y^{2} \cdot \frac{1}{y^{3}} d y \\
& =\frac{2}{n \log n} \cdot \log (\sqrt{n \log n}) \\
& =\frac{1}{n} \cdot\left(1+\frac{\log \log n}{\log n}\right)
\end{aligned}
$$

Thus, we get that $\sum_{i=1}^{n} E Y_{n, i}^{2}=n E Y_{n, 1}^{2}=1+\frac{\log \log n}{\log n} \rightarrow 1$. Since this limit is nonzero, we can apply Lindeberg, and since it is 1 , we have that $\sigma^{2}=1$.
Secondly, we compute

$$
\begin{aligned}
E\left(Y_{n, i}^{2} \cdot 1_{\left|Y_{n, i}\right|>\varepsilon}\right) & =\frac{1}{n \log n} \cdot 2 \int_{\varepsilon \sqrt{n \log n}}^{\sqrt{n \log n}} y^{2} \cdot \frac{1}{y^{3}} d y \\
& =\frac{1}{n \log n} \cdot 2(\log (\sqrt{n \log n})-\log (\varepsilon \sqrt{n \log n})) \\
& =\frac{2}{n \log n} \cdot \log (1 / \varepsilon)
\end{aligned}
$$

So, we get $\sum_{i=1}^{n} E Y_{n, i}^{2} 1_{\left|Y_{n, i}\right|>\varepsilon}=n \cdot E Y_{n, 1}^{2} 1_{\left|Y_{n, i}\right|>\varepsilon}=n \cdot \frac{2}{n \log n} \cdot \log \left(\frac{1}{\varepsilon}\right) \rightarrow 0$, as required. Thus, we can apply Lindeberg-Feller CLT to obtain

$$
\sum_{i=1}^{n} Y_{n, i} \Longrightarrow N\left(0, \sigma^{2}\right)=N(0,1)
$$

Next, we show that $\sum_{1}^{n} \frac{X_{i}}{\sqrt{n \log n}}-\sum_{i=1}^{n} Y_{n, i} \rightarrow 0$ in probability. Note that this difference is given by $\sum_{1}^{n} X_{i} 1_{\left|X_{i}\right|>\sqrt{n \log n}}$, so we compute

$$
P\left(\left|\sum_{1}^{n} X_{i} 1_{\left|X_{i}\right|>\sqrt{n \log n}}\right|>\varepsilon\right) \leq P\left(\bigcup_{1}^{n}\left\{\left|X_{i}\right|>\sqrt{n \log n}\right\}\right) \leq n \cdot P\left(\left|X_{1}\right|>\sqrt{n \log n}\right)
$$

But $P\left(\left|X_{1}\right|>\sqrt{n \log n}\right)=2 \int_{n \log n}^{\infty} \frac{1}{x^{3}} d x=\frac{1}{n \log n}$, so the above is at most $\frac{1}{\log n} \rightarrow 0$, proving convergence in probability.
It can be proven that if $A_{n} \Longrightarrow A$ and $B_{n} \rightarrow b$ (a constant) in probability, than $A_{n}+B_{n} \Longrightarrow A+B$. Using this, combined with $\sum_{i=1}^{n} Y_{n, i} \Longrightarrow N(0,1)$ and $\sum_{1}^{n} \frac{X_{i}}{\sqrt{n \log n}}-\sum_{i=1}^{n} Y_{n, i} \rightarrow 0$ in probability gives the desired result.
3. Let $X^{+}=\max (X, 0)$. I claim $E X^{+}<\infty$. If not, then for all $M \in \mathbb{N}$, we would have $E X^{+} / M=\infty$, so that

$$
\sum_{n=0}^{\infty} P\left(X_{n}^{+} / n>M\right)=\sum_{n=0}^{\infty} P\left(X_{n}^{+} / M>n\right)>\int_{0}^{\infty} P\left(X^{+} / M>t\right) d t=E X^{+} / M=\infty
$$

implying $P\left(X_{n}^{+} / n>M\right.$ i.o. $)=P\left(\lim \sup X_{n}^{+} / n>M\right)=1$. Since this holds for all M, it follows that $\lim \sup X_{n}^{+} / n=\infty$ almost surely, contradicting the problem statement.
Finally, using SLLN,

$$
\limsup _{n} \frac{\sum X_{k}}{n} \leq \limsup _{n} \frac{\sum X_{k}^{+}}{n} \stackrel{\text { a.s. }}{=} E X_{k}^{+}<\infty
$$

4. It does follow that $E|X|<\infty$.

Proof 1: Choose M so $P(|Y| \leq M)=\varepsilon>0$. For all t, we have

$$
P(|X+Y|>t-M) \geq P(\{|X|>t\} \cap\{|Y| \leq M\})=P(|X|>t) P(|Y| \leq M)
$$

Using this,

$$
\begin{aligned}
E|X|=\int_{0}^{\infty} P(|X|>t) d t & \leq \int_{0}^{\infty} \frac{P(|X+Y|>t-M)}{P(|Y| \leq M)} d t \\
& =\frac{1}{\varepsilon}\left(M+\int_{0}^{\infty} P(|X+Y|>t) d t\right) \\
& =\frac{1}{\varepsilon}(M+E|X+Y|)<\infty
\end{aligned}
$$

Proof 2: Let μ be the measure on \mathbb{R} induced by X, so $\mu(A)=P(X \in A)$, and ν for Y similarly. Since $E|X+Y|<\infty$, using Fubini's theorem we have

$$
E|X+Y|=\int|x+y| d \mu \times \nu=\int\left(\int|x+y| d \mu\right) d \nu<\infty
$$

This implies $\left(\int|x+y| d \mu\right)<\infty$ for ν a.e. y, so there is some y_{0} for which it holds. Then

$$
E|X|=\int|x| d \mu \leq \int\left|x+y_{0}\right|+\left|y_{0}\right| d \mu=\int\left|x+y_{0}\right| d \mu+\left|y_{0}\right|<\infty
$$

2011 Spring

1. Impossible Problem! You need the additional assumption $a_{n} \geq 0$ for this problem to work; if infinitely many a_{n} are negative, then $\sum P\left(\left|X_{n}\right|>a_{n}\right)$ would be ∞ !
Asssuming additionally each $a_{n} \geq 0$, then

$$
\left|S_{n} / a_{n}\right|=\left|X_{n} / a_{n}+\frac{a_{n-1}}{a_{n}} \frac{S_{n-1}}{a_{n-1}}\right| \geq\left|X_{n} / a_{n}\right|-\left|\frac{a_{n-1}}{a_{n}}\right| \cdot\left|\frac{S_{n-1}}{a_{n-1}}\right| \geq\left|X_{n} / a_{n}\right|-C\left|\frac{S_{n-1}}{n-1}\right|
$$

so

$$
\limsup _{n}\left|X_{n} / a_{n}\right| \leq \limsup _{n}\left|S_{n} / a_{n}\right|+C \cdot\left|S_{n-1} / a_{n-1}\right|=0 \quad \text { a.s. }
$$

In particular, this shows that $P\left(\left|X_{n} / a_{n}\right|>1\right.$ i.o. $)=0$, because $\left|X_{n} / a_{n}\right|$ i.o. would imply $\lim \sup _{n}\left|X_{n} / a_{n}\right| \geq 1$. By Borel-Cantelli, we must have $\sum P\left(\left|X_{n}\right|>a_{n}\right)<\infty$.
2. Typo! They meant to say $P\left(X_{n}=1\right)=p, P\left(X_{n}=-1\right)=1-p$.
(a) By SSLN, $S_{n} / n \rightarrow E X_{1}=2 p-1 \neq 0$ a.s, so with probability 1 , for some N, S_{N+k} will be bounded away from 0 for all $k \geq 0$.
(b) Note that, using $\sqrt{n}(n / e)^{n}<n!<e \sqrt{n}(n / e)^{n}$,

$$
P\left(S_{2 n}=0\right)=\frac{1}{2^{2 n}}\binom{2 n}{n}>\frac{1}{4^{n}}\left(\frac{(2 n / e)^{2 n} \sqrt{n}}{\left((n / e)^{n} \sqrt{n} e\right)^{2}}\right)=\frac{1}{e^{2} \sqrt{n}}
$$

Thus, $\sum_{n \geq 1} P\left(S_{2 n}=0\right)=\infty$, so $P\left(S_{2 n}=0\right.$ i.o. $)=1$. This shows $P(\tau<\infty)=1$, since $\tau=\infty$ implies $S_{2 n}=0$ not infinitely often. We now compute $E \tau$. In order for τ to be $2 k+2$, the path has to start by moving to 1 (or -1), stay at or above 1 (below -1), then return to 0 . The number of ways the middle step can happen is counted by the Catalan numbers, $\frac{1}{k+1}\binom{2 k}{k}$. Thus,

$$
E \tau=\sum_{k \geq 0}(2 k+2) P(\tau=2 k+2)=\sum_{k \geq 0}(2 k+2) \frac{1}{2^{2 k+2}} \cdot \frac{2}{k+1}\binom{2 k}{k}
$$

Using the same approximation as before, this sum is infinite.
3. (a) Without loss of generality, we can assum $E X_{n}=0$ by replacing X_{n} with $X_{n}^{\prime}=$ $X_{n}-E X_{n}$.
Using Chebychev's,

$$
P\left(\left|S_{n} / n\right|>\epsilon\right)<\frac{E\left(S_{n}^{4}\right)}{n^{4} \varepsilon^{4}}
$$

When S_{n}^{4} is expanded out, it contains summands like $X_{i}^{4}, X_{i}^{2} X_{j}^{2}, X_{i}^{3} X_{j}, X_{i}^{2} X_{j} X_{k}$, and $X_{i} X_{j} X_{k} X_{\ell}$. Only the first two have nonzero expectation (since distinct X_{i} are independent, and $E X_{i}=0$). Thus, letting $\sup E X_{n}^{4}=M$,

$$
P\left(\left|S_{n} / n\right|>\epsilon\right)<\frac{\sum E X_{i}^{4}+\sum_{i \neq j} E X_{i}^{2} E X_{j}^{2}}{n^{4} \varepsilon^{4}} \leq \frac{n \cdot M+n(n-1) M}{n^{4} \varepsilon^{4}} \in O\left(1 / n^{2}\right)
$$

Using Borel Cantelli, we then have $P\left(\left|S_{n} / n\right|>\varepsilon\right.$ i.o. $)=0$. This holds for all ε, so intersecting these events for some sequence $\varepsilon_{k} \searrow 0$ gives $S_{n} / n \rightarrow 0$ a.s.
(b) If $E\left|X_{1}\right|<\infty$, then $S_{n} / n \rightarrow E X_{1}$ a.s.

2011 Fall

1. (a) $X_{n} \rightarrow X$ a.s. if $P\left(\left\{\omega: X_{n}(\omega) \rightarrow X(\omega)\right\}\right)=1 . X_{n} \rightarrow X$ in L_{1} if $E\left|X_{n}-X\right| \rightarrow 0$.
(b) i. Let $X_{1}, X_{2} \ldots$ be independent, where $P\left(X_{n}=n^{2}\right)=\frac{1}{n^{2}}=1-P\left(X_{n}=0\right)$. Then $X_{n} \rightarrow 0$ a.s. (since $P\left(X_{n}>0\right.$ i.o. $)=0$ by Borel-Cantelli) but $E X_{n}=$ $1 \nrightarrow 0$.
ii. On the probability space $[0,1]$, with Lesbegue measure, let $X_{n, k}=1_{\left[\frac{k-1}{n}, \frac{k}{n}\right]}$, for $n \geq 0$, and $1 \leq k \leq n$. Then let X_{m}^{\prime} be the sequence

$$
X_{1,1}, X_{2,1}, X_{2,2}, X_{3,1}, X_{3,2}, X_{3,3}, \ldots
$$

i.e. the result of ordeing $X_{n, k}$ lexicographically by (n, k). Since $E\left|X_{n, k}\right|=$ $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$, it follows $X_{m}^{\prime} \rightarrow 0$ in L_{1}. However, $X_{m}^{\prime}(\omega) \nrightarrow 0$ for any $\omega \in[0,1]$, since any ω will be contained in at least one of the intervals $\left[\frac{k-1}{n}, \frac{k}{n}\right]$ for each each n.
(c) For any $\varepsilon>0$, we have $P\left(\left|X_{n}-X\right|>\varepsilon\right) \leq \frac{E\left|X_{n}-X\right|}{\varepsilon}$. Thus, $\sum P\left(\left|X_{n}-X\right|>\varepsilon\right) \leq$ $\frac{1}{\varepsilon} \sum E\left|X_{n}-X\right|<\infty$, so $P\left(\left|X_{n}-X\right|>\varepsilon\right.$ i.o. $)=0$ by Borel Cantelli. This shows that $X_{n} \rightarrow X$ a.s.
2. First, note that

$$
P\left(-\log X_{n} / \log n \geq 1\right)=P\left(X_{n} \leq n^{-1}\right)=1 / n
$$

Thus, $\sum P\left(-\log X_{n} / \log n \geq 1\right)=\infty$, so $P\left(-\log X_{n} / \log n \geq 1\right.$ i.o. $)=1$, so $\lim \sup _{n}-\log X_{n} / \log n \geq 1$ a.s.
Now, for any $\varepsilon>0$, we similarly have that

$$
\sum P\left(-\log X_{n} / \log n \geq 1+\varepsilon\right)=\sum \frac{1}{n^{1+\varepsilon}}<\infty
$$

So $P\left(\frac{-\log X_{n}}{\log n \geq 1}+\varepsilon\right.$ i.o. $)=0$, so $\lim \sup _{n} \frac{-\log X_{n}}{\log n} \leq 1+\varepsilon$ a.s. Intersecting the events $\left\{\lim \sup _{n} \frac{-\log X_{n}}{\log n} \leq 1+\frac{1}{k}\right\}$ for $k \in \mathbb{N}$ shows that $\lim \sup _{n} \frac{-\log X_{n}}{\log n} \leq 1$ a.s.
3. (a) Note the constant that $X+Y$ equals must be 1 , since $E X+Y=E X+E Y=\frac{1}{2}+\frac{1}{2}$. Thus, the $i^{\text {th }}$ bit of X is the opposite of that of Y.
(b) Suppose that, for each i, vector $\left(X_{i}, Y_{i}, Z_{i}\right)$, where X_{i} is the $i^{\text {th }}$ trinary digit of X, is uniformly distrubted over the 6 permutations of $(0,1,2)$. Then X, Y, Z are each uniformly distrubted over $[0,1]$ since each of their trinary digits are 0,1 or 2 with equal probability, and $X+Y+Z$ is always equal to $1+\frac{1}{3}+\frac{1}{3^{2}}+\cdots=\frac{3}{2}$.

2012 Spring

1. (a) Let $X=\sum X_{i}$. By MCT, $E X=\sum \lambda_{i}<\infty$, so we must have $P(X=\infty)=0$. Alternatively, $P\left(X_{n}>0\right)=1-e^{-\lambda_{n}} \leq \lambda_{n}$, so $\sum P\left(X_{n}>0\right)<\infty$, so $P\left(X_{n}>\right.$ 0 i.o. $)=0$, implying only finitely many X_{n} are nonzero a.s.
(b) $P\left(X_{n}>0\right)=1-e^{-\lambda_{n}} \geq\left(\lambda_{n} / 2\right) \wedge \frac{1}{2}$, where $a \wedge b=\min (a, b)$. Therefore, $\sum P\left(X_{n}>0\right) \geq \sum\left(\lambda_{n} / 2\right) \wedge \frac{1}{2}=\infty$, so $P\left(X_{n} \geq 1\right.$ i.o. $)=1$, so $\sum X_{n}=\infty$ a.s.
2. Note that Var $X=E X^{2}=\frac{1}{3}$. By CLT,

$$
\begin{equation*}
\frac{\sum_{1}^{n} X_{i}}{\sqrt{n}} \Longrightarrow N(0,1 / 3) \tag{2}
\end{equation*}
$$

By SLLN,

$$
\frac{\sum_{1}^{n} X_{i}^{2}}{n} \xrightarrow{\text { a.s. }} E X^{2}=1 / 3
$$

so

$$
\begin{equation*}
\frac{\sqrt{n}}{\sqrt{\sum_{1}^{n} X_{i}^{2}}} \stackrel{\text { a.s. }}{\rightarrow} \sqrt{3} \tag{3}
\end{equation*}
$$

Using Slutsky's theorem ($X_{n} \Longrightarrow X$ and $Y_{n} \rightarrow c$ in probability implies $X_{n} Y_{n} \rightarrow c X$), along with (2) and (3) gives

$$
\frac{\sum_{1}^{n} X_{i}}{\sqrt{\sum_{1}^{n} X_{i}^{2}}} \Longrightarrow N(0,1)
$$

3. Remark: As far as I can tell, this problem is ridiculously hard, using tricks that aren't that common or intuitive. The \Longrightarrow direction is reasonable, but I'm almost certain no one got the \Longleftarrow when this test was given.
$(a) \Longrightarrow(b)$ Letting $T_{n}=n^{-1 / p} \sum_{1}^{n} \xi_{n}$, we have

$$
\frac{\xi_{n}}{n^{1 / p}}=T_{n}-T_{n-1} \cdot \frac{(n-1)^{1 / p}}{n^{1 / p}}
$$

Letting $n \rightarrow \infty$ above, since $T_{n} \rightarrow T$ a.s, and $\frac{(n-1)^{1 / p}}{n^{1 / p}} \rightarrow 1$, we get

$$
\frac{\xi_{n}}{n^{1 / p}}=T_{n}-T_{n-1} \cdot \frac{(n-1)^{1 / p}}{n^{1 / p}} \rightarrow T-T \cdot 1=0
$$

so that $\xi_{n} / n^{1 / p} \rightarrow 0$ a.s. This means $P\left(\left|\xi_{n}\right| / n^{1 / p}>1\right.$ i.o. $)=P\left(\left|\xi_{n}\right|^{p}>n\right.$ i.o. $)=0$, so (using Borel Cantelli on the last inequality),

$$
E|\xi|^{p}=\int_{0}^{\infty} P\left(|\xi|^{p}>t\right) d t \leq \sum_{n \geq 0} P\left(\left|\xi_{n}\right|^{p}>n\right)<\infty
$$

proving $E|\xi|^{p}<\infty$. Now, suppose by way of contradiction that $p>1$ and $E \xi \neq 0$. Using Jensen's, $(E|\xi|)^{p} \leq E|\xi|^{p}<\infty$, so $E|\xi|<\infty$. By SLLN,

$$
\frac{\sum_{k=1}^{n} \xi_{n}}{n} \rightarrow E \xi \neq 0
$$

almost surely as $n \rightarrow \infty$. We also have, since $p>1$, that

$$
\frac{1}{n^{1 / p-1}} \rightarrow \infty
$$

Multiplying the two above limits implies that

$$
\frac{\sum_{k=1}^{n} \xi_{n}}{n^{1 / p}} \rightarrow \infty \quad \text { a.s. }
$$

contradicting that the limit was finite. Thus, we must have $p \leq 1$ or $E \xi=0$.
$(b) \Longrightarrow(a)$ First, suppose that $p \leq 1$. We can actually assume $p<1$, since $p=1$ follows from SLLN. We will show that $\sum_{1}^{\infty} \frac{\left|\xi_{n}\right|}{n^{1 / p}}$ converges a.s. This implies $\sum_{1}^{\infty} \frac{\xi_{n}}{n^{1 / p}}$ converges a.s., which by Kronecker's Lemma implies $n^{-1 / p} \sum_{1}^{n} \xi_{k} \rightarrow 0$ a.s., the desired result.
To show $\sum_{1}^{\infty} \frac{\left|\xi_{n}\right|}{n^{1 / p}}$, we use the Kolmogorov 3 -series test. Let $Y_{n}=\frac{\xi_{n}}{n^{1 / p}} \mathbf{1}\left(\left|\xi_{n}\right|^{p} \leq n\right)$. We must check that
(i) $\sum_{1}^{\infty} P\left(\left|\xi_{n}\right|^{p}>n\right)<\infty$
(ii) $\sum_{1}^{\infty} E Y_{n}$ converges
(iii) $\sum_{1}^{\infty} \operatorname{Var} Y_{n}<\infty$
(i) This is true since $E|\xi|_{1}^{p}<\infty$, which holds if and only if $\sum_{1}^{\infty} P\left(|\xi|_{1}^{p}>k\right)<\infty$.
(ii) The below computations uses many clever tricks. For the first equality, we are using $\left|\xi_{1}\right| 1_{\left|\xi_{1}\right|^{p} \leq n}=\sum_{1}^{n}\left|\xi_{1}\right| 1_{\left\{k-1<\left|\xi_{1}\right|^{p} \leq k\right\}}$. For the second, we use Fubini's, being careful with the indices. For the third, we bound $\sum_{n=k}^{\infty} n^{-1 / p} \leq \int_{k}^{\infty} x^{-1 / p} d x$. For the fourth, realize that when $|x i|^{p} \leq k$, then $\left|\xi_{1}\right|^{1-p}=\left(\left|\xi_{1}\right|^{p}\right)^{(1 / p)-1} \leq k^{(1 / p)-1}$.

$$
\begin{aligned}
\sum_{n=1}^{\infty} E\left(\frac{\left|\xi_{n}\right|}{n^{1 / p}} ;|\xi|^{p} \leq n\right) & =\sum_{n=1}^{\infty} \sum_{k=1}^{n} \frac{1}{n^{1 / p}} E\left(\left|\xi_{1}\right| 1_{\left\{k-1<|\xi|^{p} \leq k\right\}}\right) \\
& =\sum_{k=1}^{\infty} E\left(\left|\xi_{1}\right| 1_{\left\{k-1<|\xi|^{p} \leq k\right\}}\right) \sum_{n=k}^{\infty} \frac{1}{n^{1 / p}} \\
& \leq \sum_{k=1}^{\infty} E\left(\left|\xi_{1}\right|^{p} \cdot\left|\xi_{1}\right|^{1-p} 1_{\left\{k-1<|\xi|^{p} \leq k\right\}}\right) \frac{k^{1-1 / p}}{1 / p-1} \\
& \leq \frac{1}{1 / p-1} \sum_{k=1}^{\infty} E\left(|\xi|^{p}\left(k^{1 / p-1}\right) 1_{\left\{k-1<|\xi|^{p} \leq k\right\}}\right) \cdot k^{1-1 / p} \\
& =\frac{1}{1 / p-1} E\left|\xi_{1}\right|^{p}<\infty
\end{aligned}
$$

(iii) To show $\sum \operatorname{Var} Y_{n}<\infty$, we show $\sum E Y_{n}^{2}<\infty$, using the same tricks.

$$
\begin{aligned}
\sum_{n=1}^{\infty} E\left(\frac{\left|\xi_{1}\right|^{2}}{n^{2 / p}} ;|\xi| \leq n\right) & =\sum_{n=1}^{\infty} \sum_{k=1}^{n} n^{-2 / p} E\left(|\xi|^{2} 1_{\left\{k-1<|\xi|^{p} \leq k\right\}}\right) \\
& =\sum_{k=1}^{\infty} E\left(|\xi|^{2} 1_{\left\{k-1<|\xi|^{p} \leq k\right\}}\right) \sum_{n=k}^{\infty} n^{-2 / p} \\
& \leq \sum_{k=1}^{\infty} E\left(|\xi|^{p} \cdot\left|\xi_{1}\right|^{2-p} 1_{\left\{k-1<|\xi|^{p} \leq k\right\}}\right) \frac{k^{1-2 / p}}{2 / p-1} \\
& \leq \frac{1}{2 / p-1} \sum_{k=1}^{\infty} E\left(\left|\xi_{1}\right|^{p} 1_{\left\{k-1<|\xi|^{p} \leq k\right\}}\right)=\frac{E X_{1}}{2 / p-1}<\infty
\end{aligned}
$$

This completes the proof in the case $p \leq 1$.

Now, suppose $E \xi_{i}=0$ and $p \in(1,2)$. Let $Y_{k}=\xi_{k} 1_{\left\{|\xi|_{k} \leq k^{1 / p}\right\}}$, and let $T_{n}=Y_{1}+\cdots+Y_{n}$. Since

$$
\sum P\left(\left|\xi_{k}\right|>k^{1 / p}\right) \leq \int_{0}^{\infty} P\left(\left|\xi_{1}\right|^{p}>t\right) d t=E|\xi|^{p}<\infty
$$

it follows that $P\left(\xi_{k} \neq Y_{k}\right.$ i.o. $)=0$, so it suffices to prove $T_{n} / n^{1 / p} \rightarrow 0$. We compute

$$
\begin{aligned}
\sum_{k=1}^{\infty} \operatorname{Var}\left(Y_{k} / k^{1 / p}\right) & \leq \sum_{k=1}^{\infty} E\left(Y_{k}^{2}\right) / k^{2 / p} \\
& =\sum_{k=1}^{\infty} \int_{0}^{k^{1 / p}} \frac{2 y}{k^{2 / p}} P\left(Y_{k}>y\right) d y \\
& \leq \sum_{k=1}^{\infty} \sum_{n=1}^{k} \int_{(n-1)^{1 / p}}^{n^{1 / p}} \frac{2 y}{k^{2 / p}} P(|\xi|>y) d y \\
& \stackrel{\text { Fubini }}{=} \sum_{n=1}^{\infty} \int_{(n-1)^{1 / p}}^{n^{1 / p}} 2 y P(|\xi|>y)\left(\sum_{k=n}^{\infty} \frac{1}{k^{2 / p}}\right) d y
\end{aligned}
$$

We can bound $\sum_{m=n}^{\infty} \frac{1}{k^{2 / p}}$ by an integral:

$$
\sum_{k=n}^{\infty} \frac{1}{k^{2 / p}} \leq \int_{n-1}^{\infty} x^{-2 / p} d x=\frac{(n-1)^{(p-2) / p}}{(2-p) / p} \leq C y^{p-2}
$$

for any $y \in\left[(n-1)^{1 / p}, n^{1 / p}\right]$, and some constant C. Therefore,

$$
\sum_{k=1}^{\infty} \operatorname{Var}\left(Y_{k} / k^{1 / p}\right) \leq \int_{0}^{\infty} 2 C y^{p-1} P(|\xi|>y) d y<\infty
$$

with the last inequality following since $E|\xi|^{p}=\int_{0}^{\infty} p y^{p-1} P(|\xi|>y) d y<\infty$. By Kolmogorov's theorem for the convergence of random series, letting $\mu_{k}=E Y_{k}$, we have $\sum_{1}^{\infty}\left(Y_{k}-\mu_{k}\right) / k^{1 / p}<\infty$ a.s, which by Kronecker's Lemma implies

$$
n^{-1 / p} \sum_{1}^{n} Y_{k}-\mu_{k} \rightarrow 0 \quad \text { a.s. }
$$

To show that $n^{-1 / p} \sum_{1}^{n} Y_{k} \rightarrow 0$ a.s, completing the proof, we need only show $n^{-1 / p} \sum_{1}^{n} \mu_{k} \rightarrow$ 0 . Since $\mu_{k}+E\left(\xi_{k} ;|\xi|>k^{1 / p}\right)=E \xi_{k}=0$, we have that

$$
\begin{aligned}
\left|\mu_{k}\right| \leq E\left(|\xi| ;|\xi|>k^{1 / p}\right) & =k^{1 / p} E\left(|\xi| / k^{1 / p} ;|\xi|>k^{1 / p}\right) \\
& \leq k^{1 / p} E\left(|\xi|^{p} / k ;|\xi|>k^{1 / p}\right) \\
& =k^{-1+1 / p} E\left(|\xi|^{p} ;|\xi|>k^{1 / p}\right)
\end{aligned}
$$

Since $\sum_{1}^{n} k^{-1+1 / p} \leq K n^{1 / p}$ and $E\left(|\xi|^{p} ;|\xi|>k^{1 / p}\right) \rightarrow 0$ as $k \rightarrow \infty$ (by DCT), it follows that $n^{1 / p} \sum \mu_{k} \rightarrow 0$, completing the proof.

2012 Fall

1. (a) For any $0<x<1$, we have

$$
P\left(X_{n} \leq x\right)=\int_{0}^{x} 1+\sin 2 \pi n t d t=x+\frac{1-\cos 2 \pi n x}{2 \pi n} \rightarrow x+0
$$

as $n \rightarrow \infty$. Thus, $X_{n} \Longrightarrow X$, where $P(X \leq x)=x$, i.e, X is uniform on $[0,1]$.
(b) Let $a_{n}=-\log n$. Then

$$
P\left(\frac{1}{a_{n}} \log X_{n}>2\right)=P\left(X_{n}<n^{-2}\right)=n^{-2}+\frac{1-\cos \left(2 \pi n \cdot n^{-2}\right)}{2 \pi n}=n^{-2}+O\left(n^{-3}\right)
$$

Notice $\sum P\left(\frac{1}{a_{n}} \log X_{n}>2\right)<\infty$. By Borel-Cantelli, $P\left(\frac{1}{a_{n}} \log X_{n}>2\right.$ i.o. $)=0$, proving $\lim \sup _{n} \frac{1}{a_{n}} \log X_{n} \leq 2$ a.s. Furthermore,

$$
P\left(\frac{1}{a_{n}} \log X_{n}>1\right)=P\left(X_{n}<n^{-1}\right)=n^{-2}+\frac{1-\cos (2 \pi)}{2 \pi n}=n^{-1}
$$

So by Borel-Cantelli again, $P\left(\frac{1}{a_{n}} \log X_{n}>1\right.$ i.o. $)=1$, so the limsup will be at least 1 almost surely.
2. (a) possibly wrong solution: The following proof did not at any point use sup Var $X_{n}<$ ∞, so I suspect I made a mistake. Please check to make sure my logic is correct. Given n, for each m we can variables i.i.d. $X_{m}^{1}, \ldots, X_{m}^{n}$ so

$$
X_{m}^{1}+\cdots+X_{m}^{n} \stackrel{d}{=} X_{m}^{1}
$$

We first show that the sequence $X_{1}^{1}, X_{2}^{1}, X_{3}^{1} \ldots$ is tight. Since $X_{m}^{i}>A$ for each i implies that $\sum_{i} X_{m}^{i} \geq n A$, and $X_{m}^{1} \stackrel{d}{=} \sum_{1} X_{m}^{i}$, we have

$$
P\left(X_{m}^{1}>A\right)^{n}=P\left(\bigcap_{1}^{n} X_{m}^{i}>A\right) \leq P\left(X_{m}>n A\right) \leq P\left(\left|X_{m}\right|>n A\right)
$$

Similarly, $P\left(X_{m}^{1}<-A\right)^{n} \leq P\left(\left|X_{m}\right|>n A\right)$, so

$$
\sup _{m} P\left(\left|X_{m}^{1}\right|>A\right)=\sup _{m} P\left(X_{m}^{1}>A\right)+P\left(X_{m}^{1}<-A\right) \leq \sup _{m} 2 P\left(\left|X_{m}\right|>n A\right)^{1 / n}
$$

By tightness of X_{m}, the right hand side of above approaches 0 as $A \rightarrow \infty$, proving the left does as well, so the sequence $\left\{X_{m}^{1}\right\}_{m \rightarrow \infty}$ is tight.
By Helly's selection theorem, there exists a subsequence $X_{m_{k}}^{1}$ and a random variable X^{1} so that $X_{m_{k}}^{1} \Longrightarrow X^{1}$. Since $X_{m}^{i} \stackrel{d}{=} X_{m}^{1}$, this means $X_{m_{k}}^{i} \Longrightarrow X^{i}$, where $X^{i} \stackrel{d}{=} X^{1}$. Since $Z_{n} \Longrightarrow Z, Y_{n} \Longrightarrow Y$ and Z_{n}, Y_{n} being independent implies $Z_{n}+Y_{n} \Longrightarrow Z+Y$ (to prove this, look at characteristic functions), it follows that

$$
X_{m_{k}} \stackrel{d}{=} \sum_{1}^{n} X_{m_{k}}^{i} \Longrightarrow \sum_{1}^{n} X^{i} .
$$

But we also have $X_{m_{k}} \Longrightarrow X$ so we must have $X \stackrel{d}{=} \sum_{1}^{n} X^{i}$. This shows X has been written as a sum of n iid random variables, so X is infinitely divisible.
(b) In general, if X is any varible where $|X| \leq 1$ a.s, then X is not infintiely divisible. If $X_{1}+\ldots X_{n} \stackrel{d}{=} X$, then it must mean that each $X_{i} \leq \frac{1}{n}$ a.s. If not, for some $\varepsilon>0$ then there would be a possibility that each $X_{i}>\frac{1}{n}+\varepsilon$, implying $\sum X_{i}>1$, which is a contradiction, since X has the same distribution as $\sum X_{i}$, and $X \leq 1$ always. Similarly, $X_{i} \geq-\frac{1}{n}$ a.s, so $\left|X_{i}\right| \leq \frac{1}{n}$ a.s, implying

$$
\begin{equation*}
\operatorname{Var} X_{i} \leq E X_{i}^{2} \leq \frac{1}{n^{2}} \tag{1}
\end{equation*}
$$

However, we also have

$$
\operatorname{Var}(X)=\sum \operatorname{Var}\left(X_{i}\right)=n \operatorname{Var}\left(X_{1}\right)
$$

so that

$$
\begin{equation*}
\operatorname{Var}\left(X_{i}\right)=\frac{\operatorname{Var} X}{n} \tag{2}
\end{equation*}
$$

But (1) and (2) are in contradiction for large enough n, so X is not infinitely divisible.
(c) We could just run through the same argument above to show that U is not infinitely divisible.
I think they were going for this argument: if U^{\prime} has the same distribution as U, and is independent of U, then $U+U^{\prime} \stackrel{d}{=} X$ (you can check this). Thus, if you could divide U into any number of parts, n, then you could do the same for U^{\prime}, and then use this to divide $X \stackrel{d}{=} U+U^{\prime}$ into $2 n$ parts. This, doesn't quite contradict the fact that X is non infinitely divisible, but it's close.

2013 Spring

1. (a) We have that

$$
E\left(X_{i, n}^{2} \mathbf{1}\left(\left|X_{i, n}\right|>\varepsilon\right)\right)=E\left(\left(\frac{X_{i}}{\sqrt{n}}\right)^{2} ; \mathbf{1}\left(\left|\frac{X_{i}}{\sqrt{n}}\right|>\varepsilon\right)\right)=\frac{1}{n} E\left(X_{1}^{2} \mathbf{1}\left(\left|X_{1}\right|>\varepsilon \sqrt{n}\right)\right)
$$

so

$$
L_{n, \varepsilon}=\sum_{1}^{n} E\left(X_{i, n}^{2} \mathbf{1}\left(\left|X_{i, n}\right|>\varepsilon\right)\right)=E\left(X_{1}^{2} \mathbf{1}\left(\left|X_{1}\right|>\varepsilon \sqrt{n}\right)\right)
$$

Since $X_{1}^{2} \mathbf{1}\left(\left|X_{1}\right|>\varepsilon \sqrt{n}\right) \rightarrow 0$ almost surely as $n \rightarrow \infty$, and $E X_{1}^{2}<\infty$, by the DCT, the last quantiy approaches 0 as $n \rightarrow \infty$.
(b) Using Jensen's inequality, $E\left|X_{i, n}\right|^{p}=E\left(\left(X_{i, n}^{2}\right)^{p / 2}\right) \geq\left(E X_{i, n}^{2}\right)^{p / 2} \geq E X_{i, n}^{2}$, so

$$
L_{n, \varepsilon}=\sum_{1}^{n} E\left(X_{i, n}^{2} \mathbf{1}\left(\left|X_{i, n}\right|>\varepsilon\right)\right) \leq \sum_{1}^{n} E\left|X_{i, n}\right|^{p} \rightarrow 0
$$

(c) Let $X_{i, n}$ have normal dsitribution $N\left(0, \frac{2^{k-2}}{2^{n-1}}\right)$ when $i \geq 2$, and $X_{1, n}$ have distribution $N\left(0, \frac{1}{2^{n-1}}\right)$. Then because $Z_{1} \sim N\left(0, \sigma_{1}^{2}\right)$ and $Z_{2} \sim N\left(0, \sigma_{2}^{2}\right)$ implies $Z_{1}+Z_{2} \sim N\left(0, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$, we have that

$$
W_{n} \sim N\left(0, \frac{1+1+2+\cdots+2^{n-2}}{2^{n-1}}\right)=N(0,1)
$$

so that not only does $W_{n} \rightarrow N(0,1)$ in distribution, but each W_{n} is equal to $N(0,1)$ in distibution.
However, the Lindeberg condition does not hold, since $X_{n, n} \sim N\left(0, \frac{2^{n-2}}{2^{n-1}}\right)=$ $N\left(0, \frac{1}{2}\right)$, so

$$
\sum_{1}^{n} E\left(X_{i, n}^{2} ; \mathbf{1}\left(\left|X_{i, n}\right|>\varepsilon\right)\right) \geq E\left(X_{n, n}^{2} ; \mathbf{1}\left(\left|X_{n, n}\right|>\varepsilon\right)\right) \geq \varepsilon P\left(X_{n, n}>\varepsilon\right) \nrightarrow 0
$$

where the last quantity does not approach zero since each $X_{n, n}$ have the same $N\left(0, \frac{1}{2}\right)$ distribution, so $P\left(X_{n, n}>\varepsilon\right)$ is constant in n.
2. (a) By definition, a matrix M is nonneggative semidefinite if $x^{T} M x \geq 0$ when x is any column vector. Given a column vector $x=\left[\begin{array}{llll}a_{0} & a_{1} & \ldots & a_{n-1}\end{array}\right]$, expand out the right side of the inequality

$$
0 \leq E\left(\left(a_{0}+a_{1} X+a_{2} X^{2}+\ldots a_{n-1} X^{n-1}\right)^{2}\right)
$$

then distribute the E over all of the terms, so each X^{k} becomes m_{k}. You will see that the result is exactly $x^{T} H_{n} x$, proving $x^{T} H_{n} x \geq 0$, so H_{n} is nonnegative semidefinite.
(b) First of all, what does $\Delta^{k} m_{n}$ mean? First of all, they don't just mean $\Delta m_{n}=$ $m_{n+1}-m_{n}$, they mean that for any sequence $a_{n}, \Delta a_{n}=a_{n+1}-a_{n}$. So, Δa_{n} is itselt a sequence, and you can apply Δ to that, getting $\Delta^{2} a_{n}$. For example,

$$
\begin{gathered}
\Delta^{2} m_{n}=\Delta\left(m_{n+1}-m_{n}\right)=\left(m_{n+2}-m_{n+1}\right)-\left(m_{n+1}-m_{n}\right)=m_{n+2}-2 m_{n+1}+m_{n} \\
\Delta^{3} m_{n}=m_{n+3}-2 m_{n+2}+m_{n+1}-\left(m_{n+2}-2 m_{n+1}+m_{n}\right)=m_{n+3}-3 m_{n+2}+3 m_{n+1}-m_{n} \\
\Delta^{4} m_{n}=m_{n+4}-4 m_{n+3}+6 m_{n+2}-4 m_{n+1}+m_{n}
\end{gathered}
$$

Fans of combinatorics will notice Pascal's triangle appearing on the RHS of each equation. In fact, you can prove by induction that

$$
\Delta^{k} m_{n}=\sum_{j=0}^{k}\binom{k}{j}(-1)^{j+k} m_{n+k}
$$

Using this, and the binomial theorem, we have that

$$
0 \leq E X^{n}(1-X)^{k}=E \sum_{j=0}^{k}\binom{k}{j}(-1)^{j} X^{n+j}=(-1)^{k} \sum_{j=0}^{k}\binom{k}{j}(-1)^{j+k} m_{n+k}=(-1)^{k} \Delta^{k} m_{n}
$$

3. (a) First, we find the c.f. for Y_{k}, which has pdf e^{-x} :

$$
\phi(t)=E e^{i t Y_{k}}=\int_{0}^{\infty} e^{i t y} e^{-y} d y=\left.\frac{1}{i t-1} e^{y(i t-1)}\right|_{0} ^{\infty}=\frac{1}{1-i t}
$$

This means that the c.f. for $\frac{Y_{k}-1}{k}=\frac{1}{1-i t / k} e^{-i t / k}$.
Let $W_{n}=\gamma+\sum_{k=1}^{n} \frac{Y_{k}-1}{k}$. Since $W_{n} \rightarrow W$ a.s, so that $e^{i t W_{n}} \rightarrow e^{i t W}$, and each $\left|e^{i t W_{n}}\right| \leq 1$, it follows by DCT that

$$
\varphi(t)=E e^{i t W}=\lim _{n} E e^{i t W_{n}}=\lim _{n} e^{i \gamma t} \prod_{1}^{n} \frac{e^{-i t / k}}{1-i t / k}=e^{i \gamma t} \prod_{1}^{\infty} \frac{e^{-i t / k}}{1-i t / k}
$$

As far as I can tell, this is the only way to express the characteristic function.
(b)

$$
\begin{aligned}
|\varphi(t)| & =\left|e^{i \gamma t} \prod_{1}^{\infty} \frac{e^{-i t / k}}{1-i t / k}\right|=\left|e^{i \gamma t}\right| \prod_{1}^{\infty} \frac{\left|e^{-i t / k}\right|}{|1-i t / k|}=\prod_{1}^{\infty} \frac{1}{\sqrt{1^{2}+t^{2} / k^{2}}} \\
& =\exp \left(\sum_{k=1}^{\infty}-\frac{1}{2} \log \left(1+t^{2} / k^{2}\right)\right) \leq \exp \left(-\frac{1}{2} \log \left(1+t^{2}\right)-\frac{1}{2} \log \left(1+t^{2} / 4\right)\right)
\end{aligned}
$$

Using the concavity of \log, so that $\log x$ lies above the secant line joining (1,0) and $\left(1+t^{2}, \log \left(1+t^{2}\right)\right)$, for any $1 \leq x \leq t^{2}$ is true that

$$
\log x \geq \frac{\log \left(1+t^{2}\right)-\log (1)}{1+t^{2}-1} \cdot(x-1)=\frac{\log \left(1+t^{2}\right)}{t^{2}}(x-1)
$$

and setting $x=1+t^{2} / 4$ implies $\log \left(1+t^{2} / 4\right) \geq \frac{\log t^{2}}{4}$,so

$$
|\varphi(t)| \leq \exp \left(-\frac{1}{2}\left(\log \left(1+t^{2}\right)+\frac{\log \left(1+t^{2}\right)}{4}\right)\right)=\exp \left(\log \left(1+t^{2}\right)^{-5 / 8}\right)=\left(\sqrt{1+t^{2}}\right)^{-5 / 4}
$$

Since $\sqrt{1+t^{2}} \geq \max (1, t)$ it follows that

$$
\left.\int|\varphi(t)|\right], d t<\int_{-\infty}^{\infty}\left(\sqrt{1+t^{2}}\right)^{-5 / 4} \leq \int_{-\infty}^{\infty} \min \left(1, \frac{1}{|t|^{5 / 4}}\right)<\infty
$$

(c) It does follow that W has an absolutely continuous distribution.
(d) \odot The inversion formula gives

$$
f_{W}(w)=\int_{-\infty}^{\infty} e^{-i t w} \varphi(t) d t=\int_{-\infty}^{\infty} e^{-i t w} \varphi(t) d t
$$

2013 Fall

1. (a) It does follow that $S_{n} / n \rightarrow X$. We first show that $X_{n} \rightarrow X$ in L_{1}. Note that $|X| \leq 1$ a.s, because if $P(|X|>1+\delta)=\varepsilon>0$, then $P\left(\left|X_{n}-X\right|>\delta\right) \geq \varepsilon \nrightarrow 0$. In particular, $\left|X_{n}-X\right| \leq 2$. Thus, given any $\varepsilon \geq 0$,

$$
\begin{aligned}
\limsup _{n} E\left|X_{n}-X\right| & =\limsup _{n} E\left(\left|X_{n}-X\right| 1_{\left|X_{n}-X\right|<\varepsilon}\right)+E\left(\left|X_{n}-X\right| 1_{\left|X_{n}-X\right|>\varepsilon}\right) \\
& \leq \limsup _{n} \varepsilon+2 P\left(\left|X_{n}-X\right|>\varepsilon\right)=\varepsilon
\end{aligned}
$$

This holds for all ε, proving $E\left|X_{n}-X\right| \rightarrow 0$. Let $\left|X_{n}-X\right|_{1}=E\left|X_{n}-X\right|$, and given ε, choose N so that $n>N$ implies $\left|X_{n}-X\right|_{1}<\varepsilon$. Then, for $n>N$,

$$
\begin{aligned}
\left|S_{n} / n-X\right|_{1} & \leq \sum_{1}^{\infty} \frac{1}{n}\left|X_{i}-X\right|_{1} \\
& =\frac{1}{n} \sum_{1}^{N}\left|X_{i}-X\right|_{1}+\sum_{N+1}^{n} \frac{1}{n}\left|X_{i}-X\right|_{1} \\
& \leq \frac{1}{n} \sum_{1}^{N}\left|X_{i}-X\right|_{1}+\sum_{N+1}^{n} \frac{1}{n} \cdot \varepsilon \\
& \leq \frac{1}{n} \sum_{1}^{N}\left|X_{i}-X\right|_{1}+\varepsilon \rightarrow \varepsilon \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

Taking the limsup of the above inequality, the last sum converges to 0 , proving $S_{n} / n \rightarrow X$ in L_{1}, and therefore in probability.
(b) Now the claim does not follow. Let

$$
X_{n}= \begin{cases}0 & \text { with probability } 1-\frac{1}{n} \\ n & \text { with probability } \frac{1}{n}\end{cases}
$$

so that $X_{n} \rightarrow 0$ in probability. However, we can show that $P\left(S_{n} / n \geq \frac{1}{2}\right) \geq \frac{1}{2}$ for all n. In order for S_{n} / n to be bigger than $\frac{1}{2}$, it suffices for some X_{k} to equal k, for $k \geq \frac{n}{2}$. Thus, noting that the below product is telescoping, we get

$$
P\left(S_{n} / n \geq \frac{1}{2}\right) \geq P\left(\bigcup_{k=n / 2}^{n} X_{k}=k\right)=1-\prod_{k=n / 2}^{n} \frac{k-1}{k}=1-\frac{n / 2-1}{n} \geq \frac{1}{2}
$$

This shows $S_{n} / n \nrightarrow 0$ in probability.
2. (a) This follows from $E(X)=\int_{0}^{\infty} P(X>x) d x$, and applying \int_{0}^{∞} to below:

$$
P(X>\lceil x\rceil) \leq P(X>x) \leq P(X>\lfloor x\rfloor)
$$

(b) Applying part (i) to $\left|X_{n}\right| / k$,

$$
\sum P\left(\left|X_{n}\right|>k n\right)=\sum P\left(\left|X_{n}\right| / k>n\right) \geq E\left|X_{n} / k\right|=\infty
$$

Using Borel-Cantelli, this says that for all $k, P\left(\left|X_{n}\right| / n>k\right.$ i.o. $)=1$. Thus, $P\left(\bigcap_{k \geq 1}\left\{\left|X_{n}\right| / n>k\right.\right.$ i.o. $\left.\}\right)=1$, proving that $\lim \sup _{n}\left|X_{n}\right| / n=\infty$ a.s.

Note that

$$
\left|S_{n} / n\right|=\left|X_{n} / n+\frac{n-1}{n} \frac{S_{n-1}}{n-1}\right| \geq\left|X_{n} / n\right|-\left|\frac{n-1}{n}\right| \cdot\left|\frac{S_{n-1}}{n-1}\right| \geq\left|X_{n} / n\right|-\left|\frac{S_{n-1}}{n-1}\right|
$$

so

$$
\underset{n}{\limsup }\left|\frac{S_{n}}{n}\right|+\left|\frac{S_{n-1}}{n-1}\right| \geq \lim \sup \left|X_{n} / n\right|=\infty \quad \text { a.s. }
$$

Thus, almost surely the sequence $\left|\frac{S_{n}}{n}\right|+\left|\frac{S_{n-1}}{n-1}\right|$ is unbounded, proving that $\left|S_{n} / n\right|$ is unbounded almost surely as well.
3. Note that $E\left(X_{i} Y_{i}\right)=0$, and $\operatorname{Var}\left(X_{i} Y_{i}\right)=E\left(X_{i}^{2} Y_{i}^{2}\right)=E X_{i}^{2}=\operatorname{Var} X_{i}^{2}+\left(E X_{i}\right)^{2}=$ $\sigma^{2}+\mu^{2}$. Thus, by CLT,

$$
\frac{\sum X_{k} Y_{k}}{\sqrt{n}} \Longrightarrow N\left(0, \sigma^{2}+\mu^{2}\right)
$$

Furthermore, we have $\frac{1}{n} \sum X_{k} \rightarrow \mu$ a.s. by SLLN, so that

$$
\frac{n}{\sum X_{k}} \rightarrow \frac{1}{\mu} \quad \text { a.s. }
$$

Using Slutsky's to multiply these two gives us

$$
\frac{\sqrt{n} \sum X_{k} Y_{k}}{\sum X_{k}} \rightarrow N\left(0,1+\frac{\sigma^{2}}{\mu^{2}}\right)
$$

2014 Spring

1. (a) We have $\operatorname{Var}\left(S_{n}\right)=\sum \operatorname{Var} X_{i} \leq n C$, so

$$
E\left(S_{n} / n-\mu\right)^{2} \leq \operatorname{Var}\left(S_{n} / n\right) \leq \frac{C n}{n^{2}} \rightarrow 0
$$

proving convergence in L_{2}.
(b) For all $\varepsilon>0$,

$$
P\left(S_{n} / \mu-\mu>\varepsilon\right)=P\left(\left(S_{n} / n-\mu\right)^{2}>\varepsilon^{2}\right) \leq \frac{\operatorname{Var}\left(S_{n} / n\right)}{\varepsilon^{2}} \rightarrow 0
$$

(c) There will be a subsequence $S_{n(k)} / n(k) \rightarrow \mu$ a.s. You won't have a.s. convergence in general, since you need independence, not just uncorrelation (I can't think of a specific counterexample though).
2. (a) Let E_{n} be the event that he wins games $2 n$ and $2 n+1$. The E_{n} are indpendent, and $\sum P\left(E_{n}\right)=\sum \frac{1}{\sqrt{2 n(2 n+1)}}=\infty$, so by second Borel Cantelli, $P\left(E_{n}\right.$ i.o.). Since he gets a dollar each time E_{n} occurs, his winnings will be infinite a.s.
(b) Let F_{n} be the event he wins games $n, n+1$ and $n+2$. Then $P\left(F_{n}\right.$ i.o. $)=0$, since $\sum P\left(F_{n}\right)=\sum \frac{1}{\sqrt{n(n+1)(n+2)}}<\infty$. So, almost surely, he only gets finite monies.
3. Let

$$
a_{n}=\frac{1}{2} \sum_{1}^{n} k^{2} \quad b_{n}=\sqrt{\sum_{1}^{n} \frac{k^{4}}{12}}
$$

We'll use the Lindeberg-Feller CLT to show that $\frac{\sum X_{k}-a_{n}}{b_{n}} \rightarrow N(0,1)$.
Let $Y_{n, k}=\left(X_{k}-\frac{k^{2}}{2}\right) / b_{n}$, so $E Y_{n, k}=0$. We have

$$
\sum_{1}^{n} E Y_{n, k}^{2}=\sum_{1}^{n} \operatorname{Var}\left(Y_{n, k}\right)=\frac{\sum_{1}^{n} \operatorname{Var} X_{k}}{b_{n}^{2}}=\frac{\sum_{1}^{n} k^{4} / 12}{b_{n}^{2}}=1
$$

Furthermore, for any $\varepsilon>0$, consider

$$
\sum_{1}^{n} E Y_{n, k}^{2} 1_{\left\{\left|Y_{n, k}\right|>\varepsilon\right\}}
$$

Note that $\left|Y_{n, k}\right|<\frac{n^{2} / 2}{b_{n}} \rightarrow 0$ as $n \rightarrow \infty$. Thus, for large $n, Y_{n, k}^{2} 1_{\left|Y_{n, k}\right|>\varepsilon}=0$ always, so $\lim _{n \rightarrow \infty}$ of the above sum is zero.
Thus, by the Lindberg Feller CLT, we have

$$
\sum_{1}^{n} Y_{n, k}=\frac{\sum_{1}^{n} X_{k}-a_{n}}{b_{n}} \Longrightarrow N(0,1)
$$

2014 Fall

1. (a) (\Longrightarrow) Assume that $P\left(E_{n}\right.$ i.o. $)=1$. Let A be an event where $P(A)>0$. Then

$$
\begin{aligned}
1 & =P\left(E_{n} \text { i.o. }\right) \\
& =P\left(\left\{E_{n} \text { i.o. }\right\} \cap A\right)+P\left(\left\{E_{n} \text { i.o. }\right\} \cap A^{c}\right) \\
& \leq P\left(\left\{E_{n} \text { i.o. }\right\} \cap B\right)+P\left(A^{c}\right)
\end{aligned}
$$

so

$$
P\left(\left\{E_{n} \text { i.o. }\right\} \cap A\right) \geq 1-P\left(A^{c}\right)=P(A)>0
$$

Since the event $\left\{E_{n}\right.$ i.o. $\} \cap A$ is the same as the event $\left\{E_{n} \cap A\right.$ i.o. $\}$, the above shows that $P\left(E_{n} \cap A\right.$ i.o. $)>0$. By the (contrapositive of the) Borel-Cantelli lemma, this means that $\sum P\left(E_{n} \cap A\right)=\infty$.
(\Longleftarrow) Assume that, whenever $P(A)>0$, we have $\sum P\left(E_{n} \cap A\right)=\infty$. Let $A=\left\{E_{n} \text { i.o. }\right\}^{c}$, and consider

$$
\sum_{n \geq 1} P\left(E_{n} \cap A\right)
$$

Notice that only finitely many of the above terms can be nonzero: if $\omega \in A$, then ω is in only finitely many E_{n}, so only finitely many $E_{n} \cap A$ are nonempty. Thus, the above sum is finite. Since such sums are always infintie when $P(A)>0$, this means $P(A)=0$, so that $P\left(A^{c}\right)=P\left(E_{n}\right.$ i.o. $)=1$.
(b) This is false. For the prabability space $(0,1)$ with Lesbegue measure, let $E_{n}=$ $(0,1 / n)$. Then $P\left(E_{n}\right.$ i.o. $)=0$, but $\sum P\left(E_{n} \cap(0,1)\right)=\sum 1 / n=\infty$.
2. Given $\varepsilon>0$, choose x so the distribution function of X is continuous at x and $P(X \leq$ $x)<\varepsilon$. Then

$$
P\left(X_{n}+Y_{n} \leq c\right) \leq P\left(\left\{X_{n} \leq x\right\} \cup\left\{Y_{n} \leq c-x\right\}\right) \leq P\left(X_{n} \leq x\right)+P\left(Y_{n} \leq c-x\right)
$$

so

$$
\limsup _{n} P\left(X_{n}+Y_{n} \leq c\right) \leq \limsup P\left(X_{n} \leq x\right)+P\left(Y_{n} \leq c-x\right)=\varepsilon+0
$$

$$
n \quad n
$$

Thus, for all $\varepsilon>0, \lim \sup _{n} P\left(X_{n}+Y_{n} \leq c\right) \leq \varepsilon$, so $P\left(X_{n}+Y_{n} \leq c\right) \rightarrow 0$.
3. The answer is that $Y_{n} \rightarrow 0$ a.s. iff $a<e$.

Note $Y_{n} \rightarrow 0$ a.s. $\Longleftrightarrow \log Y_{n} \rightarrow-\infty$ a.s. We have

$$
E \log X_{1}=\int_{0}^{a} \log x \cdot \frac{1}{a} d x=\log (a)-1
$$

By SLLN,

$$
\frac{\log Y_{n}}{n}=\frac{1}{n} \sum_{1}^{n} \log X_{i} \rightarrow \log (a)-1 \quad \text { a.s. }
$$

Thus, when $a<e$, we have $\frac{1}{n} \log Y_{n}$ a.s. converges to a negative constant, so $\log Y_{n} \rightarrow$ $-\infty$ a.s. When $a>e$, the same reasoning shows $\log Y_{n} \nrightarrow-\infty$. When $a=e$, CLT tells us that

$$
\frac{\log Y_{n}}{\sigma \sqrt{n}} \Longrightarrow N(0,1)
$$

where $\sigma^{2}=$ Var $\log X_{1}$. In particular, $P\left(\log Y_{n}>0\right)=P\left(Y_{n}>1\right) \rightarrow \frac{1}{2}$. Since $Y_{n} \rightarrow 0$ a.s. would imply $P\left(Y_{n}>1\right) \rightarrow 0$, this means that $Y_{n} \nrightarrow 0$ a.s.

[^0]: ${ }^{1}$ This only works when $p \geq 1$. When $p<1$, use the bound $(u+M)^{p-1} \leq u^{p-1}$

