Notation

- When I say S_n , I always mean $\sum_{i=1}^n X_n$.
- If E_n are events (or sets), I write $E_n \nearrow E$ to mean $E_n \subset E_{n+1}$ and $\bigcup E_n = E$.
- The notation $a \wedge b$ means $\min(a, b)$, while $a \vee b$ means $\max(a, b)$.
- $X^+ = \max(X, 0)$ and $X^- = -\min(-X, 0)$. Thus, $X = X^+ X^-$, $|X| = X^+ + X^-$.
- Both 1_A and $\mathbf{1}(A)$ refer to the indicator function for the set A. Furthermore, E(X; A) means $E(X1_A)$. I will often omit set braces, so for example, all of the below mean the same:

$$E(X1_{\{|X| \le M\}}) = E(X1_{|X| \le M}) = E(X1(|X| \le M)) = E(X; |X| \le M)$$

- I use $X_n \implies X$ to mean X_n convreges to X in distribution.
- o(f(t)) refers to some function g(t) for which $\lim_{t\to a} \frac{g(t)}{f(t)} \to 0$. The number *a* depends on context, but is usually either 0 or ∞ .
- Everyone, including qual writers, makes mistakes. These will be marked in red.
- Problems that I couldn't do will be marked with a \odot , possibly with a partial solution.

Theorems to Know

In addition to all of the usual theorems (Monotone Convergence Theorem, Fatou's Lemma, Dominated Convergence Theorem, Fubini's Theorem, Chebyshev's Inequality, Jensen's Inequality, Cauchy-Schwarz Inequality, Borel-Cantelli, Weak Law of Large Numbers, Strong Law of Large Numbers, Kolmogorv's Maximal Inequality, Kolmogorov Three-Series Test, Inversion Formula, Continuity Theorem, Central-Limit Theorem, Linberg Feller Central Limit Theorem), these solutions will assume you know the following theorems:

Theorem 1 (Relations Between Convergence Concepts). If p > q, then

$$\begin{array}{cccc} \stackrel{L_p}{\longrightarrow} & \Longrightarrow & \stackrel{L_q}{\longrightarrow} \\ & & & & & \\ \stackrel{a.s.}{\longrightarrow} & \implies & \stackrel{P}{\longrightarrow} & \Longrightarrow & \stackrel{\mathcal{D}}{\longrightarrow} \end{array}$$

Any implication not pictured does not hold in general.

Theorem 2. If $X_n \to X$ in probability, then there is a subsequence $X_{n_k} \to X$ a.s.

Theorem 3. $X_n \to X$ a.s. if and only if for all $\varepsilon > 0$, $\sum_{1}^{\infty} P(|X_n - X| > \varepsilon) < \infty$.

Theorem 4 ("Layer-Cake" Formula).

$$E|X| = \int_0^\infty P(|X| > t) \, dt$$

and more generally,

$$E|X|^p = \int_0^\infty pt^{p-1}P(|X| > t) dt$$

When p = 1, the above is used to prove the following **very** useful fact:

Theorem 5. If X_1, X_2, \ldots i.i.d, then $E|X_1| < \infty$ if and only if $X_n/n \to 0$ a.s.

The next result is very useful for problems that involve $\max_{1 \le k \le n} X_n$:

Lemma 1. Let a_n, b_n be sequences of numbers where $b_n \to \infty$, and $m_n = \max_{1 \le k \le n} a_n$. If $\frac{a_n}{b_n} \to 0$, then $\frac{m_n}{b_n} \to 0$.

You may not know the next theorem by this name, but it is taught in 507a:

Theorem 6 (Skorohod's Representation Theorem). If $X_n \to X$ in distribution, then there exists random variables X'_n, X' with the same distributions as X_n, X such that $X'_n \to X'$ a.s.

Theorem 7 (Slutsky's Theorem). If $X_n \implies X$ and $Y_n \implies c$, a constant, then $X_n + Y_n \implies X + c$ and $X_n Y_n \implies X c$.

For a proof of $X_n + Y_n \implies X + c$ when c = 0, see Spring 2008 Problem 2. For $X_n Y_n \implies Xc$ when c = 1, see Spring 1997 problem 2. The next theorem is useful when you what to prove, for example, $\frac{\sum_{i=1}^{n} X_k}{n^p} \to 0$.

Lemma 2 (Kronecker's Lemma). If $a_n \to \infty$ and $\sum_{1}^{\infty} \frac{x_n}{a_n}$, then

$$\frac{1}{a_n}\sum_{1}^n x_k \to 0$$

Theorem 8. If $EX^2 < \infty$, and $\varphi(t) = E^{itX}$, then

$$\varphi(t) = 1 + i(EX)t - (EX^2)t^2/2 + o(t^2)$$
 as $t \to 0$

To make this look cleaner, let $\mu = EX$, $\sigma^2 = Var X = EX^2 - \mu^2$. Then

$$\varphi(t) = 1 + i\mu t - (\sigma^2 + \mu^2)t^2/2 + o(t^2)$$
 as $t \to 0$

1994 Fall

- 1. (a) Given $\varepsilon > 0$, there exists an M so that $E[|X_n| 1_{|X_n| > M}] < \varepsilon$ for all n.
 - (b) Let $X_n = n$ with probability $\frac{1}{n}$, $X_n = 0$ with probability $1 \frac{1}{n}$.
 - (c) First, realize that uniform integrability implies that EX_n is bounded as $n \to \infty$, so by Fatou's lemma, $EX \leq \liminf EX_n < \infty$. In particular, $E[X1_{|X|>M}] \to 0$ as $M \to \infty$ (by DCT).

Thus, given $\varepsilon > 0$, we can choose M so both $E[X_n 1_{X_n > M}] < \varepsilon/2$ for all n and $E[X 1_{X > M}] < \epsilon/2$. Let

$$Y_n = X_n \mathbf{1}_{X_n \le M} \qquad \qquad Z_n = Z_n \mathbf{1}_{X_n > M},$$

so that $X_n = Y_n + Z_n$, and similarly write X = Y + Z. Then $|Y_n| \leq M$, and $Y_n \to Y$ a.s., so by DCT, $EY_n \to EY$. Thus, as $n \to \infty$,

$$|EX_n - EX| \le |EY_n - EY| + E|Z_n| + E|Z| \le |EY_n - EY| + \varepsilon/2 + \varepsilon/2 \to \varepsilon$$

proving $\limsup |EX_n - EX| \le \varepsilon$ for all $\varepsilon > 0$, so $EX_n \to EX$.

(d) Impossible Problem! What they are asking you to prove is just plain wrong. Let X_1 be any variable with $EX_1 = \infty$, and let $X_n = X = 0$, for $n \ge 2$. Then $X_n \to X$ a.s, and $EX_n \to EX$, but $\{X_1, X_2 \dots\}$ is not uniformly integrable since $E[X_1 1_{X_1 \ge M}] = \infty$ for all M.

However, this problem does work with the additional assumptions that $EX_n < \infty$, $EX < \infty$, and $E|X_n - X| \to 0$.

(e) Typo! They meant to say $Ef(X_n) \leq c < \infty$. Given $\varepsilon > 0$, choose M so x > M implies $\frac{x}{f(x)} < \varepsilon/c$. Then

$$E(X_n 1_{X_n > M}) = E\left(f(X_n) \cdot \frac{X_n}{f(X_n)} 1_{X_n > M}\right) \le Ef(X_n) \cdot \varepsilon/c \le c \cdot \varepsilon/c = \varepsilon$$

proving uniform integrability.

2. (a) Typo! The phrase "show that $Y_n \to Y'_n$ converges in distribution" is nonsesnse. They probably meant "show that $Y_n - Y'_n$ converges in distribution." To see this, let $\varphi_n(t)$ be the c.f. for Y_n . Since $Y_n \to Y$ in distribution, for some

Y, we have $\varphi_n(t) \to \varphi(t)$, where $\varphi(t) = E^{itY}$. This implies $\varphi_n(t)\varphi_n(-t) \to \varphi(t)\varphi(-t)$. Since $\varphi_n(t)\varphi_n(-t)$ is the c.f. for $Y_n - Y'_n$, and $\varphi(t)\varphi(-t)$ is continuous at zero, by the continuity theorem, we have that $Y_n - Y'_n \to Z$, where Z has c.f. $\varphi(t)\varphi(-t)$.

(b) The c.f. for $a_n S_n$ is $\exp(-c|a_n t|^{\alpha})^n = \exp(-cn|a_n|^{\alpha}|t|^{\alpha})$. If we let $a_n = n^{-1/\alpha}$, then the c.f. for $S_n/n^{1/\alpha}$ becomes $\exp(-c|t|^{\alpha})$. Thus, not only will $S_n/n^{1/\alpha}$ converge in distribution, but it will be equal in distribution to X_1 for each n. So, Z and X_1 have the same distribution.

1. Suppose $F_n \implies F$. Then there are r.v.'s X_n, X where X_n (resp. X) has distribution F_n (resp. F), and that $X_n \to X$ a.s. (Sorokhod's representation theorem). Since h is continuous, this means $h(X_n) \to h(X)$ a.s. and by bounded convergence theorem, $Eh(X_n) \to Eh(X)$, so that $\int h \, dF_n \to \int h \, dF$.

Suppose $\int h dF_n \to \int h dF$ for all bounded, continuous h. Let x_0 be a continuity point of F. Given $\varepsilon > 0$, let

$$h(x) = \begin{cases} 1 & x \le x_0\\ \text{linear} & x_0 \le x \le x_0 + \epsilon\\ 0 & x_0 + \epsilon \le x \end{cases}$$

Then $1_{x \le x_0} \le h(x) \le 1_{x \le x_0 + \varepsilon}$, so

$$\limsup_{n \to \infty} F_n(x_0) = \limsup_{n \to \infty} \int \mathbb{1}_{x \le x_0} dF_n \le \limsup_{n \to \infty} \int h \, dF_n = \int h \, dF \le \int \mathbb{1}_{\{x \le x_0 + \epsilon\}} dF = F(x_0 + \epsilon)$$

As $\epsilon \to 0$, this shows $\limsup_{n \to \infty} F_n(x_0) \leq F(x_0)$. Doing a very similar argument using

$$h(x) = \begin{cases} 1 & x \le x_0 - \epsilon \\ \text{linear} & x_0 \le x - \epsilon \le x_0 \\ 0 & x_0 \le x \end{cases}$$

shows $\liminf_{n\to\infty} F_n(x_0) \ge F(x_0)$. Thus, $F_n(x_0) \to F(x_0)$, so $F_n \implies F$.

2. The condition $E \log X < \infty$ is sufficient and necessary. Suppose $E \log X = \infty$. First, note that $(X_1 \cdots X_n)^{1/n}$ converging a.s. is the same as $S_n/n = \frac{1}{n}(\log X_1 + \cdots + \log X_n)$ converging a.s. since the latter is the log of the former. Now, for $M \ge 0$, let $Y_n^M = (\log X_n) \land M$, and $S_n^M = Y_1^M + \cdots + Y_n^M$. Then $S_n \ge S_n^M$, so

$$\liminf S_n/n \ge \liminf S_n^M/n = EY_1^M \qquad (a.s.)$$

by SLLN. But as $M \to \infty$, $EY_1^M \to E \log X = \infty$ by MCT, so for all k, $P(\liminf S_n/n \ge k) = 1$. Thus, $P(\liminf S_n/n = \infty) = P(\bigcap_{k\ge 1} \{\liminf S_n/n \ge k\}) = 1$, so S_n/n cannot converge to a finite limit a.s.

1. (a) First, we show $|X_n|/n^{1/\alpha} \to 0$ a.s. We have

$$\sum_{1}^{\infty} P(|X_n|/n^{1/\alpha} > \varepsilon) = \sum_{1}^{\infty} P(\frac{|X_n|^{\alpha}}{\varepsilon^{\alpha}} > n) \le \int_0^{\infty} P(|X_n|^{\alpha}/\varepsilon^{\alpha} > t) = E|X_1|^{\alpha}/\varepsilon^{\alpha} < \infty$$

Thus, by Borel Cantelli, $P(|X_n|/n^{1/\alpha} > \varepsilon \text{ i.o.}) = 0$, and intersecting these events for $\varepsilon \searrow 0$ proves $|X_n|/n^{1/\alpha} \to 0$ a.s.

This means that $|X_n|^{\alpha}/n \to 0$ a.s. as well. Applying the below Lemma, we see that this implies $\max_{1 \le k \le n} |X_n|^{\alpha}/n \to 0$ a.s., so that $\max_{1 \le k \le n} |X_n|/n^{1/\alpha} \to 0$

(b) Note that EX_1 is finite implies $E|X_1| < \infty$, since $E|X| = EX^+ + EX^-$. Since $E|X_1| < \infty$, we have that $X_n/n \to 0$ a.s.

Next, we prove that $\max_{1 \le i \le n} |X_n|/n \to 0$ a.s. This follows from $|X_n|/n \to 0$ a.s. and the following lemma:

Lemma: If a sequence $a_n \ge 0$, and $a_n/n \to 0$, then $\frac{1}{n} \max_{1 \le i \le n} a_n \to 0$.

Proof. Given $\varepsilon > 0$, choose k so n > k implies $a_n/n < \varepsilon$. Then

$$\limsup_{n} \frac{\max_{1 \le i \le n} a_n}{n} \le \limsup_{n} \frac{\max(x_1, \dots, x_k)}{n} + \max_{k \le i \le n} \frac{a_i}{i} \le 0 + \varepsilon$$

This holds for all $\varepsilon > 0$, so $\frac{\max_{1 \le i \le n} a_n}{n} \to 0$.

Finally, let $M_n = \max_{1 \le i \le n} |X_n|$. The previous lemma shows that

$$\frac{M_n}{n} \to 0$$
 a.s.

The SLLN implies $S_n/n \to EX_1 \neq 0$, so

$$\frac{n}{|S_n|} \to \frac{1}{|EX_1|} \qquad \text{a.s.}$$

Thus, the product of these sequences converges to the product of the limits a.s., proving that $M_n/|S_n| \to 0$ a.s.

2. Lemma 1: $X_n \implies X$ and $Y_n \implies 0$ implies $X_n + Y_n \implies X$.

Proof. Let x be a continuity point of F_X , and $\varepsilon > 0$. Since $\{X_n + Y_n \le x\} \subset \{X_n \le x + \varepsilon\} \cup \{|Y_n| > \varepsilon\}$ and $\{X_n \le x - \varepsilon\} \subset \{X_n + Y_n \le x\} \cup \{|Y_n| > \varepsilon\}$, we have

$$P(X_n \le x - \varepsilon) - P(|Y_n| > \varepsilon) \le P(X_n + Y_n \le x) \le P(X_n \le x + \varepsilon) + P(|Y_n| > \varepsilon)$$

Assuming $x \pm \varepsilon$ is also a continuity point of F_X , letting $n \to \infty$ above shows

$$F(x-\varepsilon) \le P(X_n+Y_n \le x) \le F(x+\varepsilon)$$

and letting $\varepsilon \to 0$ completes the proof.

Lemma 2: $X_n \implies X$ and $Y_n \implies 0$ implies $X_n Y_n \implies 0$.

Proof. Let $\varepsilon > 0$, $M \in \mathbb{N}$. Then $\{|X_n Y_n| > \varepsilon\} \subset \{|X_n| > \varepsilon M\} \cup \{|Y_n| > \frac{1}{M}\}$, so

$$P(|X_n Y_n| > \varepsilon) \le P(|X_n| > \varepsilon M) + P(|Y_n| > \frac{1}{M})$$

Letting $n \to \infty$, and assuming $\pm \varepsilon M$ is a continuity point of F_X , gives

$$\limsup_{n} P(|X_n Y_n| > \varepsilon) \le P(|X| > \varepsilon M)$$

and letting $M \to \infty$ gives $\limsup_n P(|X_nY_n| > \varepsilon) = 0$, so $X_nY_n \to 0$ in probability, and therefore in distribution.

Finally, assume $X_n \implies X$ and $Y_n \implies 1$, so that $Y_n - 1 \implies 0$. Lemma 2 implies that

$$X_n(Y_n-1) \implies 0.$$

This, combined with

$$X_n \implies X$$

and Lemma 1, gives that

$$X_n(Y_n - 1) + X_n \implies X$$

3. (a) The general inversion formula gives, for any a < b (and using the fact that F_n is continuous, so $P(X_n = a) = 0$),

$$P(X_n \in (a, b)) = P(X_n \in (a, b)) + \frac{1}{2}P(X_n \in \{a, b\})$$

$$= \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \varphi_n(t) dt$$

$$= \lim_{T \to \infty} \frac{1}{2\pi} \int 1_{|t| \le T} \frac{e^{-ita} - e^{-itb}}{it} \varphi_n(t) dt \qquad (\star)$$

Since

$$\left|\frac{e^{-ita} - e^{-itb}}{it}\right| = \left|\int_{a}^{b} e^{-ity} \, dy\right| \le b - a$$

It follows that the integrand in (\star) is dominated by $(b-a)\varphi_n(t) \in L_1$, so by the DCT,

$$P(X \in (a, b)) = \frac{1}{2\pi} \int \lim_{T \to \infty} 1_{|t| < T} \frac{e^{-ita} - e^{-itb}}{it} \varphi_n(t) dt$$
$$= \frac{1}{2\pi} \int \frac{e^{-ita} - e^{-itb}}{it} \varphi_n(t) dt$$
$$= \frac{1}{2\pi} \int \left(\int_a^b e^{-ity} \, dy \right) \varphi_n(t) \, dt$$
$$= \int_a^b \frac{1}{2\pi} \int e^{-ity} \varphi_n(t) \, dt \, dy$$

The last formula implies by definition that $\frac{1}{2\pi}\int e^{-ity}\varphi_n(t) dt$ is the density of X_n . (b) We have that

$$|\varphi_n(t+h) - \varphi_n(t)| = |E(e^{i(t+h)X_n} - e^{itX_n})| \le E|e^{i(t+h)X_n} - e^{itX_n}| = E|e^{ihX_n} - 1|$$

since $|e^{itX_n}| = 1$. As $h \to 0$, $e^{ihX_n} - 1 \to 0$, and is dominated by $|e^{ihX_n} - 1| \leq 2$, so by the Dominated Convergence Theorem, $E|e^{ihX_n} - 1| \to 0$. Thus, for small h, and all t, $|\varphi_n(t+h) - \varphi_n(t)| < \varepsilon$, so $\sup_t |\varphi_n(t+h) - \varphi_n(t)| < \varepsilon$. (c) Typo They meant to say $|\varphi_n(t)| \le g(t)$ for all n and t. We have that

$$\sup_{x \in \mathbb{R}} |f_n(x) - f(x)| = \sup_{x \in \mathbb{R}} \left| \int e^{-itx} \varphi_n(t) \, dt - \int e^{-itx} \varphi(t) \, dt \right|$$
$$\leq \sup_x \int |e^{-itx} (\varphi_n(t) - \varphi(t))| \, dt$$
$$= \int |\varphi_n(t) - \varphi(t)| \, dt$$

Noting that $\varphi_n(t) \to \varphi(t)$ and $|\varphi_n(t)| \leq g(t)$ implies $|\varphi(t)| \leq g(t)$, we get that $|\varphi_n - \varphi| \leq |\varphi_n| + |\varphi| \leq 2g \in L_1$. Since $|\varphi_n(t) - \varphi(t)| \to 0$, by the dominated convergence theorem,

$$\limsup_{n \to \infty} \left(\sup_{x} |f_n(x) - f(x)| \right) \le \lim_{n \to \infty} \int |\varphi_n(t) - \varphi(t)| \, dt = 0$$

proving $\sup_x |f_n(x) - f(x)| \to 0$, so $f_n \to f$ uniformly. No need for Arzela-Ascoli.

1997 Fall

1. (a) The first is Fatou's Lemma applied to the sequence 1_{A_n} . The middle is obvious, and the last is Fatou's applied to $1 - 1_{A_n}$: by Fatou's

 $E(\liminf 1 - 1_{A_n}) \le \liminf E(1 - 1_{A_n}) = \liminf 1 - P(A_n) = 1 - \limsup P(A_n)$

Then, notice that $E(\liminf 1 - 1_{A_n}) = P((\limsup 1_{A_n})^c) = 1 - P(\limsup 1_{A_n}).$

- (b) Let (Ω, \mathcal{F}, P) be (0,1) with Lebesgue measure, $A_{2k} = (0, 1/3)$, and $A_{2k+1} = (1/3, 1)$, for all $k \in \mathbb{N}$. Then 0 < 1/3 < 2/3 < 1.
- (c) (\implies) Assume that $P(A_n \text{ i.o.}) = 1$. Let B be an event where P(B) > 0. Then

$$1 = P(A_n \text{ i.o.})$$

= $P(\{A_n \text{ i.o.}\} \cap B) + P(\{A_n \text{ i.o.}\} \cap B^c)$
 $\leq P(\{A_n \text{ i.o.}\} \cap B) + P(B^c)$

 \mathbf{SO}

$$P(\{A_n \text{ i.o.}\} \cap B) \ge 1 - P(B^c) = P(B) > 0.$$

Since the event $\{A_n \text{ i.o.}\} \cap B$ is the same as the event $\{A_n \cap B \text{ i.o.}\}$, the above shows that $P(A_n \cap B \text{ i.o.}) > 0$. By the (contrapositive of the) Borel-Cantelli lemma, this means that $\sum P(A_n \cap B) = \infty$.

(\Leftarrow) Assume that, whenever P(B) > 0, we have $\sum P(A_n \cap B) = \infty$. Let $B = \{A_n \text{ i.o.}\}^c$, and consider

$$\sum_{n\geq 1} P(A_n \cap B)$$

Notice that only finitely many of the above terms can be nonzero: if $\omega \in B$, then ω is in only finitely many A_n , so only finitely many $A_n \cap B$ are nonempty. Thus, the above sum is finite. Since we assumed the sum would be infinite when P(B) > 0, this means P(B) = 0, so that $P(B^c) = P(A_n \text{ i.o.}) = 1$.

- 2. (a) Var $S_n = ES_n^2 = \sum_i EX_i^2 + \sum_{i \neq j} EX_iX_j \le Kn + 0 = O(n).$
 - (b) By Chebychev's, S_n^2 , $P(|S_n| > n\varepsilon) = P(S_n^2 > n^2\varepsilon^2) \le \frac{ES_n^2}{n^2\varepsilon^2} = \frac{O(n)}{\epsilon^2n^2} = O(\frac{1}{n})$
 - (c) Since $\sum P(B_n) = \sum O(\frac{1}{n^2}) < \infty$, by Borel Cantelli, $P(B_n \text{ i.o.}) = 0$.
 - (d) We will show that, for all $\varepsilon > 0$, $P(D_n/n^2 > \varepsilon \text{ i.o.}) = 0$, which proves $D_n/n^2 \to 0$ a.s. since $\{D_n/n^2 \to 0\} = \bigcap_{k \ge 1} \{D/n^2 > \frac{1}{k} \text{ i.o.}\}^c$.

Note that $\{D_n > n^2 \varepsilon\} = \bigcup_{k=n^2+1}^{(n+1)^2-1} \{|S_k - S_{n^2}| > n^2 \varepsilon\}$, so

$$P(D_n > n^2 \varepsilon) < \sum_{k=n^2+1}^{(n+1)^2 - 1} P(|S_k - S_{n^2}| > n^2 \varepsilon) < \sum_{\ell=1}^{2n} P(|S_{n^2+\ell} - S_{n^2}| > \ell^2 \varepsilon)$$

By the same reasoning as in part (a), we have that Var $(S_{n^2+\ell}-S_{n^2}) = \text{Var}(X_{n^2+1}+$ $\cdots + X_{n^2+\ell} = O(\ell)$, so using Chebychev's,

$$P(|S_{n^2+\ell} - S_{n^2}| > \ell^2 \varepsilon) \le \frac{\operatorname{Var} \left(S_{n^2+\ell} - S_{n^2}\right)}{\ell^4 \epsilon^2} = O\left(\frac{1}{\ell^3}\right)$$

Thus,

$$P(D_n > n^2 \varepsilon) < \sum_{\ell=1}^{2n} O\left(\frac{1}{\ell^3}\right) = O\left(\frac{1}{\ell^2}\right)$$

so by Borel-Cantelli, $P(D_n > n^2 \varepsilon \text{ i.o.}) = 0.$

3. (a) Since $\phi'(0) = ia$, we have that

$$\lim_{n \to \infty} \frac{\phi(t/n) - 1}{t/n} = ia$$

Furthermore, from calculus it is true that $\frac{\log(1+x)}{x} \rightarrow 1$ as $x \rightarrow 0$, implying $\frac{\log \phi(t/n)}{\phi(t/n)-1} \to 1$ as $n \to \infty$. Multiplying these two limits, we get

$$\lim_{n \to \infty} \frac{\log \phi(t/n)}{t/n} = ia$$

Taking exp of both sides, we get $\phi(t/n)^n \to e^{iat}$. But $\phi(t/n)^n$ is the c.f. for S_n/n , and e^{iat} is the c.f. for a, so the continuity theorem implies $S_n/n \to a$ weakly. Finally, one can prove that converging weakly to a constant implies convergence in probability as well, so that $S_n/n \to a$ in probability.

(b) Since $S_n/n \to a$ in probability, and therefore in distribution, it follows that the c.f.'s also converge, so $\phi(t/n)^n \to e^{iat}$ (uniformly on compact sets). Taking log's,

$$\lim_{n} \frac{\log \phi(t/n)}{t/n} = \lim_{n} \frac{\phi(t/n) - 1}{t/n} = ia$$

also uniformly on compact sets. So, given $\varepsilon > 0$, we can choose n so $\left|\frac{\phi(t/n)-1}{t/n}-ia\right| < \infty$ ε for $|t| \leq 1$, implying $|\frac{\phi(h)-1}{h} - ia| < \varepsilon$ for $|h| < \frac{1}{n}$, so that $\phi'(0) = ia$.

4. (a) For any $\varepsilon > 0$,

$$\sum_{n} P(|X_n/n| > \varepsilon) = \sum_{n} P(|X/\varepsilon| > n) \le \int_0^\infty P(|X/\varepsilon| > x) \, dx = E|X/\varepsilon| < \infty,$$

so by Borel Cantelli, $P(|X_n/n| > \varepsilon \text{ i.o.}) = 0$. Thus,

$$P(|X_n/n| \to 0) = P\left(\bigcap_{k \ge 1} \{|X_n/n| > \frac{1}{k} \text{ i.o.}\}^c\right) = 1,$$

so $X_n/n \to 0$ a.s.

$$\sum_{n} P(X_n/n > A) = \sum_{n} P(X/A > n) \ge \int_1^\infty P(X/A > x) \, dx = E(X/A \cdot 1_{X/A > 1}) = \infty.$$

Thus, by the second Borel-Cantelli lemma, $P(X_n/n > A \text{ i.o.}) = 1$, so $P(\limsup X_n/n = \infty) = P(\bigcap_{k>1} \{\limsup X_n/n \ge k\}) = 1$.

I'm not sure why what we just proved implies $S_n/n \to \infty$ a.s, but you can prove this as follows. Let $Y_n^M = X_n \wedge M$, and $S_n^M = \sum Y_1^M + \cdots + Y_n^M$. Then

 $\liminf S_n/n \ge \liminf S_n^M/n = EY_1^M \qquad a.s.$

As $M \to \infty$, by MCT, $EY_1^M \to EX = \infty$, so for all k, $P(\liminf S_n/n \ge k) = 1$. Thus, $P(\liminf S_n/n = \infty) = P(\bigcap_{k\ge 1} \{\liminf S_n/n \ge k\}) = 1$, so $S_n/n \to \infty$ a.s.

1998 Fall

- 1. See 1997 Fall $1({\rm c})$
- 2. First note that

$$E(S_n - nf(n))^2 = \operatorname{Var} S_n = \sum \operatorname{Var} X_i \le n,$$

since $|X_i| \leq 1$. Thus,

$$P(|S_n - nf(n)| > n\varepsilon) \le \frac{\operatorname{Var}(S_n)}{n^2\varepsilon^2} \le \frac{n}{\varepsilon^2 n^2} \to 0$$

proving $S_n/n - f(n) \to 0$ in probability.

1. By Borel-Cantelli, $P(X_n \neq c_n \text{ i.o.}) = 0$. With probability 1, only finitely many X_n will not be c_n , so the set of values that S_n can take is

$$\bigcup_{n\geq 0} \{b_1 + \dots + b_n + \sum_{k\geq n+1} c_k : b_j \in B\}$$

This is a countable union of countable sets, so is countable.

- 2. (a) This is $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^2/2} e^{ixt} dx = e^{-t^2/2} \int \frac{1}{\sqrt{2\pi}} e^{-(x-it)^2/2} dx = e^{-t^2/2}.$
 - (b) We have

$$\phi_k(u) = E(e^{iu(X_k - \frac{1}{k})}) = e^{iu(1 - \frac{1}{k})} \cdot \frac{1}{k} + e^{-iu/k} \cdot (1 - \frac{1}{k})$$
$$= \frac{1}{k} \cos \frac{u(k-1)}{k} + \frac{k-1}{k} \cos \frac{u}{k} + \frac{i}{k} \sin \frac{u(k-1)}{k} - \frac{i(k-1)}{k} \sin \frac{u}{k}$$

(c) Since $\sin t = t - o(t^2)$ and $\cos t = 1 - t^2/2 + o(t^2)$, we have

$$\frac{i}{k}\sin\frac{t(k-1)}{k} - \frac{i(k-1)}{k}\sin\frac{t}{k} = \left(i\frac{(k-1)t}{k^2} + o(t^2)\right) - \left(i\frac{(k-1)t}{k^2} + o(t^2)\right) = o(t^2)$$

$$\frac{1}{k}\cos\frac{t(k-1)}{k} + \frac{k-1}{k}\cos\frac{t}{k} = \frac{1}{k}\left(1 - \frac{t^2(k-1)^2}{2k^2} + o(t^2)\right) + \frac{k-1}{k}\left(1 - \frac{t^2}{2k^2} + o(t^2)\right)$$
$$= 1 - \frac{(k-1)^2 + (k-1)}{k^3} \cdot \frac{t^2}{2} + o(t^2)$$
$$= 1 - \frac{k-1}{k^2} \cdot \frac{t^2}{2} + o(t^2)$$

Thus, adding the above two together, we get

$$\varphi_k(t) = o(t^2) + 1 - \frac{k-1}{k^2} \cdot \frac{t^2}{2} + o(t^2) = 1 - \frac{k-1}{k^2} \cdot \frac{t^2}{2} + o(t^2)$$

(d) Since $S_n - h(n) = \sum X_k - \frac{1}{k}$, and characteristic functions multiply when variables add, the c.f. for $S_n - h(n)$ is $\prod_{1}^{n} \phi_k(u)$, implying the c.f. for $(S_n - h(n))/\sqrt{h(n)}$ is

$$\varphi_n^*(u) = \prod_1^n \phi_k(u/\sqrt{h(n)})$$

(e) Writing the previous formula for φ_n^* in little oh notation, and using in the third equality that $\log(1+x) = x + o(x)$,

$$\begin{split} \varphi_n^*(u) &= \prod_1^n \left(1 - \frac{k-1}{k^2} \cdot \frac{u^2/h(n)}{2} + o(u^2)/h(n) \right) \\ &= \exp\left(\sum_1^n \log\left(1 - \frac{k-1}{k^2} \cdot \frac{u^2/h(n)}{2} + o(u^2)/h(n) \right) \right) \\ &= \exp\left(\sum_1^n - \frac{k-1}{k^2} \cdot \frac{u^2/h(n)}{2} + o(u^2)/h(n) \right) \\ &= \exp\left(- \frac{u^2}{2} \cdot \left(\frac{1}{h(n)} \sum_1^n \frac{k-1}{k^2} \right) + n \cdot o(u^2)/h(n) \right) \end{split}$$

Since $\sum_{1}^{n} \frac{k-1}{k^2} = h(n) - O(1)$, and $n/h(n) \to 0$, it follows that the above approaches $\exp(-u^2/2)$ as $n \to \infty$, as desired.

1999 Fall

1. Since $X_n \to X$ a.s, it must be true that X_n is Cauchy almost surely. Since X'_n has the same distrubtion, this means X'_n is Cauchy almost surely, and since Cauchy sequences converge, X'_n converges a.s.

To elaborate: $(X_1, X_2, ...)$ and $(X'_1, X'_2, ...)$ having the same distribution on \mathbb{R}^{∞} means, for any event E in the product sigma algebra on \mathbb{R}^{∞} , then $P((X_1, X_2, ...) \in A) = P((X'_1, X'_2, ...) \in A)$. Thus,

$$1 = P(X_n \text{ is Cauchy}) = P\left(\bigcap_{k \ge 0} \bigcup_{M \ge 0} \bigcap_{m,n \ge M} \{|X_n - X_m| \le \frac{1}{k}\}\right)$$
$$= P\left(\bigcap_{k \ge 0} \bigcup_{M \ge 0} \bigcap_{m,n \ge M} \{|X'_n - X'_m| \le \frac{1}{k}\}\right)$$
$$= P(X'_n \text{ is Cauchy})$$

where the third equality follows since the enclosed event is in the product sigma algebra on \mathbb{R}^{∞} .

2. Let f(x) be the pdf of X, let $\mu_X = f(x) dx$ (so $\mu_X(A) = P(X \in A)$, and μ_Y be the measure that Y induces on \mathbb{R} (namely, $\mu(A) = P(X \in A)$). Then, using Fubini's (allowed since everything is nonnegative):

$$P(X+Y \le z) = \int \mathbf{1}_{x+y \le z} d\mu_X \times \mu_Y = \int \int \mathbf{1}_{x \le z-y} d\mu_X d\mu_Y = \int \int_{-\infty}^{z-y} f(x) \, dx \, d\mu_Y$$
$$= \int \int_{-\infty}^{z} f(x-y) \, dx \, d\mu_Y$$
$$= \int_{-\infty}^{z} \int f(x-y) \, d\mu_Y \, dx$$

Differentiating the last equation with respect to z shows that X + Y has density given by $f_Z(z) = \int f(x - y) d\mu_Y$, so X + Y is absolutely continuous.

3. (\implies) $S_n \to S$ a.s. implies $S_n \to S$ in distribution, so that the c.f. of S_n , $\prod_1^n \phi_k(u)$, converges pointwise to the c.f. of S, h(u). That $h(u) \neq 0$ in a neighborhood of 0 follows since $h(0) = e^{iS \cdot 0} = 1$, and h is continuous.

 (\Leftarrow) © This problem is very similar to problem 3.3.21 in Durrett (4th edition), and this problem gives a hint that involves looking at other problems.

4. (a) Since $EZ = \frac{1}{2}e^{it} + \frac{1}{2}e^{-it} = \cos t$, the desired c.f. is

$$\prod_{1}^{n}\cos(c_{k}t)$$

(b) It is a standard result that, for $a_n \ge 0$, $\lim_n \prod_{n=1}^n (1-a_n)$ exists and is nonzero if and only if $\sum_{n=1}^{\infty} a_n < \infty$. So, we will show

$$\sum_{1}^{\infty} c_k^2 < \infty \iff \sum_{1}^{\infty} 1 - \cos c_k t < \infty \text{ for } |t| < t_0$$

This will complete the proof, since the second condition holds iff $\prod_{1}^{n} \cos c_k t$ converges for $|t| < t_0$, which as shown in problem 3 holds iff $\sum_{1}^{\infty} c_k Z_k$ converges. Suppose $\sum_{1}^{\infty} c_k^2$. Since $1 - \cos c_k \le \frac{c_k^2 t^2}{2}$, it follows $\sum_{1}^{\infty} 1 - \cos c_k t < \infty$ for all t. Suppose $\sum_{1}^{\infty} 1 - \cos c_k t < \infty$ for $t < t_0$. Since $\frac{1 - \cos x - x^2/2}{x^2} \to 0$ as $x \to 0$, for small enough t, we have, for any $0 < \varepsilon < 1$,

$$\frac{1-\cos c_kt-c_k^2t^2/2}{c_k^2t_k^2}>-\varepsilon$$

proving

$$c_k^2 t^2 / 2 \le \frac{1 - \cos c_k t}{(1 - \varepsilon)}$$

Since the right hand side has finite sum, so the the left, proving $\sum_{1}^{\infty} c_k^2 < \infty$.

1. (a) $\{A_n \text{ i.o.}\} = \bigcap_{n=1}^{\infty} \bigcup_{k \ge n} A_k.$ (b) Let $A_1 \supset A_2 \supset \ldots$, where $P(A_n) = n^{-1}$. Then $e_n = \sum_{1}^{n} k^{-1} \approx \log n$, but

$$f_n = \sum_{i,j} P(A_i \cap A_j) = \sum_{i,j} (\max(i,j))^{-1} = \sum_{k=1}^n (2k-1) \cdot k^{-1} \approx 2n - \log n$$

The third equality follows since there are 2k-1 pairs (i, j) for which $\max(i, j) = k$. Thus, we see that $f_n/e_n^2 \sim (2n - \log n)/(\log n)^2 \to \infty$.

(c) Since $EY_n = 1$, we have that

$$1 - E(Y_n Z_n) = E(Y_n - Y_n Z_n) = EY_n(1 - Z_n) = E(Y_n 1_{Y_n \le \varepsilon}) \le \varepsilon$$

so that $E(Y_n Z_n) \ge 1 - \varepsilon$. Using Cauchy-Schwarz,

$$EY_nZ_n \le EY_n^2 \cdot EZ_n^2 = \frac{EX_n^2}{e_n^2} \cdot EZ_n = \frac{f_n}{e_n^2}EZ_n$$

so $EZ_n \geq \frac{e_n^2}{f_n}(1-\varepsilon)$. Letting $n \to \infty$, we get $\limsup_n EZ_n \geq \frac{1-\varepsilon}{\beta}$ Applying Fatou's Lemma to $1-Z_n$, we get that

$$P(Y_n \ge \varepsilon \text{ i.o.}) = E \limsup Z_n \ge \limsup EZ_n \ge \frac{1-\varepsilon}{\beta}$$

Finally, realize that $Y_n \geq \varepsilon$ i.o. implies A_n i.o. (if A_n happens finitely often, then $Y_n = X_n/e_n \to 0$, since $e_n \to \infty$). Thus, $P(A_n \text{ i.o.}) \geq P(Y_n \geq \varepsilon \text{ i.o.})$, so the above also implies $P(A_n \text{ i.o.}) \geq \frac{1-\varepsilon}{\beta}$. Letting $\varepsilon \to 0$ proves $P(A_n \text{ i.o.}) \geq \frac{1}{\beta}$.

2. (a) One can prove that, if $E|X|^n < \infty$, then $\varphi(t)$ is *n* times continuously differentiable, and $\phi^{(n)}(0) = E(iX)^n$. Taylor's theorem then gives that

$$\varphi(t) = 1 + \varphi'(t)t + \frac{\varphi''(t)}{2}t^2 + O(t^3) = 1 + 0 - \frac{\sigma^2 t^2}{2} + O(t^3)$$

(b) The CLT says that, if $X_1, X_2...$ i.i.d, $EX = \mu$, Var $X = \sigma^2 < \infty$, then

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \implies N(0, 1).$$

Here's a sketch of the proof. We can assume EX = 0, by applying the theorem to $X_n - \mu$. If φ is the c.f. for X, then the characteristic function for S_n/\sqrt{n} is

$$\varphi(t/\sqrt{n})^n = (1 - \sigma^2 t^2/2(\sqrt{n})^2 + O(t^3/(\sqrt{n})^3))^n \approx \left(1 - \frac{\sigma^2 t^2}{2n}\right)^n$$

 So

$$\lim_{n \to \infty} \varphi(t/\sqrt{n})^n = \lim_{n \to \infty} \left(1 - \frac{\sigma^2 t^2}{2n}\right)^n = e^{-t^2 \sigma^2/2}$$

Since $e^{-t^2\sigma^2/2}$ is the c.f. for $N(0, \sigma^2)$, the continuity theorem implies $S_n/\sqrt{n} \implies N(0, \sigma^2)$, which means that $S_n/(\sigma\sqrt{n}) \implies N(0, 1)$.

1. (a) $B = \bigcap_{n \ge 1} \bigcup_{k \ge n} \{ |X_k| \ge k \}.$ (b) $1 + \sum_{1}^{\infty} P(|X_n| \ge n) \ge \int_{0}^{\infty} P(|X| > t) dt = E|X| = \infty$

proving $P(|X_n| \ge n \text{ i.o.}) = 1$ by Borel-Cantelli.

- (c) If $M_n \to m$, then it would be true that $X_{n+1}/(n+1) = M_{n+1} M_n + M_n/(n+1) \to m m + 0 = 0$, so that it wouldn't be true $|X_n|/n \ge 1$ i.o..
- (d) $P(A) = P(A \cap B) + P(A \cap B^c) \le P(\emptyset) + P(B^c) = 0 + 1 1 = 0.$
- 2. (a) To show a set is an interval, you need only show $s, t \in I$ and s < r < t implies $r \in I$. Suppose $s, t \in I$. Let s < r < t. If r > 0, then t > 0 as well, and whenever X > 0, we have $e^{rX} < e^{tX}$. When X < 0, $e^{rX} < 1$. Using both these bounds,

$$Ee^{rX} = E(e^{rX}1_{X<0}) + E(e^{rX}1_{X\ge0}) \le 1 + Ee^{tX}1_{X>0} \le 1 + Ee^{tX} < \infty$$

If on the other hand r < 0, then

$$Ee^{rX} = E(e^{rX}1_{X<0}) + E(e^{rX}1_{X\ge0}) \le Ee^{sX}1_{X<0} + 1 \le 1 + Ee^{sX} < \infty$$

Either way, we have $r \in I$, implying I is an interval.

(b) We use the fact that f is continuous at x if and only if, for every sequence x_n such that $x_n \to x$, it is true that $f(x_n) \to f(x)$. Given t in the interior of I, let t_n be any sequence in I where $t_n \to t$. Choose some $T^+, T^- \in I$ so that $T^- \leq t_n \leq T^+$ for all n. Then $e^{t_n X} \leq e^{T^+ X} \mathbf{1}_{X>0} + e^{T^- X} \mathbf{1}_{X\leq 0}$, and $e^{t_n X} \to e^{t X}$ pointwise, so by the DCT, we have

$$\lim_{n} Ee^{t_n X} = E \lim_{n} e^{t_n X} = Ee^{tX}$$

This proves M is continuous at t.

(c) Let Y be a random variable where $P(Y > y) = \frac{1}{y}$ when y > 1, and let $X = \log Y$. For t > 0,

$$Ee^{tX} = EY^t = \int_0^\infty ty^{t-1}P(Y > y) \, dy = t \int_0^\infty y^{t-2} \, dy$$

This integral is only finite for t < 1. When t < 0, then $Ee^{tX} \le 1$ since $tX \le 0$ always. Thus, the interval for which e^{tX} exists is $(-\infty, 1)$.

3. (a) We have that

Var
$$X_k = EX_k^2 = 1^2 \cdot (1 - \frac{1}{k^2}) + k^2 \cdot \frac{1}{k^2} = 2 - \frac{1}{k^2}$$

Thus,

Var
$$S_n^* = \text{Var } (S_n) / (\sqrt{n})^2 = \frac{1}{n} \sum_{1}^n \left(2 - \frac{1}{k^2} \right) = 2 - \frac{\sum_{1}^n k^{-2}}{n} \longrightarrow 2$$

since $\sum_{1}^{n} k^{-2} \to \pi^2/6$.

(b) This proof was figured out by Gene Kim.

We first compute the c.f. for X_n . This is given by

$$Ee^{iX_nt} = \frac{1}{2}\left(1 - \frac{1}{n^2}\right)\left(e^{it\cdot 1} + e^{-it\cdot 1}\right) + \frac{1}{2n^2}\left(e^{itn} + e^{-itn}\right) = \left(1 - \frac{1}{n^2}\right)\cos t + \frac{1}{n^2}\cos nt$$

This implies the c.f. for S_n^* is

$$\varphi_n^* = Ee^{itS_n/\sqrt{n}} = \prod_{k=1}^n (1 - \frac{1}{k^2})\cos(\frac{t}{\sqrt{n}}) + \frac{1}{k^2}\cos(\frac{kt}{\sqrt{n}})$$
$$= \cos^n\left(\frac{t}{\sqrt{n}}\right)\prod_{k=1}^n\left(1 + \frac{1}{k^2}\left(\frac{\cos(kt/\sqrt{n})}{\cos(t/\sqrt{n})} - 1\right)\right)$$
$$= \cos^n\left(\frac{t}{\sqrt{n}}\right)\exp\left(\sum_{k=1}^\infty 1_{k\le n}\log\left(1 + \frac{1}{k^2}\left(\frac{\cos(kt/\sqrt{n})}{\cos(t/\sqrt{n})} - 1\right)\right)\right)$$

We will show the enclosed sum approaches zero as $n \to \infty$, for a fixed t. Note that $\frac{\cos(kt/\sqrt{n})}{\cos(t/\sqrt{n})} - 1$ is O(1) as $n \to \infty$, and $\log(1 + x)$ is O(x). Thus, we have that $1_{k \le n} \log(\cdots) \le \frac{C_t}{k^2}$, for some constant C_t , so by DCT,

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} 1_{k \le n} \log \left(1 + \frac{1}{k^2} \left(\frac{\cos(kt/\sqrt{n})}{\cos(t/\sqrt{n})} - 1 \right) \right)$$
$$= \sum_{k=1}^{\infty} \lim_{n \to \infty} 1_{k \le n} \log \left(1 + \frac{1}{k^2} \left(\frac{\cos(kt/\sqrt{n})}{\cos(t/\sqrt{n})} - 1 \right) \right) = \sum_{1}^{\infty} 0 = 0.$$

Next, we consider the $\cos^n(t/\sqrt{n})$. We have

$$\cos^n\left(\frac{t}{\sqrt{n}}\right) = \left(1 - \frac{t^2/2}{n} + o\left(t^2/n\right)\right)^n \to e^{-t^2/2}$$

These last two results imply that $\varphi_n^* \to e^{-t^2/2}$. Since this is the c.f. for N(0,1), we have that $S_n^* \implies N(0,1)$.

2001 Fall

1. (a) First, choose constants M_n so $P(|X_n| > M_n) < \frac{1}{n^2}$, then let $c_n = \frac{M_n^2 n^2}{\epsilon^2}$. Letting $Y_n = X_n \mathbb{1}_{|X_n| \le M}$, we have, for any $\varepsilon > 0$,

$$P(|Y_n/c_n| > \epsilon) = P(Y_n^2/\epsilon^2 > c_n^2) \le \frac{\frac{1}{\epsilon^2} E Y_n^2}{c_n^2} \le \frac{M_n^2}{\epsilon^2 c_n^2} \le \frac{1}{n^2}$$

Thus, by Borel-Cantelli, $P((|Y_n/c_n| > \epsilon \text{ i.o.}) = 0$. This holds for all $\varepsilon > 0$, which allows you to show $Y_n/c_n \to 0$ a.s. Furthermore, since $P(X_n \neq Y_n) < \frac{1}{n^2}$, we have $P(X_n \neq Y_n \text{ i.o.}) = 0$, so that with probability 1 we also have $X_n/c_n \to 0$.

- (b) No. Consider the probability space (0, 1), with Lesbesgue measure. Let Ω_0 be set where $P(\Omega_0) = 0$ and whose cardinality is 2^{\aleph_0} (for example, the Cantor set). Now, choose X_n so every possible sequence of real numbers c_1, c_2, \ldots occurs as $X_1(\omega), X_2(\omega), \ldots$ for some $\omega \in \Omega_0$, and $X_n(\omega) = 0$ for $\omega \notin \Omega_0$. This can be done since the number of such sequences is $(2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0} = |\Omega_0|$, and the X_n will indeed be measurable since they are 0 a.e. Then, no matter what constants c_1, c_2, \ldots you choose, there will be some ω for which $X_n(\omega)/c_n = 1$ for all n.
- (c) See 1997 Fa, 4(a).
- 2. (a) The special property is that φ will be real. If X and -X have the same distrubtion, then

$$Ee^{itX} = E\cos tX + iE\sin tX$$

But tX is symmetrically positive and negative, and sin(tx) is an odd function, so E sin(tX) = 0.

Suppose Ee^{itX} is real. Using the inversion formula, we have, for any a < b,

$$P(X \in (a, b)) + \frac{1}{2}P(X \in \{a, b\}) = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \varphi(t) \, dt$$

Both sides are real, so taking the conjugate of the right preserves equality, resulting in

$$\begin{split} P(X \in (a, b)) &+ \frac{1}{2} P(X \in \{a, b\}) = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-it(-a)} - e^{-it(-b)}}{-it} \varphi(t) \, dt \\ &= \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-it(-b)} - e^{-it(-a)}}{it} \varphi(t) \, dt \\ &= P(X \in (-b, -a)) + \frac{1}{2} P(X \in \{-b, -a\}) \\ &= P(-X \in (a, b)) + \frac{1}{2} P(-X \in \{a, b\}) \end{split}$$

This holds for all a, b, proving X and -X have the same distribution.

- (b) This is given by $\phi(t/n)^n$.
- (c) Since $\phi'(0) = 0$, we have that

$$\lim_{n \to \infty} \frac{\phi(t/n) - 1}{t/n} = 0$$

Furthermore, from calculus it is true that $\frac{\log(1+x)}{x} \to 1$ as $x \to 0$, implying $\frac{\log \phi(t/n)}{\phi(t/n)-1} \to 1$ as $n \to \infty$. Multiplying these two limits, we get

$$\lim_{n \to \infty} \frac{\log \phi(t/n)}{t/n} = 0$$

Taking exp of both sides, we get $\phi(t/n)^n \to 1$. But $\phi(t/n)^n$ is the c.f. for S_n/n , and 1 is the c.f. for 0, so the continuity theorem implies $S_n/n \to 0$ weakly. Finally, one can prove that converging weakly to a constant implies convergence in probability as well, so that $S_n/n \to 0$ in probability.

(d) We have

$$E|X| = 2c \int_4^\infty x \cdot \frac{1}{x^2 \log x} \, dx = 2c(\lim_{n \to \infty} \log \log n - \log \log 4) = \infty$$

(e) Since X is symmetric about 0, we have

$$E\frac{e^{itX} - 1}{t} = E\frac{\cos(tX) - 1}{t} = 2c\int_4^\infty \frac{\cos(tx) - 1}{tx^2 \log|x|} \, dx$$

Letting y = tx, this becomes

$$E\frac{e^{itX}-1}{t} = 2c\int_4^\infty \frac{\cos(y)-1}{t(y/t)^2 \log|y/t|} \, d(y/t) = 2c\int_4^\infty \frac{\cos(y)-1}{y^2 \log|y/t|} \, dy$$

Since, for -1 < t < 1, it's true that $\frac{\cos(y)-1}{y^2 \log |y/t|} \le \frac{\cos(y)-1}{y^2 \log |y|} \in L_1(dy)$, the DCT implies

$$\lim_{t \to 0} 2c \int_4^\infty \frac{\cos(y) - 1}{y^2 \log|y/t|} \, dy = 2c \int_4^\infty \lim_{t \to 0} \frac{\cos(y) - 1}{y^2 \log|y/t|} \, dy = 2c \int_4^\infty 0 \, dt = 0$$

Which proves that

$$\lim_{t \to \infty} E \frac{e^{itX} - 1}{t} = \lim_{t \to 0} 2c \int_4^\infty \frac{\cos(y) - 1}{y^2 \log|y/t|} \, dy = 0$$

proving $\phi'(0) = 0$.

1. First, realize that $E|X_1|^2 < \infty$ implies $|X_n|^2/n \to 0$ a.s, which in turn implies $|X_n|/\sqrt{n} \to 0$ a.s. The first fact is proven by using $\sum_{n\geq 1} P(|X_n|^2/n \geq \varepsilon) \leq \int_0^\infty P(|X_1^2/\varepsilon| > t) dt = E|X_1/\varepsilon|^2 < \infty$, then using Borel-Cantelli to argue $P(|X_n^2|/n > \varepsilon \text{ i.o.}) = 0$ for all $\varepsilon > 0$, which then gives $X_n^2/n \to 0$ a.s.

Once you have $|X_n|/\sqrt{n} \to 0$ a.s., we use the below lemma:

Lemma Let $\{a_n\}_{n\geq 0}$ be a nonrandom, nonnegative sequence, where $a_n/\sqrt{n} \to 0$. Let $m_n = \max_{1\leq k\leq n} a_n$. Then $m_n/\sqrt{n} \to 0$.

Proof. Given $\varepsilon > 0$, choose K so n > K implies $a_n / \sqrt{n} < \varepsilon$. Then

$$\frac{m_n}{\sqrt{n}} \le \frac{m_K}{\sqrt{n}} + \max_{K \le j \le n} \frac{a_j}{\sqrt{n}} \le \frac{m_K}{\sqrt{n}} + \max_{K \le j \le n} \frac{a_j}{\sqrt{j}} \le \frac{m_K}{\sqrt{n}} + \varepsilon$$

Letting $n \to \infty$ shows, since $m_K/\sqrt{n} \to 0$, that $\limsup m_n/\sqrt{n} \le \varepsilon$. This holds for all $\varepsilon > 0$, so $m_n/\sqrt{n} \to 0$.

Thus, $|X_n|/\sqrt{n} \to 0$ a.s. implies $\max_{1 \le k \le n} |X_n|/\sqrt{n} \to 0$ a.s. and therefore in probability.

2. By Borel-Cantelli, $P(|X_n| > \varepsilon_n \text{ i.o.}) = 0$. Thus, with probability 1, there will be some K where n > K implies $|X_n| < \varepsilon_n$, meaning $\sum |X_n| \le \sum_{1}^{K} |X_n| + \sum_{K+1}^{\infty} \varepsilon_n < \infty$.

2002 Fall

1. The desired α is $\alpha = 3$. Let $X_{n,k} = \frac{X_k}{n^3}$. We prove convergence using the Lindberg-Feller CLT. Then, using the fact that Var $(X_k) = \int_{-k}^{k} x^2 \cdot \frac{1}{2k} dx = \frac{k^2}{3}$,

$$\sum_{k=1}^{n} EX_{n,k}^2 = \frac{1}{n^3} \sum_{k=1}^{n} \operatorname{Var} X_k = \frac{1}{n^3} \sum_{k=1}^{n} \frac{k^2}{3}$$

Then, since $\sum_{k=1}^{n} \frac{k^2}{3} \approx \int_0^n \frac{x^2}{3} dx = \frac{n^3}{9}$, we have that

$$\sum_{k=1}^{n} EX_{n,k}^2 \approx \frac{1}{n^3} \cdot \frac{n^3}{9} \to \frac{1}{9} \qquad \text{as } n \to \infty$$

The above use of \approx can be made more precise, either by finding an closed form for $\sum_{1}^{n} \frac{k^2}{3}$, or by using and upper and lower integral bound.

This gives the first condition of the Lindberg Feller CLT. For the second, we must show

$$\sum_{k=1}^{n} E(X_{n,k}^2 \cdot 1_{|X_{n,k}| > \varepsilon}) = \sum_{k=1}^{n} E(\frac{X_k^2}{n^3} \cdot 1_{|X_k| > \varepsilon n^3}) \to 0.$$

Notice that, for large enough n, we have that $\varepsilon n^3 > n^2 \ge |X_k|$. Thus, for large n, the above sum will be zero, since all the indicator variables $1_{|X_k| > \varepsilon n^3}$ will all be zero. By the Lindberg Feller CLT, this shows

$$S_n/n^3 = \sum_{k=1}^n X_{n,k} \to N(0, \frac{1}{9}).$$

2. (a) We first show that P(Y > n i.o.) = 0. We have

$$\sum_{n \ge 1} P(Y_n > n) \le \int_0^\infty P(Y > t) \, dt = EY < \infty$$

By Borel Cantelli, P(Y > n i.o.) = 0. Thus, with probability one, we have

$$\limsup_{n} (Y_n)^{1/n} \le \limsup_{n} (n)^{1/n} = 1$$

By the root test, the radius convergence of $\sum Y_k \alpha^k$ is at least 1, so that it converges when $|\alpha| < 1$.

(b) Choose Y so that $P(Y > y^y) = \frac{1}{y}$ when y > 1. In other words, letting f(y) by the inverse function of $g(y) = y^y$, let Y be the random variable whose distribution is

$$P(Y \le y) = 1 - \frac{1}{f(y)}$$
 (y > 1)

Then $\sum P(Y_n > n^n) = \sum \frac{1}{n} = \infty$, so by Borel-Cantelli, $P(Y_n > n^n \text{ i.o.}) = 1$, proving that, with probability one,

$$\limsup_{n} (Y_n)^{1/n} \ge \limsup_{n} (n^n)^{1/n} = \infty.$$

Thus, almost surely the radius of convergence will be 0, proving $S = \infty$.

3. **Proof 1:** Let μ be the measure on \mathbb{R} induced by X, so $\mu(A) = P(X \in A)$, and ν for Y similarly. Since $E|X + Y|^p < \infty$, using Fubini's theorem we have

$$E|X+Y|^p = \int |x+y|^p d\mu \times \nu = \int \left(\int |x+y|^p d\mu\right) d\nu < \infty$$

This implies $\left(\int |x+y|^p d\mu\right) < \infty$ for ν a.e. y, so there is some y_0 for which it holds. Then, using $|x|^p = |x+y_0-y_0|^p \le 2^p(|x+y_0|^p+|-y_0|^p)$,

$$E|X|^{p} = \int |x|^{p} d\mu \leq \int 2^{p} |x+y_{0}|^{p} + 2^{p} |y_{0}|^{p} d\mu = 2^{p} \int |x+y_{0}|^{p} d\mu + 2^{p} |y_{0}|^{p} < \infty$$

Proof 2: Choose M so $P(|Y| \le M) = \varepsilon > 0$. For all t, we have

$$P(|X + Y| > t - M) \ge P(\{|X| > t\} \cap \{|Y| \le M\})$$

= $P(|X| > t)P(|Y| \le M)$

Using this,

$$\begin{split} E|X|^{p} &= \int_{0}^{\infty} pt^{p-1} P(|X| > t) \, dt \leq \int_{0}^{\infty} pt^{p-1} \frac{P(|X+Y| > t - M)}{P(|Y| \leq M)} \, dt \\ &= \frac{1}{\varepsilon} \left(\int_{0}^{M} pt^{p-1} \, dt + \int_{M}^{\infty} pt^{p-1} P(|X+Y| > t - M) \, dt \right) \end{split}$$

The first integral, $\int_0^M pt^{p-1} dt$, is some $K < \infty$. For the second, we use the chagne of variables u = t - M, obtaining

$$E|X|^{p} \leq \frac{1}{\varepsilon} \left(K + \int_{0}^{\infty} p(u+M)^{p-1} P(|X+Y| > u) \, du \right)$$

Notice that, when u > M, we have $(u + M)^{p-1} \le 2^{p-1}u^{p-1}$, so¹

$$\begin{split} E|X|^{p} &\leq \frac{1}{\varepsilon} \left(K + \int_{0}^{M} p(u+M)^{p-1} \, du + 2^{p-1} \int_{M}^{\infty} p u^{p-1} P(|X+Y| > u) \, du \right) \\ &\leq \frac{1}{\varepsilon} \left(K + \int_{0}^{M} p(u+M)^{p-1} \, du + 2^{p-1} E|X+Y|^{p} \right) < \infty \end{split}$$

¹This only works when $p \ge 1$. When p < 1, use the bound $(u + M)^{p-1} \le u^{p-1}$

4. Note that F_{∞} being continuous implies that, for some m, $P(X_{\infty} \leq m) = \frac{1}{2}$, implying also that $P(X_{\infty} \geq m) = P(X_{\infty} > m) = 1 - \frac{1}{2} = \frac{1}{2}$. This m is a median, so $m = m_{\infty}$. Furthermore, for any $\varepsilon > 0$, we must have $P(X_{\infty} \leq m_{\infty} - \varepsilon) < \frac{1}{2}$: if it equaled $\frac{1}{2}$, that would mean $m_{\infty} - \varepsilon$ was another median, violating uniqueness. By the same logic, $P(X_{\infty} \leq m_{\infty} + \varepsilon) > \frac{1}{2}$.

For any $\varepsilon > 0$, we have

$$\lim_{n \to \infty} P(X_n \le m_\infty - \varepsilon) = P(X \le m_\infty - \varepsilon) < \frac{1}{2}$$

The above shows that, for large enough n, we have $P(X_n \le m_\infty - \varepsilon) < \frac{1}{2}$, so that for large enough $n, m_n \ge m_\infty - \varepsilon$.

Similarly,

$$\lim_{n \to \infty} P(X_n \le m_\infty + \varepsilon) = P(X \le m_\infty + \varepsilon) > \frac{1}{2}$$

proving $P(X_n \le m_\infty + \varepsilon) > \frac{1}{2}$ eventually, so that $m_n \le m_\infty + \varepsilon$ eventually. We have shown

$$m_{\infty} - \varepsilon \leq \liminf_{n} m_n \leq \limsup_{n} m_n \leq m_{\infty} + \varepsilon$$

for all $\varepsilon > 0$, proving $m_n \to m_\infty$.

1. Since $\phi'(0) = ia$, we have that

$$\lim_{n \to \infty} \frac{\phi(t/n) - 1}{t/n} = ia$$

Furthermore, from calculus it is true that $\frac{\log(1+x)}{x} \to 1$ as $x \to 0$, implying $\frac{\log \phi(t/n)}{\phi(t/n)-1} \to 1$ as $n \to \infty$. Multiplying these two limits, we get

$$\lim_{n \to \infty} \frac{\log \phi(t/n)}{t/n} = ia$$

Taking exp of both sides, we get $\phi(t/n)^n \to e^{iat}$. But $\phi(t/n)^n$ is the c.f. for S_n/n , and e^{iat} is the c.f. for a, so the continuity theorem implies $S_n/n \to a$ weakly. Finally, one can prove that converging weakly to a constant implies convergence in probability as well, so that $S_n/n \to a$ in probability.

2. Let $a_n = \inf\{x : F_n(x) \ge \frac{1}{2}\}$. This implies $F_n(a_n) \ge \frac{1}{2}$ by right continuity of F_n . Since $X_n - X'_n \to 0$ in distribution, we have that $P(|X_n - X'_n| > \varepsilon) \to 0$. Since $X_n > a_n + e$ and $X'_n \le a_n$ implies $X_n - X'_n > \varepsilon$, we have that

$$P(|X_n - X'_n| > \varepsilon) \ge P(\{X_n > a_n + \varepsilon\} \cap \{X'_n \le a_n\})$$

= $P(X_n > a_n + \varepsilon)P(X'_n \le a_n)$
 $\ge P(X_n > a_n + \varepsilon) \cdot \frac{1}{2}$

The last inequality follows since $P(X'_n \leq a_n) = P(X_n \leq a_n) = F_n(a_n) \geq \frac{1}{2}$. Since $P(|X_n - X'_n| > \varepsilon) \to 0$, the displayed string of inequalities implies $P(X_n > a_n + \varepsilon) \to 0$ as well.

By the same logic, we have

$$P(|X_n - X'_n| > \varepsilon/2) \ge P(X_n \le a_n - \varepsilon)P(X'_n > a_n - \frac{\varepsilon}{2})$$

= $P(X_n \le a_n - \varepsilon)(1 - P(X_n \le a_n - \frac{\varepsilon}{2}))$
 $\ge P(X_n \le a_n - \varepsilon) \cdot \frac{1}{2}$

The last inequality follows from the definition of a_n : since $a_n - \frac{\varepsilon}{2} < a_n$, and $a_n = \inf\{x : F_n(x) \ge \frac{1}{2}\}$, we must have $P(X_n \le a_n - \frac{\varepsilon}{2}) < \frac{1}{2}$.

Thus, the above shows that $P(X_n \leq a_n - \varepsilon) \to 0$). Finally, we have that

$$P(|X_n - a_n| \ge \varepsilon) \le P(X_n > a_n + \varepsilon) + P(X_n \le a_n - \varepsilon) \to 0$$

proving $X_n \to a_n$ in probability.

3. Let $a_n = \frac{1}{\alpha} \log n$, and $\beta = 1$. Since $P(X_n > x) = x^{-\alpha}$, we have that

$$P(\frac{\log X_n}{(\log n)/\alpha} > 1) = P(X_n > n^{1/\alpha}) = n^{-1}$$

Since $\sum n^{-1} = \infty$, by Borel-Cantelli, $P(\frac{\log X_n}{(\log n)/\alpha} > 1 \text{ i.o.}) = 1$. This proves that $\limsup \frac{\log X_n}{(\log n)/\alpha} \ge 1$ a.s.

Furthermore, for any e > 0, we have

$$P(\frac{\log X_n}{(\log n)/\alpha} > 1 + \varepsilon) = P(X_n > n^{(1+\varepsilon)/\alpha}) = n^{-1-\varepsilon}$$

Since $\sum n^{-1-\varepsilon} < \infty$, by Borel-Cantelli, $P(\frac{\log X_n}{(\log n)/\alpha} > 1 + \varepsilon \text{ i.o.}) = 0$. This proves that $\limsup \frac{\log X_n}{(\log n)/\alpha} \le 1 + \varepsilon$ a.s. Since this holds for all $\varepsilon > 0$, this additionally proves that $\limsup \frac{\log X_n}{(\log n)/\alpha} \le 1$ a.s.

We have proven $\limsup \sup \frac{\log X_n}{(\log n)/\alpha} = 1$ a.s, and would like to prove the same for M_n . Since $M_n \ge X_n$, we certainly now know that

$$\limsup \sup_{1 \le n \le n} \frac{\log M_n}{(\log n)/\alpha} \ge 1 \qquad \text{a.s.}$$

For the other inequality, we use the following Lemma:

Lemma: Let $\{a_n\}$ be a (nonrandom) sequence, and $\{b_n\}$ be an increasing sequence where $b_n \to \infty$. Let $m_n = \max_{1 \le k \le n} a_k$. If $\limsup a_n/b_n \le 1$, then $\limsup m_n/b_n \le 1$.

Proof. Given $\varepsilon > 0$, choose N so n > N implies $a_n/b_n \leq 1 + \varepsilon$. Then

$$\frac{m_n}{b_n} \leq \frac{m_N}{b_n} + \max_{N \leq k \leq n} \frac{a_k}{b_n} \leq \frac{m_N}{b_n} + \max_{N \leq k \leq n} \frac{a_k}{b_k} \leq \frac{m_N}{b_n} + 1 + \varepsilon$$

Since $m_N/b_n \to 0$, the above proves $\limsup m_n/b_n \le 1 + \varepsilon$. Letting $\varepsilon \to 0$ completes the proof.

This lemma shows $\limsup \frac{\log X_n}{(\log n)/\alpha} = 1$ a.s. implies $\limsup \frac{\log M_n}{(\log n)/\alpha} \leq 1$ a.s., so we are done.

4. (i) Let $||X||_p$ denote $(EX^p)^{1/p}$. By Minkowski's inequality, $||X+Y||_p \le ||X||_p + ||Y||_p$. Therefore,

$$||X_n - X_m||_p \le ||X_n - X||_p + ||X - X_m||_p$$

The right side approaches zero since $E|X_n - X|^p \to 0$, proving $||X_n - X||_p \to 0$. Raising both sides to p then implies that $E|X_n - X_m|^p \to 0$.

(ii) This proof is due to Gene Kim.

Choose a subsequence $X_{n(k)}$ so that $||X_{n(k)} - X_{n(k+1)}||_p < \frac{1}{2^k}$. Let

$$\phi_m = |X_{n(1)}| + \sum_{k=2}^m |X_{n(k)} - X_{n(k-1)}| \qquad \phi = \lim_{m \to \infty} \phi_m$$

By the MCT,

$$\|\phi\|_p = \lim_{m \to \infty} \|\phi_m\|_p \le \|X_{n(1)}\|_p + \sum_{k=2}^{\infty} \|X_{n(k)} - X_{n(k-1)}\|_p \le \|X_{n(1)}\|_p + \sum_{k=2}^{\infty} \frac{1}{2^k} < \infty$$

Since $\|\phi\|_p < \infty$, it must be true that $\phi < \infty$ almost surely, which proves that the series

$$X = X_{n(1)} + \sum_{k=2}^{\infty} X_{n(k)} - X_{n(k-1)}$$

converges absolutely, and therefore converges. Also,

$$X = \lim_{m \to \infty} X_{n(1)} + \sum_{k=2}^{m} X_{n(k)} - X_{n(k-1)} = \lim_{n \to \infty} X_{n(m)}$$

so $X_{n(m)}$ is a sequence converging almost surely to X.

(iii) Letting X be defined as before, for any m we have $X = X_{n(m)} + \sum_{k=m+1}^{\infty} X_{n(k)} - X_{n(k+1)}$, so

$$||X - X_{n(m)}||_p \le \sum_{k=m+1}^{\infty} ||X_{n(k)} - X_{n(k+1)}||_p \le \sum_{k=m+1}^{\infty} \frac{1}{2^k} \xrightarrow{m \to \infty} 0$$

proving $X_{n(m)} \to X$ in L_p . Since X_n is Cauchy in L_p , and has a subsequence converging to X, this implies $X_n \to X$ in L_p .

2003 Fall

1. This proof is due to Gene Kim.

Let $M_n = \frac{1}{n} \max_{j \le n} X_j$, and let $F_X(x) = P(X \le x)$. Since $M_n \le x$ exactly when each $X_j \le nx$, we have that $P(M_n \le m) = F_X(nx)^n$. Thus,

$$EM_n = \int_0^\infty P(M_n > x) \, dx$$

= $\int_0^\infty 1 - F_X(nx)^n \, dx$
= $\int_0^\infty \frac{1 - F_X(t)^n}{n} \, dt$
= $\int_0^\infty (1 - F_X(t)) \left(\frac{1 + F_X(t) + F_X(t)^2 + \dots + F_X(t)^{n-1}}{n}\right) \, dt$

Since $\left(\frac{1+F_X(t)+F_X(t)^2+\dots+F_X(t)^{n-1}}{n}\right) \leq 1$, the above integrand is bounded by $1 - F_X(t)$, which is integrable since $\int_0^\infty 1 - F_X(t) = EX < \infty$. Thus, by the DCT,

$$\lim_{n \to \infty} EM_n = \int_0^\infty \lim_{n \to \infty} (1 - F_X(t)) \left(\frac{1 + F_X(t) + F_X(t)^2 + \dots + F_X(t)^{n-1}}{n} \right) dt$$
$$= \int_0^\infty (1 - F_X(t)) \mathbb{1}_{\{F_X(t) = 1\}} dt = \int_0^\infty 0 \, dt = 0$$

2. Impossible Problem!! Let $U \sim \text{Unif}(0,1)$, and f(x) = 0 when $x \leq 1$ and f(x) = x when x > 1. Then f(X) = 0 always, so X and f(X) are independent, but f is not constant.

The problem is possible when reworded as follows: if X and f(X) are independent, then f(X) is constant a.s.

Since X is independent of f(X), this implies f(X) is independent of f(X) (this comes from the theorem which says that, if Y independent of Z, then g(Y) independent of h(Z)). This means that, for any $x \in \mathbb{R}$, the event $\{f(X) \leq x\}$ is independent of itself. Thus, $P(f(X) \leq x) = 0$ or 1, since A independent of itselft implies $P(A) = P(A \cap A) =$ P(A)P(A). This implies f(X) is constant a.s; if it were nonconstant, there would be some x where $P(f(X) \leq x)$ was neither 0 nor 1.

- 3. Unclear wording: They should have mentioned that σ^2 was finite.
 - (a) Let $S = \sum_{i=1}^{N_{\lambda}} X_i$, and $S_n = \sum_{i=1}^{n} X_i$. We first find the c.f. for S. Let φ be the c.f. for X_1 . Then

$$Ee^{itS} = E\sum_{n=0}^{\infty} e^{itS} \mathbf{1}_{N_{\lambda}=n} = \sum_{n=0}^{\infty} E(e^{itS_n} \mathbf{1}_{N_{\lambda}=n}) = \sum_{n=0}^{\infty} E(e^{itS_n})P(N_{\lambda}=n)$$
$$= \sum_{n=0}^{\infty} \varphi(t)^n \frac{e^{-\lambda}\lambda^n}{n!} = e^{-\lambda}\sum_{n=0}^{\infty} \frac{(\lambda\varphi(t))^n}{n!} = e^{-\lambda}e^{\lambda\varphi(t)} = \exp(\lambda(\varphi(t)-1))$$

Since the c.f. for N_{λ} is $\exp(\lambda(e^{it}-1))$, this means the c.f for $\frac{S-N_{\lambda}\mu}{\sqrt{\lambda}}$ is

$$E\left(\exp\left(it \cdot \frac{S - N_{\lambda}\mu}{\sqrt{\lambda}}\right)\right) = \exp(\lambda(\varphi(t/\sqrt{\lambda}) - 1)) \cdot \exp(\lambda(e^{-it\mu/\sqrt{\lambda}} - 1))$$
$$= \exp\left(\lambda\left(\varphi(\frac{t}{\sqrt{\lambda}}) + (e^{-it\mu/\sqrt{\lambda}} - 1) - 1\right)\right)$$

Now, note that that

$$e^{-it\mu/\sqrt{\lambda}} - 1 = \frac{-it\mu}{\sqrt{\lambda}} - \frac{t^2\mu^2}{2\lambda} + o(t^2/\lambda)$$

and

$$\varphi(t/\sqrt{\lambda}) = 1 + it\mu - \frac{t^2}{2}EX^2 + o(t^2/\lambda)$$
$$= 1 + \frac{it\mu}{\sqrt{\lambda}} - \frac{t^2}{2\lambda}(\sigma^2 + \mu^2) + o(t^2/\lambda)$$

Thus,

$$E\left(\exp\left(it \cdot \frac{S - N_{\lambda}\mu}{\sqrt{\lambda}}\right)\right) = \exp\left(\lambda\left(\frac{it\mu}{\sqrt{\lambda}} - \frac{t^2}{2\lambda}(\sigma^2 + \mu^2) + \frac{-it\mu}{\sqrt{\lambda}} - \frac{t^2\mu^2}{2\lambda} + o(t^2/\lambda)\right)\right)$$
$$= \exp(-t^2(\sigma^2 + 2\mu^2)/2 - \lambda o(t^2/\lambda)) \to \exp(-t^2(\sigma^2 + 2\mu^2)/2)$$

The last expression is the c.f. for $N(0, \sigma^2 + 2\mu^2)$, which is the limit distribution. (b) Since the c.f. for $\sqrt{\lambda}\mu$ is $\exp(it\mu\sqrt{\lambda})$, the c.f for $\frac{S-\lambda\mu}{\sqrt{\lambda}}$ is

$$E\left(\exp\left(it \cdot \frac{S-\lambda\mu}{\sqrt{\lambda}}\right)\right) = \exp(\lambda(\varphi(t/\sqrt{\lambda})-1))\exp(-it\mu\sqrt{\lambda}) = \exp\left(\lambda\left(\varphi(t/\sqrt{\lambda}) - \frac{it\mu}{\sqrt{\lambda}} - 1\right)\right)$$

Using the same asymptotics,

$$E\left(\exp\left(it \cdot \frac{S-\lambda\mu}{\sqrt{\lambda}}\right)\right) = \exp\left(\lambda\left(\frac{-t^2(\sigma^2 + \mu^2)}{2\lambda} + o(t^2/\lambda)\right)\right) \to \exp(-t^2(\sigma^2 + \mu^2)/2)$$

The latter is the c.f. for $N(0, \sigma^2 + \mu^2)$, which is therefore the desired limit distrubution.

(c) The two limit distributions are only the same when $\mu = 0$.

4. (a) We have that

$$E[X + Y|X, Y > 0] = E[X|X, Y > 0] + E[Y|X, Y > 0] = E[X|X > 0] + E[Y|Y > 0]$$
$$= 2E[X|X > 0]$$

The second = follows since X is independent of Y. We then have

$$E[X|X>0] = \frac{E[X1_{X>0}]}{P(X>0)} = 2\int_0^\infty x \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \, dx = \frac{2}{\sqrt{2\pi}} \left(-e^{-x^2/2}\right) \Big|_0^\infty = \sqrt{2/\pi}$$

Thus, $E[Z|X, Y > 0] = 2\sqrt{2/\pi}$.

(b) This problem is a little misleading: you can't really get a closed form for the distribution of Z. However, you can get an expression in terms of the distribution of X.

$$P(Z \le z | X, Y > 0) = \frac{P(Z \le z, X > 0, Y > 0)}{P(X > 0, Y > 0)},$$

Let T be the event that $Z \leq z, X > 0, Y > 0$. Let S be the event that (X, Y) is in the square with vertices $(\pm z, 0)$ and $(0, \pm z)$. By symmetry, $P(T) = \frac{1}{4}P(S)$. Now, let S' be the event that (X, Y) is in this same square, but rotated 45 degrees about the orgin; this is the square with vertices $(\pm \frac{z}{\sqrt{2}}, \pm \frac{z}{\sqrt{2}})$. Since the pdf of (X, Y) is

$$\frac{1}{\sqrt{2\pi}}e^{-x^2/2}\cdot\frac{1}{\sqrt{2\pi}}e^{-x^2/2} = \frac{1}{2\pi}e^{-r^2/2}$$

where $r^2 = x^2 + y^2$, it follows that the pdf has rotational symmetry, so that P(S) = P(S'). Finally,

$$P(S') = P(|X| \le \frac{z}{\sqrt{2}})P(|Y| \le \frac{z}{\sqrt{2}})$$
$$= \left(\frac{1}{\sqrt{2\pi}} \int_{-z/\sqrt{2}}^{z/\sqrt{2}} e^{-x^2/2} dx\right)^2$$
$$= 4\left(\frac{1}{\sqrt{2\pi}} \int_0^{z/\sqrt{2}} e^{-x^2/2} dx\right)^2 = 4(F_X(z/\sqrt{2}) - \frac{1}{2})^2$$

 \mathbf{SO}

$$P(Z| \le zX, Y > 0) = \frac{\frac{1}{4}P(S')}{P(X > 0)P(Y > 0)} = P(S') = 4(F_X(z/\sqrt{2}) - \frac{1}{2})^2$$

Differentiating with respect to z gives the density $f_Z(z)$ of Z:

$$f_Z(z) = \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2\pi}} e^{-(z/\sqrt{2})^2/2} \cdot 8(F_X(z/\sqrt{2}) - \frac{1}{2}) = \frac{4}{\sqrt{\pi}} e^{-z^2/4} \cdot (F_X(z/\sqrt{2}) - \frac{1}{2})$$

The $\pi - \lambda$ theorem: A π -system is a collection of subsets of Ω which is closed under intersection. A λ -system, \mathcal{L} , is a collection of subsets of Ω where

- (i) $\Omega \in \mathcal{L}$
- (ii) if $A, B \in \mathcal{L}, A \subset B$, then $B \setminus A \in \mathcal{L}$
- (iii) if $A_n \nearrow A$, and each $A_n \in \mathcal{L}$, then $A \in \mathcal{L}$.

The $\pi - \lambda$ theorem says that, if \mathcal{P} is a π -system, \mathcal{L} is a λ -system, and $\mathcal{P} \subset \mathcal{L}$, then $\sigma(P) \subset \mathcal{L}$, where $\sigma(P)$ is the sigma algebra generated by P.

1. (a) Let \mathcal{A} be the sets of the form $\{X \leq x\}$, for $x \in [-\infty, +\infty]$, and B be sets of the form $\{Y \leq y\}$. Note that \mathcal{A} is a π -system, since $\{X \leq a\} \cap \{X \leq b\} = \{X \leq a \land b\}$. Let

$$\mathcal{L} = \{ E \in \sigma(X) : P(E \cap B) = P(E)P(B) \text{ for all } B \in \mathcal{B} \}$$

Note that by assumption, $\mathcal{A} \subset \mathcal{L}$.

We will show \mathcal{L} is a Lambda system, by checking each of the above three conditions

- (i) $P(\Omega \cap B) = P(B) = P(\Omega)P(B)$, so $\Omega \in \mathcal{L}$.
- (ii) If $E, F \in \mathcal{L}$, and $E \subset F$, then

$$P((E \setminus F) \cap B) = P(E \cap B) - P(F \cap B) = P(E)P(B) - P(F)P(B)$$
$$= (P(E) - P(F))P(B) = P(E \setminus F)P(B)$$

so $E \setminus F \in \mathcal{L}$.

(iii) If $E_n \nearrow E$, then $E_n \cap B \nearrow E \cap B$, proving that $P(E_n \cap B) = P(E_n)P(B) \nearrow P(E \cap B)$. Since we also have $P(E_n)P(B) \nearrow P(E)(B)$, this implies $P(E \cap B) = P(E)P(B)$.

Applying the $\pi - \lambda$ theorem gives that $\sigma(\mathcal{A}) = \sigma(X) \subset \mathcal{L}$. We the apply the $\pi - \lambda$ theorem *again* to

$$\mathcal{L}' = \{ E \in \sigma(Y) : P(E \cap A) = P(E)P(A) \text{ for all } A \in \sigma(X) \}$$

Since $\mathcal{B} \subset \mathcal{L}'$, we have that $\sigma(B) = \sigma(Y) \subset \mathcal{L}'$. Now, notice that $\sigma(Y) \subset \mathcal{L}$ means that, for all $A \in \sigma(X)$, and all $B \in \sigma(Y)$, $P(A \cap B) = P(A)P(B)$, proving that X, Y are independent.

(b) It is sufficient to show that, for all k,

$$P(B_1 = b_1, \dots, B_k = b_k) = P(B_1 = b_1) \cdots P(B_k = b_k)$$

since the sets $\{B_i = b_i\}$, for $b_1 = 0, 1$, generate $\sigma(B_i)$. Note that the right hand side is $(1/2)^k$, since $\lfloor 2^k U \rfloor$ will be odd half the time. The left hand side is also $(1/2)^k$, since the event $\{B_1 = b_1, \ldots, B_k = b_k\}$ is exactly the event that the first k binary digits of U are b_1, \ldots, b_k , and the set of possible values of U for which that occurs form an interval of length $(1/2)^k$. 2. Note that $s_n^2 = \sum EX_i^2 = 1 + 1 + 2 + \dots + 2^{n-2} = 2^{n-1}$. This means that

$$X_n/s_n \sim N(0, \frac{2^{n-2}}{s_n^2}) = N(0, \frac{1}{2}),$$

so that $P(|X_n|/s_n > \varepsilon)$ is constant in n, so $P(|X_n|/s_n > \varepsilon) \not\to 0$. Thus,

$$\sum_{k=1}^{n} \int_{|X_n| > \varepsilon s_n} X_n^2 \, dP \ge \int_{|X_n| / s_n > \varepsilon} X_n^2 \, dP \ge \varepsilon^2 P(|X_n| / s_n \ge \varepsilon) \not\to 0$$

so the Lindberg condition doesn't hold.

Note that, if $Z_1 \sim N(0, \sigma_1^2)$ and $Z_2 \sim N(0, \sigma_2^2)$, then $Z_1 + Z_2 \sim N(0, \sigma_1^2 + \sigma_2^2)$. This is because the c.f. for $N(0, \sigma^2)$ is $\exp(-t^2\sigma^2/2)$, so the c.f. for $Z_1 + Z_2$ is

$$\exp(-t^2\sigma_1^2/2) \cdot \exp(-t^2\sigma_2^2/2) = \exp(-t^2(\sigma_1^2 + \sigma_2^2)/2)$$

This means that

$$S_n \sim N(0, 1+1+2+\dots+2^{n-2}) = N(0, 2^{n-1})$$

so $S_n/s_n \sim N(0,1)$. So, not only does $S_n/s_n \to N(0,1)$ in distribution, but in fact each S_n/s_n is equal to N(0,1) in distribution!
3. Recall Kronecker's Lemma: if $a_n \nearrow \infty$, and $\sum_{1}^{\infty} \frac{x_n}{a_n}$ converges, then $\frac{1}{a_n} \sum_{1}^{n} x_k \to 0$. Thus, it suffices to show that $\sum_{1}^{\infty} \frac{X_n^2}{n^2}$ converges. To do this, we use the Kolmogorov 3-series test. Let $Y_n = \frac{X_n^2}{n^2} \mathbf{1} \left(\frac{X_n^2}{n^2} \le 1 \right) = \frac{X_n^2}{n^2} \mathbf{1} (X_n \le n)$. We must check that

(i)
$$\sum_{1}^{\infty} P(\frac{X_n^2}{n^2} > 1) < \infty$$
 (ii) $\sum_{1}^{\infty} EY_n$ converges (iii) $\sum_{1}^{\infty} \operatorname{Var} Y_n < \infty$

- (i) This is true since $EX_1 < \infty$, which holds if and only if $\sum_{k=1}^{\infty} P(X_k > k) < \infty$, which is the same as $\sum_{k=1}^{\infty} P(X_k^2/k^2 > 1) < \infty$.
- (ii) The below computation uses many clever tricks. For the first equality, we are using $X_1 1_{X_1 \le n} = \sum_{1}^{n} X_1 1_{\{k-1 < X_1 \le k\}}$. For the second, we use Fubini's, valid since all summands are positive. For the third, we bound $\sum_{n=k}^{\infty} n^{-2} \le \int_{k}^{\infty} x^{-2} dx = \frac{1}{k}$. For the fourth, note that $X_1^2 1_{(k-1,k]} \le k X_1 1_{(k-1,k]}$.

$$\sum_{n=1}^{\infty} E(\frac{X_n^2}{n^2}; |X| \le n) = \sum_{n=1}^{\infty} \sum_{k=1}^n \frac{1}{n^2} E(X_1^2 \mathbf{1}_{\{k-1 < X \le k\}}) = \sum_{k=1}^{\infty} E(X_1^2; \mathbf{1}_{\{k-1,k]}) \sum_{n=k}^{\infty} \frac{1}{n^2}$$
$$\le \sum_{k=1}^{\infty} E(X_1^2; \mathbf{1}_{\{k-1,k]}) \frac{1}{k}$$
$$\le \sum_{k=1}^{\infty} E(X_1; \mathbf{1}_{\{k-1,k]})$$
$$= EX_1 < \infty$$

(iii) To show $\sum \text{Var } Y_n < \infty$, we show $\sum EY_n^2 < \infty$, using the same tricks.

$$\sum_{n=1}^{\infty} E(\frac{X_n^4}{n^4}; |X| \le n) = \sum_{n=1}^{\infty} \sum_{k=1}^n n^{-4} E(X_1^4 \mathbb{1}_{(k-1,k]}) = \sum_{k=1}^{\infty} E(X_1^4 \mathbb{1}_{(k-1,k]}) \sum_{n=k}^{\infty} n^{-4}$$
$$\le \sum_{k=1}^{\infty} E(X_1^4 \mathbb{1}_{(k-1,k]}) \frac{3}{k^3}$$
$$\le 3 \sum_{k=1}^{\infty} E(X_1 \mathbb{1}_{(k-1,k]}) = 3EX_1 < \infty$$

This completes the proof!

Lemma If y_n is a sequence of real numbers, and every subsequence has a further subsequence converging to y, then $y_n \to y$.

Proof. Suppose $y_n \not\to y$. Then there is an $\varepsilon > 0$, and a subsequence $y_{n(k)}$ where $|y - y_{n(k)}| > \varepsilon$. This means no subsequence of $y_{n(k)}$ can approach y, contradicting the assumption. \Box

1. (a) \implies (b) We are given that $X_n \to 0$ in probability, which implies every subsequence $X_{n(k)}$ has a further subsequence $X_{n(k_m)}$ converging almost surely to 0. Since f is continuous, this means $f(X_{n(k_m)}) \to f(0)$ a.s., and since f is bounded, by DCT, $Ef(X_{n(k_m)}) \to f(0)$. We have shown every subsequence of $Ef(X_n)$ has a further subsequence converging to f(0): by the above lemma, this implies $Ef(X_n) \to f(0)$.

(b) \implies (a) Given $\varepsilon > 0$, let $h(x) = (|x|/\varepsilon) \wedge 1 = \min(|x|/\varepsilon, 1)$. The idea is that h is bounded, continuous, and $1_{|x| \ge \varepsilon} \le h(x)$. Thus,

$$P(|X_n| > \varepsilon) = E1_{|X_n| > \varepsilon} \le Eh(X_n)$$

So letting $n \to \infty$, we get

$$\limsup_{n} P(|X_n| > \varepsilon) \le \lim_{n} Eh(X_n) = h(0) = 0.$$

- 2. (a) The c.f. of S_n/n is always $\varphi(t/n)^n$, so in this case, $(e^{-|t/n|})^n = e^{-|t|}$.
 - (b) The law of large numbers does not hold since $E|X_1| = \infty$. Also, the law of large numbers would imply $S_n/n \to \mu$, but the previous result, and the continuity theorem, show that $S_n/n \to X_1$ in distribution.

3. (a) We have that $P(X_n \ge \log n) = e^{-\log n} = n^{-1}$, and $\sum n^{-1} = \infty$, so by Borel-Cantelli, $P(X_n/\log n \ge 1 \text{ i.o.}) = 1$, which proves $P(\limsup_n X_n/\log n \ge 1) = 1$. For any $\varepsilon > 0$, we have $P(X_n/\log n > 1 + \varepsilon) = n^{-(1+\varepsilon)}$, which is now summable, so again by Borel Cantelli, $P(X_n/\log n > 1 + \varepsilon \text{ i.o.}) = 0$. This shows

$$\limsup_{n} X_n / \log n \le 1 + \varepsilon \qquad \text{a.s}$$

Letting $L = \limsup X_n / \log n$, since $\{L \leq 1\} = \bigcap_{k \geq 1} \{L \leq 1 + \frac{1}{k}\}$, the above implies $L \leq 1$ a.s., so we have shown L = 1 a.s.

(b) We first show:

Lemma Given a (non random) sequence a_1, a_2, \ldots , where $a_n \ge 0$, and $\limsup_n \frac{a_n}{\log n} = 1$, let $m_n = \max_{1 \le k \le n} a_k$. Then $\limsup_n \frac{m_n}{\log n} \le 1$.

Proof. Given $\varepsilon > 0$, choose K so n > K implies $\frac{a_n}{\log n} < 1 + \varepsilon$. Then

$$\frac{m_n}{\log n} \le \frac{m_K}{\log n} + \max_{K+1 \le j \le n} \frac{a_j}{\log j} \le \frac{m_K}{\log n} + 1 + \varepsilon$$

Letting $n \to \infty$, we have $m_K / \log n \to 0$, so the above shows $\limsup \frac{m_n}{\log n} \leq 1 + \varepsilon$.

Thus, using $\limsup \frac{X_n}{\log n} = 1$ a.s. and the Lemma proves $\limsup \frac{M_n}{\log n} \leq 1$ a.s. Secondly, we show $\liminf \frac{M_n}{\log n} \geq 1$ a.s. For any $\varepsilon > 0$, we have

$$P(M_n/\log n < 1-\varepsilon) = P(X_i \le (1-\varepsilon)\log n)^n = (1-e^{-(1-\varepsilon)\log n})^n = \left(1-\frac{n^\varepsilon}{n}\right)^n \le e^{-n^\varepsilon}$$

Since $\sum_{\varepsilon} (\frac{1}{e^{\varepsilon}})^n < \infty$, this implies that $P(M_n/\log n < 1 - \varepsilon \text{ i.o.}) = 0$. Thus, almost surely we will have $M_n/\log n$ is eventually greater than $1-\varepsilon$, so $\liminf M_n/\log n \ge 1 - \varepsilon$ a.s, so $\liminf M_n/\log n \ge 1$ a.s.

- 1. (a) The condition is $p_n \to 0$, since $P(|X_n| > \varepsilon) = P(X_n = 1) = p_n$, so $X_n \to 0$ in probability iff $p_n \to 0$.
 - (b) The condition is $\sum p_n < \infty$, since

$$X_n \to 0 \text{ a.s.} \iff P(X_n = 1 \text{ i.o.}) = 0 \iff \sum P(X_n = 1) < \infty$$

with the last \iff following from Borel-Cantelli.

- 2. (a) Note that $EI_1 = P(Y_1 \le f(X_1)) = J$ (since (X_1, Y_1) is uniform over the unit square, and the area for which $y \le f(x)$ is J), and $Ef(X_1) = \int_0^1 f(x) dx = J$. Thus, by SLLN, $\frac{1}{n} \sum I_i$ and $\frac{1}{n} f(X_i)$ both converge to J a.s.
 - (b) Since $J_n J = \frac{1}{n} \sum_{i=1}^{n} (I_i J)$, and each $I_i J$ has mean 0, we have

$$E(J_n - J)^2 = \operatorname{Var} (J_n - J) = \frac{1}{n^2} \sum_{1}^{n} \operatorname{Var} (I_i - J) = \frac{n}{n^2} \operatorname{Var} (I_1) = \frac{1}{n} (EI_1^2 - (EI_1)^2) = \frac{1}{n} (J - J^2)$$

The last step follows since $I_i^2 = I_i$ (it is always 0 or 1). In the same vein,

$$E(J_n^* - J) = \frac{n}{n^2} \sum \operatorname{Var} f(X_i) = \frac{1}{n} (Ef(X_i)^2 - (Ef(X_i))^2) = \frac{1}{n} \left(\int_0^1 f(x)^2 \, dx - J^2 \right)$$

Thus, in order to prove $E(J_n^* - J) \leq E(J_n - J)^2$, it suffices to prove $\int_0^1 f(x)^2 dx \leq J = \int_0^1 f(x) dx$, which is true since $f(x) \in [0, 1]$, so that $f(x)^2 \leq f(x)$. In the previous inequality, equality only holds when f(x) is 0 or 1, and the only two continuous functions which are always 0 or 1 are f(x) = 0 and f(x) = 1.

(c) Note this distribution of $\frac{\sqrt{n}(J_n-J)}{\sigma}$ is approximately the standard normal, for large n, where $\sigma = \text{Var } I_i = J - J^2$. Thus,

$$P\left(\frac{\sqrt{n}|J_n - J|}{\sigma} < 3\right) \approx 0.95$$
$$P(|J_n - J| < 3(J - J^2)/\sqrt{n}) \approx 0.95$$

Solving $3(J - J^2)/\sqrt{n} = 0.01$ for *n*, we get $n = 90,000 \cdot (J - J^2) \le 90,000$, so choosing n = 90,000 should sort of work.

- 3. (a) $X_n \to X$ in probability if, for all $\varepsilon > 0$, $P(|X_n X| > \varepsilon) \to 0$ as $n \to \infty$. $X_n \to X$ in distribution if, for any x for which the function $F_X(x) = P(X \le x)$ is continuous at x, we have $P(X_n \le x) \to P(X \le x)$ as $n \to \infty$.
 - (b) It does not converge in probability, since $P(|X_n Y| > \varepsilon) = P(|X (1 X)| > \varepsilon) = P(|2X 1| > \varepsilon) = 1 \neq 0.$

It does converge in distribution, since $P(X_n \le x) = P(Y \le x)$ for all n.

(c) It is a well known fact that convergence in probability implies that in distribution. To see this, suppose $Z_n \to Z$ in probability, and let z be a continuity point of $F_Z(z) = P(Z \le z)$. Using the fact that

$$\{Z_n \le z\} \subset \{Z \le z + \varepsilon\} \cup \{|Z - Z_n| > \varepsilon\}$$

we have

$$P(Z_n \le z) \le P(Z \le Z + \varepsilon) + P(|Z - Z_n| > \varepsilon)$$

Using $\{Z \leq z - \varepsilon\} \subset \{Z_n \leq z\} \cup \{|Z_n - Z| > \varepsilon\}$, we also have

$$P(Z_n \le z) \ge P(Z \le z - \varepsilon) - P(|Z - Z_n| > \varepsilon)$$

letting $n \to \infty$, the above two inequalities imply

$$P(Z \le z - \varepsilon) = F_Z(z - \varepsilon) \le \lim_{n \to \infty} P(Z_n \le z) \le F_Z(z + \varepsilon) = P(Z \le z + \varepsilon)$$

then letting $\varepsilon \to 0$ gives $\lim_{n \to \infty} P(Z_n \le z) = F_Z(z)$.

Since $Y_n \to Y$ in probability, we have $Y_n \to Y$ in distribution. But X has the same distribution as Y, and convergence in distribution only depends on distrubtion, proving that $Y_n \to X$ in distribution as well.

- 1. (i) For any ε , $\{X_n/n > \varepsilon\} = \{X_n > n\varepsilon\} \searrow \{X_n = \infty\}$, so $P(X_n/n > \varepsilon) \searrow P(X_n = \infty) = 0$.
 - (ii) Using the inequalities

$$\sum_{n \ge 1} P(|X_n|/\varepsilon > n) \le E|X_1/\varepsilon| \le \sum_{n \ge 0} P(|X_n|/\varepsilon > n)$$

We have

$$E|X_1| < \infty \iff \sum P(|X_n/n| > \varepsilon) < \infty$$
$$\iff P(|X_n/n| > \varepsilon \text{ i.o.}) = 0$$
$$\iff X_n/n \to 0 \text{ a.s.}$$

The second \iff is Borel-Cantelli, and the third follows by intersecting $\{|X_n/n| > \varepsilon_k \text{ i.o.}\}$ for $\varepsilon_k \searrow 0$.

- (iii) Using $X_n/\sqrt{n} \to 0 \iff X_n^2/n \to 0$ and the previous problem, the desired condition is $EX_1^2 < \infty$.
- 2. (i) We have, using Fubini's theorem,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ikt} \phi(t) \, dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ikt} \sum_{x \in \mathbb{Z}} e^{itx} P(X=x) \, dt = \sum_{x \in \mathbb{Z}} P(X=x) \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{it(x-k)} \, dt$$

Consider $\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{it(x-k)} dt$. When x = k, this is clearly 1. When $x \neq k$, breaking the complex exponential into its sinusoidal real and imaginary parts shows that the integral is zero. Thus, the only positive contribution to the sum is when X = k, so the sum is P(X = k).

(ii) The c.f. for S_n is $\phi_X(t)^n$, so

$$P(S_n = k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-itk} \phi_X(t)^n dt$$

3. (i) (\Leftarrow) We have, for $M > \sup |\mu_n|$,

$$P(|X_n| > M) \le P(||X_n - \mu_n| > M - |\mu_n|) \le \frac{\sigma_n^2}{(M - |\mu_n|)^2} \le \frac{\sup \sigma_n^2}{(M - \sup |\mu_n|)^2}$$

 \mathbf{SO}

$$\sup_{n} P(|X_n| > M) \le \frac{\sup \sigma_n^2}{(M - \sup |\mu_n|)^2} \to 0 \qquad \text{as } M \to \infty$$

 (\implies) Suppose $\sup |\mu_n| = \infty$. Then for any M, there will be some X_N for which $|\mu_N| > M$, implying by symmetry of the normal distribution that $P(|X_N| > M) > \frac{1}{2}$, meaning $\limsup_n P(|X_n| > M) \ge \frac{1}{2} \neq 0$.

Suppose $\sup |\mu_n| = C < \infty$, but $\sup \sigma_n = \infty$. Recall that for a normal distrubtion, $P(|X_n - \mu_n| > \sigma_n) \approx .32$. For any M, there will be some X_N for which $\sigma_N > M + C$, so

$$\limsup_{n} P(|X_n| > M) \ge P(|X_N| > M)$$
$$\ge P(|X_N - \mu_N| > M + |\mu_N|)$$
$$\ge P(|X_N - \mu_N| > \sigma_N) > 0.3 \not\to 0$$

(ii) (\iff) If $\mu_n \to \mu$ and $\sigma_n \to \sigma$, then $e^{i\mu_n t} \to e^{i\mu t}$ and $e^{-t^2 \sigma_n^2/e} \to e^{-t^2 \sigma^2/2}$ pointwise, so $e^{i\mu_n t} e^{-t^2 \sigma_n^2/2} \to e^{i\mu t} e^{-t^2 \sigma^2/2}$. Note that $e^{i\mu_n t} e^{-t^2 \sigma_n^2/2}$ is the c.f. of X_n . Since the limit function is continuous at zero, this implies $X_n \to \text{some } X$ in distribution, by the continuity theorem. (\Longrightarrow) Suppose $X_n \to X$ weakly. This implies the c.f.'s of X_n converge pointwise, so $e^{i\mu_n t} e^{-t^2 \sigma_n^2/2} \to \varphi(t)$. Taking magnitudes,

$$|e^{i\mu_n t}e^{-t^2\sigma_n^2/2}| = e^{-t^2\sigma_n^2/2} \to |\varphi(t)|_{2}$$

Since $X_n \to X$ weakly implies the X_n are tight, by part (i), $\sup \sigma_n < \infty$, meaning we must have $|\phi(t)| > 0$. Setting t = 1, we get $\sigma_n \to \sqrt{-2\log|\varphi(1)|} = \sigma$. We now have

 $i\mu_{\tau}t$ (1) $t^{2}\sigma^{2}/2$ (1) $t^{2}\sigma^{2}/2$ (1)

$$e^{i\mu_n t} = \varphi(t)e^{t^2\sigma_n^2/2} \to \varphi(t)e^{t^2\sigma^2/2} = \rho(t), \tag{1}$$

where $|\rho(t)| = |e^{i\mu_n t}| = 1$. From part (i), we know $\sup |\mu_n| < \infty$, so $\{\mu_n\}_{n\geq 0}$ has at least one accumulation point. When t = 1 in (1), $e^{i\mu_n} \to \rho(1)$ implies that all accumulation points of $\{\mu_n\}_{n>0}$ are of the form $\arg \rho(1) + 2\pi k$.

Suppose, by way of contradiction there were at least two accumulation points. This would imply there were subsequences $\mu_{h(n)}$ and $\mu_{\ell(n)}$ so that

$$\mu_{h(n)} \to \arg \rho(1) + 2\pi k_1$$
 and $u_{\ell(n)} \to \arg \rho(1) + 2\pi k_2$

where $k_1 \neq k_2$ are integers. Now, setting $t = 2\pi$ in (1), so that $e^{i2\pi\mu_n} \rightarrow \rho(2\pi)$, we can find further subsquences h'(n) of h(n) and $\ell'(n)$ of $\ell(n)$ so that

$$\mu_{h'(n)} \to \frac{1}{2\pi} \arg \rho(2\pi) + k'_1 \quad \text{and} \quad u_{\ell(n)} \to \frac{1}{2\pi} \arg \rho(2\pi) + k'_2$$

for some $k'_1, k'_2 \in \mathbb{Z}$. Setting corresponding limits of subsequences equal to each other, we get

$$\arg \rho(1) + 2\pi k_1 = \frac{1}{2\pi} \arg \rho(1) + k'_1$$
$$\arg \rho(1) + 2\pi k_2 = \frac{1}{2\pi} \arg \rho(1) + k'_2$$

so that

$$2\pi = \frac{k_1' - k_2'}{k_1 - k_2}$$

contradicting the irrationality of π .

Thus, there is only one acculumation point, μ , of $\{\mu_n\}_{n\geq 0}$. Since $\{\mu_n\}$ is bounded, every subsequence of μ_n has a further convergent subsequence. Since these subsussequences always converge to μ , it follows $\mu_n \to \mu$.

1. Let A_n be the event $\{L_n > \log n + \theta \log \log n\}$. Then

$$P(A_n) = \frac{1}{2}^{\log n + \theta \log \log n} = \frac{1}{n(\log n)^{\theta}}$$

Since $\sum P(A_n) < \infty$ (use the integral test), by Borel-Cantelli, $P(A_n \text{ i.o.}) = 0$.

2. The continuous form of the inversion formula implies, since $\int |\phi_n| < \infty$, that X_n have densities for $n < \infty$, given by $f_n(x) = \frac{1}{2\pi} \int e^{-itx} \varphi_n(t) dt$ (for a proof of this fact, see Spring 1997, problem 3). Furthermore, $|\varphi_n(x)| \leq g(x)$ and $\varphi_n(x) \to \varphi_\infty(x)$ implies $|\varphi_\infty(x)| \leq g(x)$, so we also have that φ_∞ is integrable, implying the density f_∞ exists, and is given by a similar formula.

We have that

$$\sup_{x \in \mathbb{R}} |f_n(x) - f(x)| = \sup_{x \in \mathbb{R}} \left| \int e^{-itx} \varphi_n(t) \, dt - \int e^{-itx} \varphi_\infty(t) \, dt \right|$$
$$\leq \sup_x \int |e^{-itx} (\varphi_n(t) - \varphi_\infty(t))| \, dt$$
$$= \int |\varphi_n(t) - \varphi_\infty(t)| \, dt$$

Since $|\varphi_n - \varphi| \leq 2g \in L_1$, and $|\varphi_n(t) - \varphi(t)| \to 0$, by the dominated convergence theorem,

$$\limsup_{n \to \infty} \left(\sup_{x} |f_n(x) - f(x)| \right) \le \lim_{n \to \infty} \int |\varphi_n(t) - \varphi_\infty(t)| \, dt = 0$$

proving $\sup_x |f_n(x) - f(x)| \to 0$, so $f_n \to f$ uniformly.

3. Choose A_0 so that $\sup_n \frac{E(X_n^2; |X_n| > A)}{EX_n^2} < \frac{1}{2}$ when $A > A_0$. Then for these A,

$$EX_n^2 = E(X_n^2; |X_n| \le A) + E(X_n^2; |X_n| > A) \le A^2 + \frac{1}{2}EX_n^2$$

so rearranging, we get

$$\frac{EX_n^2}{A^2} \le 2$$

Thus, using Chebychev's inequality, for $A > A_0$,

$$\sup_{n} P(|X_{n}| > A) \leq \sup_{n} \frac{E(X_{n}^{2}; |X_{n}| > A)}{A^{2}}$$

$$= \sup_{n} \frac{E(X_{n}^{2}; |X_{n}| > A)}{EX_{n}^{2}} \cdot \frac{EX_{n}^{2}}{A^{2}}$$

$$\leq \sup_{n} \frac{E(X_{n}^{2}; |X_{n}| > A)}{EX_{n}^{2}} \cdot 2$$

Letting $A \to \infty$, the right hand side approaches 0 (by assumption), proving

$$\lim_{A \to \infty} \sup_{n} P(|X_n| > A) = 0,$$

which means the X_n , and therefore their distributions F_n , are tight.

- 4. (a) Take expectations of both sides of the inequality $\varphi(t) 1_{Y>t} \leq \varphi(Y)$.
 - (b) Using (a), with $\varphi(t) = e^{\lambda t}$,

$$P(S_n > nx) \le \frac{Ee^{\lambda S_n}}{e^{\lambda nx}}$$

Since $e^{\lambda S_n} = e^{\lambda X_1} \times \cdots \times e^{\lambda X_n}$, and each factor is independent, with the same expectation, we have

$$P(S_n > nx) \le \frac{(Ee^{\lambda X_1})^n}{e^{\lambda nx}} = \left(\frac{M(\lambda)}{e^{\lambda x}}\right)^n$$

Taking logs,

$$\log P(S_n > nx) \le n(\log M(\lambda) - \lambda x)$$

so rearranging and taking the inf over $\lambda > 0$,

$$\frac{1}{n}\log P(S_n > nx) \le \inf_{\lambda > 0} -(\lambda x - M(\lambda)) = -\sup_{\lambda > 0} (\lambda x - M(\lambda)) = -I(x)$$

1. (a) Let $S_n = X_1 + \cdots + X_n$. We have

$$\varphi_{\varepsilon} = E e^{itS_{\varepsilon}} = \sum_{n \ge 0} E[e^{itS_{\varepsilon}} | N_{\varepsilon} = n] P(N_{\varepsilon} = n) = \sum_{n \ge 0} E[e^{itS_n}] \cdot \frac{e^{-\lambda/\varepsilon^2} (\lambda/\varepsilon^2)^n}{n!}$$

Note that $E[e^{itS_n}] = (\cos \varepsilon t)^n$, since $\cos \varepsilon t$ is the c.f. for X_n , and adding random variable makes their c.f's multiply. Thus,

$$\varphi_{\varepsilon} = e^{-\lambda/\varepsilon^2} \sum_{n \ge 0} \frac{(\lambda/\varepsilon^2 \cdot \cos \varepsilon t)^n}{n!} = e^{-\lambda/\varepsilon^2} e^{\lambda/\varepsilon^2 \cdot \cos \varepsilon t} = e^{\lambda(\cos \varepsilon t - 1)/\varepsilon^2}$$

- (b) As $\varepsilon \to 0$, using, L'Hoptial's rule twice, $\frac{\cos \varepsilon t 1}{\varepsilon^2} \to \frac{-t \sin \varepsilon t}{2\varepsilon} \to \frac{-t^2}{2}$, so $\varphi_{\varepsilon} \to e^{-\lambda t^2/2}$. This is the c.f. of $N(0, \lambda)$, proving φ_{ε} converges in distribution to $N(0, \lambda)$.
- 2. Let x be a continuity point of F_X , and $\varepsilon > 0$. Since $\{X_n + Y_n \leq x\} \subset \{X_n \leq x + \varepsilon\} \cup \{|Y_n| > \varepsilon\}$ and $\{X_n \leq x \varepsilon\} \subset \{X_n + Y_n \leq x\} \cup \{|Y_n| > \varepsilon\}$, we have

$$P(X_n \le x - \varepsilon) - P(|Y_n| > \varepsilon) \le P(X_n + Y_n \le x) \le P(X_n \le x + \varepsilon) + P(|Y_n| > \varepsilon)$$

Assuming $x \pm \varepsilon$ is also a continuity point of F_X , letting $n \to \infty$ above shows

$$F(x-\varepsilon) \le \liminf_{n} P(X_n+Y_n \le x) \le \limsup_{n} P(X_n+Y_n \le x) \le F(x+\varepsilon)$$

and letting $\varepsilon \to 0$ shows $P(X_n + Y_n \leq x) \to F(x)$, completing the proof.

- 3. (a) Note that V_n can be written as a function of the U_i for which $a_{n-i} \neq 0$, and V_{n+1} as a function of the U_i for which $a_{n+1-i} \neq 0$. This means that V_n and V_{n+1} are functions of disjoint sets of independent variables, since for all i, $a_{n-i}a_{n-i+1} = 0$, so at least one of a_{n-i} and a_{n-i+1} is zero, meaning there is no U_i which both V_n and V_{n+1} both depend on. Since V_n, V_{n+1} are functions of independent vectors, they are independent.
 - (b) Note that $V_n \sim N(0, a_0^2 + \cdots + a_{n-1}^2)$. This is because, when $X \sim N(0, \sigma^2)$ and $Y \sim N(0, \rho^2)$, then $X + Y \sim N(0, \sigma^2 + \rho^2)$, which can be proven by looking at characteristic functions.

Let $A_n = \sum_{0}^{n-1} a_i^2$, and $A = \sum_{0}^{\infty} a_i^2$. Then $V_n \sim N(0, a_1^2 + \dots + a_n^2)$, so $V_n/\sqrt{A_n}$ is standard normal, so (for large enough x),

$$P(V_n \ge x\sqrt{A}) \le P(V_n/\sqrt{A_n} \ge x) \le \frac{1}{\sqrt{2\pi x}} \exp\left(-\frac{x^2}{2}\right) \le \exp\left(-\frac{x^2}{2}\right)$$

Letting $x = \sqrt{2(1+\varepsilon)\log n}$,

$$P\left(\frac{V_n}{\sqrt{\log n}} \ge \sqrt{2(1+\varepsilon)A}\right) \le \exp\left(-\frac{\left(\sqrt{2(1+\varepsilon)\log n}\right)^2}{2}\right) = n^{-1-\varepsilon}$$

Since $\sum n^{-1-\varepsilon} < \infty$, Borel-Cantelli implies $P\left(\frac{V_n}{\sqrt{\log n}} \ge \sqrt{2(1+\varepsilon)A} \text{ i.o.}\right) = 0$. This means that $\limsup \frac{V_n}{\sqrt{\log n}} \le \sqrt{2(1+\varepsilon)A}$ a.s. Letting $\varepsilon \to 0$ proves that $\limsup \frac{V_n}{\sqrt{\log n}} \le \sqrt{2A}$ a.s.

4. The appropriate choice of t is $t = \frac{1}{c}$. We have

$$P(X \ge c) \le P((X + \frac{1}{c})^2 \ge (c + \frac{1}{c})^2) \le \frac{E(X + \frac{1}{c})^2}{(c + \frac{1}{c})^2} = \frac{EX^2 + \frac{2}{c}EX + \frac{1}{c^2}}{(c + \frac{1}{c})^2} = \frac{1 + \frac{1}{c^2}}{(c + \frac{1}{c})^2} = \frac{1}{c^2 + 1}$$

This solution of course doesn't help show you how to approach the problem correctly. Assuming you didn't know what t was, you would have

$$P(X \ge c) \le P((X+t)^2 \ge (c+t)^2) \le \frac{E(X+t)^2}{(c+t)^2} = \frac{1+t^2}{(c+t)^2}$$

You want to find a t so that $\frac{1+t^2}{(c+t)^2} \leq \frac{1}{c^2+1}$. Cross multiplying and simplyifying that inequality is how you find $t = \frac{1}{c}$.

1. It does follows that $E \log X_n \to E \log X$. Since $X_n \to X$, in distribution, there exist variables Y_n, Y with the same distribution as X_n, X , and where $Y_n \to Y$ almost surely. By Fatou's Lemma, we have that $\liminf E \log Y_n \ge E \log Y$.

Since $EY_n \to c$, we must have that $EY_n \leq K$ for some constant K and large enough n. Given $\varepsilon > 0$, choose M so x > M implies $\frac{\log y}{y} \leq \frac{\varepsilon}{K}$ and so P(Y = M) = 0. Then

$$E(\log Y_n 1_{Y_n > M}) = E\left(\frac{\log Y_n}{Y_n} \cdot Y_n 1_{Y_n > M}\right) \le E\left(\frac{\varepsilon}{K} \cdot Y_n 1_{Y_n > M}\right) \le \frac{\varepsilon}{K} EY_n \le \varepsilon$$

 \mathbf{SO}

$$E\log Y_n \le E(\log Y_n 1_{Y_n \le M}) + E(\log Y_n 1_{Y_n > M}) \le E(\log Y_n 1_{Y_n \le M}) + \varepsilon$$

Taking limits above, we get

$$\limsup_{n} E \log Y_n \le \varepsilon + \limsup_{n} E(\log Y_n 1_{Y_n \le M}) \stackrel{DCT}{=} \varepsilon + E(\log Y 1_{Y \le M}) \le \varepsilon + E \log Y$$

To justify the middle equality, realize that $Y_n \to Y$ a.s. and P(Y = M) = 0 implies $\log Y_n 1_{Y_n \le M} \to \log Y 1_{Y \le M}$ a.s., and the $\log Y_n 1_{Y_n \le M}$ are dominated by $\log M$. Letting $\varepsilon \to 0$ above, we have shown that

$$E \log Y \le \liminf E \log Y_n \le \limsup_n E \log Y_n \le E \log Y$$

which implies $E \log X_n = E \log Y_n \to E \log Y = E \log X$.

2. \bigcirc First, we get an upper lower bound on $P(X_n \ge \alpha)$:

$$P(X_n \ge \alpha) = \sum_{k=\alpha}^{\infty} \frac{\lambda^k}{k!}$$

Let a_n be the integer closest to $\frac{\log n}{\log \log n}$, so $a_n = \frac{\log n}{\log \log n}(1 + o(1))$. Using Sterling's approximation, which says that $\log(k!) = k \log k + O(k)$, and the fact that $O(a_n)$ implies $o(\log n)$,

$$P(X_n = a_n) = \frac{e^{-\lambda} e^{a_n \log \lambda}}{a_n!}$$

= exp(-a_n log a_n + a_n(1 + log \lambda) + o(a_n))
= exp\left(-\frac{\log n}{\log \log n} \cdot (\log \log n - \log \log \log n) + o(\log n)\right)
= exp(- log n + o(log n)) = n^{-1+o(1)}

The above computation is useless, since $\sum n^{-1+o(1)}$ can be either finite or infinite.

3. (a) The special property is that φ will be real. If X and -X have the same distrubtion, then

$$Ee^{itX} = E\cos tX + iE\sin tX$$

But tX is symmetrically positive and negative, and sin(tx) is an odd function, so E sin(tX) = 0.

Suppose Ee^{itX} is real. Using the inversion formula, we have, for any a < b,

$$P(X \in (a,b)) + \frac{1}{2}P(X \in \{a,b\}) = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \varphi(t) dt$$

Both sides are real, so taking the conjugate of the right preserves equality, resulting in

$$\begin{aligned} P(X \in (a, b)) + \frac{1}{2} P(X \in \{a, b\}) &= \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-it(-a)} - e^{-it(-b)}}{-it} \varphi(t) \, dt \\ &= \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-it(-b)} - e^{-it(-a)}}{it} \varphi(t) \, dt \\ &= P(X \in (-b, -a)) + \frac{1}{2} P(X \in \{-b, -a\}) \\ &= P(-X \in (a, b)) + \frac{1}{2} P(-X \in \{a, b\}) \end{aligned}$$

This holds for all a, b, proving X and -X have the same distribution.

- (b) This is given by $\phi(t/n)^n$.
- (c) Since $\phi'(0) = 0$, we have that

$$\lim_{n \to \infty} \frac{\phi(t/n) - 1}{t/n} = 0$$

Furthermore, from calculus it is true that $\frac{\log(1+x)}{x} \to 1$ as $x \to 0$, implying $\frac{\log \phi(t/n)}{\phi(t/n)-1} \to 1$ as $n \to \infty$. Multiplying these two limits, we get

$$\lim_{n \to \infty} \frac{\log \phi(t/n)}{t/n} = 0$$

Taking exp of both sides, we get $\phi(t/n)^n \to 1$. But $\phi(t/n)^n$ is the c.f. for S_n/n , and 1 is the c.f. for 0, so the continuity theorem implies $S_n/n \to 0$ weakly. Finally, one can prove that converging weakly to a constant implies convergence in probability as well, so that $S_n/n \to 0$ in probability.

(d) We have

$$E|X| = 2c \int_4^\infty x \cdot \frac{1}{x^2 \log x} \, dx = 2c(\lim_{n \to \infty} \log \log n - \log \log 4) = \infty$$

(e) Since X is symmetric about 0, we have

$$E\frac{e^{itX} - 1}{t} = E\frac{\cos(tX) - 1}{t} = 2c\int_4^\infty \frac{\cos(tx) - 1}{tx^2 \log|x|} \, dx$$

Letting y = tx, this becomes

$$E\frac{e^{itX}-1}{t} = 2c\int_4^\infty \frac{\cos(y)-1}{t(y/t)^2\log|y/t|} \, d(y/t) = 2c\int_4^\infty \frac{\cos(y)-1}{y^2\log|y/t|} \, dy$$

Since, for -1 < t < 1, it's true that $\frac{\cos(y)-1}{y^2 \log |y/t|} \le \frac{\cos(y)-1}{y^2 \log |y|} \in L_1(dy)$, the DCT implies

$$\lim_{t \to 0} E \frac{e^{itX} - 1}{t} = \lim_{t \to 0} 2c \int_4^\infty \frac{\cos(y) - 1}{y^2 \log|y/t|} \, dy = 2c \int_4^\infty \lim_{t \to 0} \frac{\cos(y) - 1}{y^2 \log|y/t|} \, dy = 2c \int_4^\infty 0 \, dt = 0$$

proving $\phi'(0) = 0$.

1. The only thing let to prove is when $\mu = \pm \infty$. Assume WLOG $\mu = \infty$. Given $M \in \mathbb{N}$, let $X_n^M = X_n \wedge M$. Note that $E|X_n^M| < \infty$, since $(X_n^M)^+ < M$, and $E(X_n^M)^- = EX_n^- < \infty$ since $EX_n = EX_n^+ - EX_n^- = \infty$. Thus, letting $S_n^M = \sum_{i=1}^n X_i^M$, and using the regular SLLN,

$$\liminf_{n} S_n/n \ge \lim_{n} S_n^M/n = EX_1^M \qquad \text{a.s.}$$

As $M \to \infty$, by MCT, $EX_1^M \to EX_1 = \infty$. Using this, and the fact that the intersection of countably many almost sure events is almost sure, we have

$$P(S_n/n \to \infty) = P\left(\bigcap_{M=1}^{\infty} \liminf_{n} S_n/n > EX_1^M\right) = 1$$

so $S_n/n \to \infty = \mu$ a.s.

2. You actually only need to assume $X_n \to 0$ in probability to to this problem.

Since $X_n \to 0$ a.s. implies, for any k, that $P(X_n > k^{-2}) \to 0$, we have that for each k, there exists an n_k such that $P(X_{n_k} > k^{-2}) < k^{-2}$. By Borel-Cantelli, $P(X_{n_k} > k^{-2} \text{ i.o.}) = 0$, implying that, almost surely, only finitely many X_{n_k} will exceed k^{-2} , meaning $\sum_{1}^{\infty} X_{n_k}$ will be finite. Thus, almost surely, $\lim_m Y_m = \sum_{1}^{\infty} X_{n_k}$ will be finite.

- 3. 🙂
 - (a)
 - (b)
 - (c)

4. The first step is to prove that $|X_n|/n \to 0$ a.s. The fact that $E|X_n| < \infty$ and X_n i.i.d implies $|X_n|/n \to 0$ a.s. has been proven many times in these answers, see for example 1997 Fall, 4(a), or 2007 Spring 1(ii).

Next, we prove that $\max_{1 \le i \le n} |X_n|/n \to 0$ a.s. This follows from $|X_n|/n \to 0$ a.s. and the following lemma:

Lemma: if $a_n \ge 0$ is a sequence of numbers, and $a_n/n \to 0$, then $\frac{1}{n} \max_{1 \le i \le n} a_n \to 0$.

Proof. Given $\varepsilon > 0$, choose k so n > k implies $a_n/n < \varepsilon$. Then

$$\limsup_{n} \frac{\max_{1 \le i \le n} a_n}{n} \le \limsup_{n} \frac{\max(x_1, \dots, x_k)}{n} + \max_{k \le i \le n} \frac{a_i}{i} \le 0 + \varepsilon$$

This holds for all $\varepsilon > 0$, so $\frac{\max_{1 \le i \le n} a_n}{n} \to 0$.

Finally, let $M_n = \max_{1 \le i \le n} |X_n|$. We have, using what we just showed and the SLLN, that

$$\frac{M_n}{n} \to 0$$
 a.s. and $\frac{n}{|S_n|} \to \frac{1}{|EX_1|}$ a.s.

Thus, the product of these sequences converges to the product of the limits a.s. proving that $M_n/|S_n| \to 0$ a.s.

- 1. See 2011 Fall, problem 2.
- 2. Note Var $X_n = n^{-2\alpha}$, so $\sum \operatorname{Var} X_n < \infty \iff \alpha > \frac{1}{2}$. It follows, by the "Kolmogorov 1-series theorem", that $\alpha > \frac{1}{2}$ implies $\sum X_n$ converges a.s. When $\alpha \leq \frac{1}{2}$, the more subtle 3-series theorem is needed. To check the conditions of this theorem are satisfied, it suffices to realize that, for any A > 0, if $Y_n = X_n \mathbb{1}_{\{|X_n| \leq A\}}$, then $\sum \operatorname{Var} Y_n = \infty$, which follows since $Y_n = X_n$ for large enough n.

Note $|X_n| = n^{-\alpha}$ with probability 1, so $\sum X_n$ converges exactly when $\alpha > 1$.

- 3. (i) You can prove, by induction, that V_{n-1} is independent of U_{n+k} for all $k \ge 0$. It holds when n = 2, since $V_1 = U_1$ is independent of all other U_i . Assuming V_{n-1} is independent of all U_{n+k} , the inductive step follows since V_n is a function of V_{n-1} and U_n , both of which are independent of U_{n+1+k} for $k \ge 0$.
 - (ii) This problem is unfair, since it requires knowledge of conditional expectation, which is not covered until 507b. However, you should be able to prove equation (*), shown in the next part, and this is all you need in order to do part (iii). Let $A = \{V_{n-1} \in [0, \frac{1}{2}]\}$ and $B = \{V_{n-1} \in [\frac{1}{2}, 1]\}$. Then

$$V_n = 2V_{n-1}U_n 1_A + (2V_{n-1} - 1)U_n 1_B$$

= $U_n (2V_{n-1}(1_A + 1_B) - 1_B)$
= $U_n (2V_{n-1} - 1_B)$

Thus, using the independence of U_n and V_{n-1} ,

$$E[V_n|V_{n-1}] = E[U_n|V_{n-1}] \cdot E[2V_{n-1} - 1_B|V_{n-1}] = E[U_n] \cdot (2V_{n-1} - 1_B) = \frac{1}{2}(2V_{n-1} - 1_B)$$

(iii) Taking the expectation of the equation $E[V_n|V_{n-1}] = V_{n-1} - 1_B$, we get

$$EV_n = EV_{n-1} - P(V_{n-1} \in [\frac{1}{2}, 1])$$
(*)

which gives

$$EV_n = EV_1 + \sum_{k=2}^n EV_k - EV_{k-1} = \frac{1}{2} - \sum_{k=2}^n P(V_{k-1} \in [\frac{1}{2}, 1])$$

Thus, for all n, $\sum_{k=2}^{n} P(V_{k-1} \in [\frac{1}{2}, 1]) = \frac{1}{2} - EV_n \le \frac{1}{2}$ (since $V_n \ge 0$), proving in particular that $P(V_{k-1} \in [\frac{1}{2}, 1]) \to 0$ as $k \to \infty$, so $P(V_{k-1} < \frac{1}{2}) \to 1$.

1. (a)

$$P(|\eta_n| > \varepsilon) = P\left(\bigcap_{1}^{n} X_i > 0\right) = (1 - e^{-\lambda})^n \to 0 \quad \text{as } n \to \infty$$

- (b) They are asking if there is a sebsequence converging in L_1 to some η , implying convergence in probability as well. Since every subsequence converges in probability to 0, we would need $\eta = 0$, so $E\eta_{n_k} \to 0$. Since $E\eta_{n_k} = \lambda^{n_k}$, this is only possible when $\lambda < 1$.
- 2. Suppose $\sup X_n < \infty$ a.s. Then $\{\limsup_n X_n < A\} \nearrow \{\sup_n X_n < \infty\}$ as $A \to \infty$, since if $\sup_n X_n < \infty$, then $\limsup_n X_n$ is certainy less than some A. It follows that, for some A, $P(\limsup_n X_n < A) > 0$. Since $\limsup_n X_n < A$ implies X_n will be more than A only finitely many times, this implies $P(X_n > A \text{ i.o.}) < 1$. Finally, by Borel Cantelli, $\sum P(X_n > A) = \infty$ would imply $P(X_n > A \text{ i.o.}) = 1$, we have that $\sum P(X_n > A) < \infty$.

Suppose that $\sum P(X_n > A) < \infty$. By Borel-Cantelli, $P(X_n > A \text{ i.o.}) = 0$. Thus, with probability 1, the sequence X_n will be greater that A only finitely times, meaning $\sup X_n < \infty$ (since $\sup X_n$ will be $\max(X_{n_1}, \ldots, X_{n_k}, A)$, where n_1, \ldots, n_k are the indices for which $X_n > A$). Thus, $\sup X_n < \infty$ a.s.

3. We first show that $S_{N_n}/\sigma\sqrt{a_n} - S_{a_n}/\sigma\sqrt{a_n} \to 0$ in probability. For any $\varepsilon, \delta > 0$,

$$P(|S_{N_n} - S_{a_n}| / \sigma \sqrt{a_n} > \varepsilon) = P(|S_{N_n} - S_{a_n}| > \varepsilon \sqrt{a_n} \sigma)$$

$$\leq P(\{|S_{N_n} - S_{a_n}| > \varepsilon \sqrt{a_n} \sigma\} \cap \{|N_n - a_n| \le \delta a_n\}) + P(|N_n - 1| > \delta)^{-0}$$

$$\leq P(\max_{-a_n\delta \le k \le a_n\delta} |S_k - S_{a_n}| > \varepsilon \sqrt{a_n} \sigma)$$

The above could use some explaining. The first \leq follows from $P(A) = P(A \cap B) + P(A \cap B^c) \leq P(A \cap B) + P(B^c)$, and in this case, $\mathcal{P}(B^c)^{\bullet}$ means that $P(B^c) \to 0$ as $n \to \infty$, which follows since $N_n/a_n \to 1$ in probability. Finally, given that the random N_n is at most $a_n\delta$ away from a_n , the event $|S_{N_n} - S_{a_n}| > \varepsilon a_n\sigma$ that this holds when $N_n = \text{some } k$.

We know use Kolmogorov's maximal inequality, which says that, given $X_1, X_2...$ independent, $EX_i = 0$, then $P(\max_{1 \le k \le n} |S_n| > x) \le x^{-2}$ Var S_n . Thus, applying this to $X_{a_n\delta}, X_{a_n\delta+1}, ...$ and $X_{a_n\delta}, X_{a_n\delta-1}, ...$, we have

$$P(|S_{N_n} - S_{a_n}| / \sigma \sqrt{a_n} > \varepsilon) \le P(\max_{1 \le k \le a_n \delta} |S_k - S_{a_n}| > \varepsilon \sqrt{a_n} \sigma) + P(\max_{1 \le -k \le a_n \delta} |S_k - S_{a_n}| > \varepsilon \sqrt{a_n} \sigma)$$
$$\le \frac{2}{\varepsilon^2 \sigma^2 a_n} \operatorname{Var} (S_{a_n + \delta a_n} - S_{a_n}) = \frac{2}{\varepsilon^2 \sigma^2 a_n} \cdot \delta a_n \cdot \operatorname{Var} X_i \le \frac{2\delta}{\varepsilon^2}$$

Letting $\delta \to 0$ proves that $P(|S_{N_n} - S_{a_n}| / \sigma \sqrt{a_n} > \varepsilon) \to 0$ as $n \to \infty$, proving

$$\frac{S_{N_n}}{\sigma\sqrt{a_n}} - \frac{S_{a_n}}{\sigma\sqrt{a_n}} \to 0$$

in probability.

Furthermore,

$$S_{a_n}/\sigma\sqrt{a_n} \to N(0,1)$$

in distribution by the CLT. Thus, using Slutsky's to add the last two sequences gives

$$S_{N_n}/\sigma\sqrt{a_n} \to N(0,1)$$

in distribution.

1. It will converge to zero a.s. We have

$$P(|X_n/n| > \varepsilon) \le \frac{EX_n^2}{n^2\varepsilon^2} \le \frac{1}{n^2\varepsilon^2}$$

Thus, by Borel Cantelli, $P(|X_n/n| > \varepsilon \text{ i.o.}) = 0$, so intersecting the events $\{|X_n/n| > \varepsilon_k \text{ i.o.}\}^c$ for some $\varepsilon_k \searrow 0$ givens $X_n/n \to 0$ a.s.

2. Let $Y_{n,i} = \frac{X_i}{\sqrt{n \log n}} \cdot \mathbb{1}_{\{|X_i| < \sqrt{n \log n}\}}$. The Lindberg-Feller CLT has two conditions. For the first, we find

$$EY_{n,i}^2 = \frac{1}{n\log n} \cdot 2\int_1^{\sqrt{n\log n}} y^2 \cdot \frac{1}{y^3} \, dy$$
$$= \frac{2}{n\log n} \cdot \log(\sqrt{n\log n})$$
$$= \frac{1}{n} \cdot \left(1 + \frac{\log\log n}{\log n}\right)$$

Thus, we get that $\sum_{i=1}^{n} EY_{n,i}^2 = nEY_{n,1}^2 = 1 + \frac{\log \log n}{\log n} \to 1$. Since this limit is nonzero, we can apply Lindeberg, and since it is 1, we have that $\sigma^2 = 1$.

Secondly, we compute

$$E(Y_{n,i}^2 \cdot 1_{|Y_{n,i}| > \varepsilon}) = \frac{1}{n \log n} \cdot 2 \int_{\varepsilon \sqrt{n \log n}}^{\sqrt{n \log n}} y^2 \cdot \frac{1}{y^3} dy$$
$$= \frac{1}{n \log n} \cdot 2(\log(\sqrt{n \log n}) - \log(\varepsilon \sqrt{n \log n}))$$
$$= \frac{2}{n \log n} \cdot \log(1/\varepsilon)$$

So, we get $\sum_{i=1}^{n} EY_{n,i}^2 1_{|Y_{n,i}| > \varepsilon} = n \cdot EY_{n,1}^2 1_{|Y_{n,i}| > \varepsilon} = n \cdot \frac{2}{n \log n} \cdot \log(\frac{1}{\varepsilon}) \to 0$, as required. Thus, we can apply Lindeberg-Feller CLT to obtain

$$\sum_{i=1}^{n} Y_{n,i} \implies N(0,\sigma^2) = N(0,1)$$

Next, we show that $\sum_{1}^{n} \frac{X_i}{\sqrt{n \log n}} - \sum_{i=1}^{n} Y_{n,i} \to 0$ in probability. Note that this difference is given by $\sum_{1}^{n} X_i \mathbb{1}_{|X_i| > \sqrt{n \log n}}$, so we compute

$$P\left(\left|\sum_{1}^{n} X_{i} 1_{|X_{i}| > \sqrt{n\log n}}\right| > \varepsilon\right) \le P\left(\bigcup_{1}^{n} \{|X_{i}| > \sqrt{n\log n}\}\right) \le n \cdot P(|X_{1}| > \sqrt{n\log n})$$

But $P(|X_1| > \sqrt{n \log n}) = 2 \int_{n \log n}^{\infty} \frac{1}{x^3} dx = \frac{1}{n \log n}$, so the above is at most $\frac{1}{\log n} \to 0$, proving convergence in probability.

It can be proven that if $A_n \implies A$ and $B_n \rightarrow b$ (a constant) in probability, than $A_n + B_n \implies A + B$. Using this, combined with $\sum_{i=1}^n Y_{n,i} \implies N(0,1)$ and $\sum_{1}^n \frac{X_i}{\sqrt{n \log n}} - \sum_{i=1}^n Y_{n,i} \rightarrow 0$ in probability gives the desired result.

3. Let $X^+ = \max(X, 0)$. I claim $EX^+ < \infty$. If not, then for all $M \in \mathbb{N}$, we would have $EX^+/M = \infty$, so that

$$\sum_{n=0}^{\infty} P(X_n^+/n > M) = \sum_{n=0}^{\infty} P(X_n^+/M > n) > \int_0^{\infty} P(X^+/M > t) \, dt = EX^+/M = \infty$$

implying $P(X_n^+/n > M \text{ i.o.}) = P(\limsup X_n^+/n > M) = 1$. Since this holds for all M, it follows that $\limsup X_n^+/n = \infty$ almost surely, contradicting the problem statement. Finally, using SLLN,

$$\limsup_{n} \frac{\sum X_k}{n} \le \limsup_{n} \frac{\sum X_k^+}{n} \stackrel{a.s.}{=} EX_k^+ < \infty$$

4. It does follow that $E|X| < \infty$.

Proof 1: Choose M so $P(|Y| \le M) = \varepsilon > 0$. For all t, we have

$$P(|X + Y| > t - M) \ge P(\{|X| > t\} \cap \{|Y| \le M\}) = P(|X| > t)P(|Y| \le M)$$

Using this,

$$\begin{split} E|X| &= \int_0^\infty P(|X| > t) \, dt \le \int_0^\infty \frac{P(|X+Y| > t - M)}{P(|Y| \le M)} \, dt \\ &= \frac{1}{\varepsilon} \left(M + \int_0^\infty P(|X+Y| > t) \, dt \right) \\ &= \frac{1}{\varepsilon} (M + E|X+Y|) < \infty \end{split}$$

Proof 2: Let μ be the measure on \mathbb{R} induced by X, so $\mu(A) = P(X \in A)$, and ν for Y similarly. Since $E|X + Y| < \infty$, using Fubini's theorem we have

$$E|X+Y| = \int |x+y|d\mu \times \nu = \int \left(\int |x+y|d\mu\right) d\nu < \infty$$

This implies $(\int |x+y|d\mu) < \infty$ for ν a.e. y, so there is some y_0 for which it holds. Then

$$E|X| = \int |x|d\mu \le \int |x+y_0| + |y_0| \, d\mu = \int |x+y_0| \, d\mu + |y_0| < \infty$$

1. Impossible Problem! You need the additional assumption $a_n \ge 0$ for this problem to work; if infinitely many a_n are negative, then $\sum P(|X_n| > a_n)$ would be ∞ !

Assuming additionally each $a_n \ge 0$, then

$$S_n/a_n| = |X_n/a_n + \frac{a_{n-1}}{a_n} \frac{S_{n-1}}{a_{n-1}}| \ge |X_n/a_n| - |\frac{a_{n-1}}{a_n}| \cdot |\frac{S_{n-1}}{a_{n-1}}| \ge |X_n/a_n| - C|\frac{S_{n-1}}{n-1}|$$

 \mathbf{SO}

$$\limsup_{n} |X_n/a_n| \le \limsup_{n} |S_n/a_n| + C \cdot |S_{n-1}/a_{n-1}| = 0 \qquad a.s.$$

In particular, this shows that $P(|X_n/a_n| > 1 \text{ i.o.}) = 0$, because $|X_n/a_n|$ i.o. would imply $\limsup_n |X_n/a_n| \ge 1$. By Borel-Cantelli, we must have $\sum P(|X_n| > a_n) < \infty$.

- 2. Typo! They meant to say $P(X_n = 1) = p$, $P(X_n = -1) = 1 p$.
 - (a) By SSLN, $S_n/n \to EX_1 = 2p 1 \neq 0$ a.s., so with probability 1, for some N, S_{N+k} will be bounded away from 0 for all $k \geq 0$.
 - (b) Note that, using $\sqrt{n}(n/e)^n < n! < e\sqrt{n}(n/e)^n$,

$$P(S_{2n} = 0) = \frac{1}{2^{2n}} \binom{2n}{n} > \frac{1}{4^n} \left(\frac{(2n/e)^{2n} \sqrt{n}}{((n/e)^n \sqrt{n}e)^2} \right) = \frac{1}{e^2 \sqrt{n}}$$

Thus, $\sum_{n\geq 1} P(S_{2n}=0) = \infty$, so $P(S_{2n}=0 \text{ i.o.}) = 1$. This shows $P(\tau < \infty) = 1$, since $\tau = \infty$ implies $S_{2n} = 0$ not infinitely often. We now compute $E\tau$. In order for τ to be 2k + 2, the path has to start by moving to 1 (or -1), stay at or above 1 (below -1), then return to 0. The number of ways the middle step can happen is counted by the Catalan numbers, $\frac{1}{k+1} {\binom{2k}{k}}$. Thus,

$$E\tau = \sum_{k \ge 0} (2k+2)P(\tau = 2k+2) = \sum_{k \ge 0} (2k+2)\frac{1}{2^{2k+2}} \cdot \frac{2}{k+1} \binom{2k}{k}$$

Using the same approximation as before, this sum is infinite.

3. (a) Without loss of generality, we can assum $EX_n = 0$ by replacing X_n with $X'_n = X_n - EX_n$.

Using Chebychev's,

$$P(|S_n/n| > \epsilon) < \frac{E(S_n^4)}{n^4 \varepsilon^4}$$

When S_n^4 is expanded out, it contains summands like X_i^4 , $X_i^2 X_j^2$, $X_i^3 X_j$, $X_i^2 X_j X_k$, and $X_i X_j X_k X_\ell$. Only the first two have nonzero expectation (since distinct X_i are independent, and $EX_i = 0$). Thus, letting sup $EX_n^4 = M$,

$$P(|S_n/n| > \epsilon) < \frac{\sum EX_i^4 + \sum_{i \neq j} EX_i^2 EX_j^2}{n^4 \varepsilon^4} \le \frac{n \cdot M + n(n-1)M}{n^4 \varepsilon^4} \in O(1/n^2)$$

Using Borel Cantelli, we then have $P(|S_n/n| > \varepsilon \text{ i.o.}) = 0$. This holds for all ε , so intersecting these events for some sequence $\varepsilon_k \searrow 0$ gives $S_n/n \to 0$ a.s.

(b) If $E|X_1| < \infty$, then $S_n/n \to EX_1$ a.s.

- 1. (a) $X_n \to X$ a.s. if $P(\{\omega : X_n(\omega) \to X(\omega)\}) = 1$. $X_n \to X$ in L_1 if $E|X_n X| \to 0$.
 - (b) i. Let $X_1, X_2...$ be independent, where $P(X_n = n^2) = \frac{1}{n^2} = 1 P(X_n = 0)$. Then $X_n \to 0$ a.s. (since $P(X_n > 0 \text{ i.o.}) = 0$ by Borel-Cantelli) but $EX_n = 1 \neq 0$.
 - ii. On the probability space [0, 1], with Lesbegue measure, let $X_{n,k} = \mathbb{1}_{\left[\frac{k-1}{n}, \frac{k}{n}\right]}$, for $n \ge 0$, and $1 \le k \le n$. Then let X'_m be the sequence

$$X_{1,1}, X_{2,1}, X_{2,2}, X_{3,1}, X_{3,2}, X_{3,3}, \dots$$

i.e. the result of ordering $X_{n,k}$ lexicographically by (n,k). Since $E|X_{n,k}| = \frac{1}{n} \to 0$ as $n \to \infty$, it follows $X'_m \to 0$ in L_1 . However, $X'_m(\omega) \not\to 0$ for any $\omega \in [0,1]$, since any ω will be contained in at least one of the intervals $\left[\frac{k-1}{n}, \frac{k}{n}\right]$ for each each n.

- (c) For any $\varepsilon > 0$, we have $P(|X_n X| > \varepsilon) \le \frac{E|X_n X|}{\varepsilon}$. Thus, $\sum P(|X_n X| > \varepsilon) \le \frac{1}{\varepsilon} \sum E|X_n X| < \infty$, so $P(|X_n X| > \varepsilon \text{ i.o.}) = 0$ by Borel Cantelli. This shows that $X_n \to X$ a.s.
- 2. First, note that

$$P(-\log X_n / \log n \ge 1) = P(X_n \le n^{-1}) = 1/n$$

Thus, $\sum P(-\log X_n/\log n \ge 1) = \infty$, so $P(-\log X_n/\log n \ge 1 \text{ i.o.}) = 1$, so $\limsup_n -\log X_n/\log n \ge 1$ a.s.

Now, for any $\varepsilon > 0$, we similarly have that

$$\sum P(-\log X_n / \log n \ge 1 + \varepsilon) = \sum \frac{1}{n^{1+\varepsilon}} < \infty$$

So $P(\frac{-\log X_n}{\log n \ge 1} + \varepsilon \text{ i.o.}) = 0$, so $\limsup_n \frac{-\log X_n}{\log n} \le 1 + \varepsilon$ a.s. Intersecting the events $\{\limsup_n \frac{-\log X_n}{\log n} \le 1 + \frac{1}{k}\}$ for $k \in \mathbb{N}$ shows that $\limsup_n \frac{-\log X_n}{\log n} \le 1$ a.s.

- 3. (a) Note the constant that X+Y equals must be 1, since $EX+Y = EX+EY = \frac{1}{2}+\frac{1}{2}$. Thus, the *i*th bit of X is the opposite of that of Y.
 - (b) Suppose that, for each *i*, vector (X_i, Y_i, Z_i) , where X_i is the *i*th **trinary** digit of X, is uniformly distrubted over the 6 permutations of (0, 1, 2). Then X, Y, Z are each uniformly distrubted over [0, 1] since each of their trinary digits are 0,1 or 2 with equal probability, and X + Y + Z is always equal to $1 + \frac{1}{3} + \frac{1}{3^2} + \cdots = \frac{3}{2}$.

- 1. (a) Let $X = \sum X_i$. By MCT, $EX = \sum \lambda_i < \infty$, so we must have $P(X = \infty) = 0$. Alternatively, $P(X_n > 0) = 1 - e^{-\lambda_n} \le \lambda_n$, so $\sum P(X_n > 0) < \infty$, so $P(X_n > 0$ i.o.) = 0, implying only finitely many X_n are nonzero a.s.
 - (b) $P(X_n > 0) = 1 e^{-\lambda_n} \ge (\lambda_n/2) \land \frac{1}{2}$, where $a \land b = \min(a, b)$. Therefore, $\sum P(X_n > 0) \ge \sum (\lambda_n/2) \land \frac{1}{2} = \infty$, so $P(X_n \ge 1 \text{ i.o.}) = 1$, so $\sum X_n = \infty$ a.s.
- 2. Note that Var $X = EX^2 = \frac{1}{3}$. By CLT,

$$\frac{\sum_{1}^{n} X_{i}}{\sqrt{n}} \implies N(0, 1/3) \tag{2}$$

By SLLN,

 \mathbf{SO}

$$\frac{\sum_{1}^{n} X_{i}^{2}}{n} \xrightarrow{\text{a.s.}} EX^{2} = 1/3$$

$$\frac{\sqrt{n}}{\sqrt{\sum_{1}^{n} X_{i}^{2}}} \xrightarrow{\text{a.s.}} \sqrt{3}$$
(3)

Using Slutsky's theorem $(X_n \implies X \text{ and } Y_n \rightarrow c \text{ in probability implies } X_n Y_n \rightarrow cX)$, along with (2) and (3) gives

$$\frac{\sum_{1}^{n} X_{i}}{\sqrt{\sum_{1}^{n} X_{i}^{2}}} \implies N(0,1)$$

3. **Remark:** As far as I can tell, this problem is ridiculously hard, using tricks that aren't that common or intuitive. The \implies direction is reasonable, but I'm almost certain no one got the \iff when this test was given.

(a) \implies (b) Letting $T_n = n^{-1/p} \sum_{1}^n \xi_n$, we have

$$\frac{\xi_n}{n^{1/p}} = T_n - T_{n-1} \cdot \frac{(n-1)^{1/p}}{n^{1/p}}$$

Letting $n \to \infty$ above, since $T_n \to T$ a.s, and $\frac{(n-1)^{1/p}}{n^{1/p}} \to 1$, we get

$$\frac{\xi_n}{n^{1/p}} = T_n - T_{n-1} \cdot \frac{(n-1)^{1/p}}{n^{1/p}} \to T - T \cdot 1 = 0$$

so that $\xi_n/n^{1/p} \to 0$ a.s. This means $P(|\xi_n|/n^{1/p} > 1 \text{ i.o.}) = P(|\xi_n|^p > n \text{ i.o.}) = 0$, so (using Borel Cantelli on the last inequality),

$$E|\xi|^{p} = \int_{0}^{\infty} P(|\xi|^{p} > t) \, dt \le \sum_{n \ge 0} P(|\xi_{n}|^{p} > n) < \infty$$

proving $E|\xi|^p < \infty$. Now, suppose by way of contradiction that p > 1 and $E\xi \neq 0$. Using Jensen's, $(E|\xi|)^p \leq E|\xi|^p < \infty$, so $E|\xi| < \infty$. By SLLN,

$$\frac{\sum_{k=1}^{n} \xi_n}{n} \to E\xi \neq 0$$

almost surely as $n \to \infty$. We also have, since p > 1, that

$$\frac{1}{n^{1/p-1}} \to \infty$$

Multiplying the two above limits implies that

$$\frac{\sum_{k=1}^{n} \xi_n}{n^{1/p}} \to \infty \qquad \text{a.s.}$$

contradicting that the limit was finite. Thus, we must have $p \leq 1$ or $E\xi = 0$.

(b) \implies (a) First, suppose that $p \leq 1$. We can actually assume p < 1, since p = 1 follows from SLLN. We will show that $\sum_{1}^{\infty} \frac{|\xi_n|}{n^{1/p}}$ converges a.s. This implies $\sum_{1}^{\infty} \frac{\xi_n}{n^{1/p}}$ converges a.s., which by Kronecker's Lemma implies $n^{-1/p} \sum_{1}^{n} \xi_k \to 0$ a.s., the desired result.

To show $\sum_{1}^{\infty} \frac{|\xi_n|}{n^{1/p}}$, we use the Kolmogorov 3-series test. Let $Y_n = \frac{\xi_n}{n^{1/p}} \mathbf{1}(|\xi_n|^p \le n)$. We must check that

- (i) $\sum_{1}^{\infty} P(|\xi_n|^p > n) < \infty$ (ii) $\sum_{1}^{\infty} EY_n$ converges (iii) $\sum_{1}^{\infty} \operatorname{Var} Y_n < \infty$
- (i) This is true since $E|\xi|_1^p < \infty$, which holds if and only if $\sum_1^{\infty} P(|\xi|_1^p > k) < \infty$.
- (ii) The below computations uses many clever tricks. For the first equality, we are using $|\xi_1| 1_{|\xi_1|^p \le n} = \sum_{1}^{n} |\xi_1| 1_{\{k-1 < |\xi_1|^p \le k\}}$. For the second, we use Fubini's, being careful with the indices. For the third, we bound $\sum_{n=k}^{\infty} n^{-1/p} \le \int_{k}^{\infty} x^{-1/p} dx$. For the fourth, realize that when $|xi|^p \le k$, then $|\xi_1|^{1-p} = (|\xi_1|^p)^{(1/p)-1} \le k^{(1/p)-1}$.

$$\begin{split} \sum_{n=1}^{\infty} E\left(\frac{|\xi_n|}{n^{1/p}}; |\xi|^p \le n\right) &= \sum_{n=1}^{\infty} \sum_{k=1}^n \frac{1}{n^{1/p}} E\left(|\xi_1| \mathbf{1}_{\{k-1 < |\xi|^p \le k\}}\right) \\ &= \sum_{k=1}^{\infty} E\left(|\xi_1| \mathbf{1}_{\{k-1 < |\xi|^p \le k\}}\right) \sum_{n=k}^{\infty} \frac{1}{n^{1/p}} \\ &\le \sum_{k=1}^{\infty} E\left(|\xi_1|^p \cdot |\xi_1|^{1-p} \mathbf{1}_{\{k-1 < |\xi|^p \le k\}}\right) \frac{k^{1-1/p}}{1/p - 1} \\ &\le \frac{1}{1/p - 1} \sum_{k=1}^{\infty} E\left(|\xi|^p \left(k^{1/p-1}\right) \mathbf{1}_{\{k-1 < |\xi|^p \le k\}}\right) \cdot k^{1-1/p} \\ &= \frac{1}{1/p - 1} E|\xi_1|^p < \infty \end{split}$$

(iii) To show $\sum \operatorname{Var} Y_n < \infty$, we show $\sum EY_n^2 < \infty$, using the same tricks.

$$\sum_{n=1}^{\infty} E\left(\frac{|\xi_1|^2}{n^{2/p}}; |\xi| \le n\right) = \sum_{n=1}^{\infty} \sum_{k=1}^{n} n^{-2/p} E\left(|\xi|^2 \mathbf{1}_{\{k-1 < |\xi|^p \le k\}}\right)$$
$$= \sum_{k=1}^{\infty} E\left(|\xi|^2 \mathbf{1}_{\{k-1 < |\xi|^p \le k\}}\right) \sum_{n=k}^{\infty} n^{-2/p}$$
$$\le \sum_{k=1}^{\infty} E\left(|\xi|^p \cdot |\xi_1|^{2-p} \mathbf{1}_{\{k-1 < |\xi|^p \le k\}}\right) \frac{k^{1-2/p}}{2/p-1}$$
$$\le \frac{1}{2/p-1} \sum_{k=1}^{\infty} E\left(|\xi_1|^p \mathbf{1}_{\{k-1 < |\xi|^p \le k\}}\right) = \frac{EX_1}{2/p-1} < \infty$$

This completes the proof in the case $p \leq 1$.

Now, suppose $E\xi_i = 0$ and $p \in (1, 2)$. Let $Y_k = \xi_k \mathbb{1}_{\{|\xi|_k \le k^{1/p}\}}$, and let $T_n = Y_1 + \dots + Y_n$. Since

$$\sum P(|\xi_k| > k^{1/p}) \le \int_0^\infty P(|\xi_1|^p > t) \, dt = E|\xi|^p < \infty,$$

it follows that $P(\xi_k \neq Y_k \text{ i.o.}) = 0$, so it suffices to prove $T_n/n^{1/p} \to 0$. We compute

We can bound $\sum_{m=n}^{\infty} \frac{1}{k^{2/p}}$ by an integral:

$$\sum_{k=n}^{\infty} \frac{1}{k^{2/p}} \le \int_{n-1}^{\infty} x^{-2/p} \, dx = \frac{(n-1)^{(p-2)/p}}{(2-p)/p} \le Cy^{p-2},$$

for any $y \in [(n-1)^{1/p}, n^{1/p}]$, and some constant C. Therefore,

$$\sum_{k=1}^{\infty} \operatorname{Var} (Y_k/k^{1/p}) \le \int_0^{\infty} 2Cy^{p-1} P(|\xi| > y) \, dy < \infty,$$

with the last inequality following since $E|\xi|^p = \int_0^\infty py^{p-1}P(|\xi| > y) dy < \infty$. By Kolmogorov's theorem for the convergence of random series, letting $\mu_k = EY_k$, we have $\sum_1^\infty (Y_k - \mu_k)/k^{1/p} < \infty$ a.s, which by Kronecker's Lemma implies

$$n^{-1/p} \sum_{1}^{n} Y_k - \mu_k \to 0$$
 a.s.

To show that $n^{-1/p} \sum_{1}^{n} Y_k \to 0$ a.s, completing the proof, we need only show $n^{-1/p} \sum_{1}^{n} \mu_k \to 0$. Since $\mu_k + E(\xi_k; |\xi| > k^{1/p}) = E\xi_k = 0$, we have that

$$\begin{aligned} |\mu_k| &\leq E(|\xi|; |\xi| > k^{1/p}) = k^{1/p} E(|\xi|/k^{1/p}; |\xi| > k^{1/p}) \\ &\leq k^{1/p} E(|\xi|^p/k; |\xi| > k^{1/p}) \\ &= k^{-1+1/p} E(|\xi|^p; |\xi| > k^{1/p}) \end{aligned}$$

Since $\sum_{1}^{n} k^{-1+1/p} \leq K n^{1/p}$ and $E(|\xi|^p; |\xi| > k^{1/p}) \to 0$ as $k \to \infty$ (by DCT), it follows that $n^{1/p} \sum \mu_k \to 0$, completing the proof.

1. (a) For any 0 < x < 1, we have

$$P(X_n \le x) = \int_0^x 1 + \sin 2\pi nt \, dt = x + \frac{1 - \cos 2\pi nx}{2\pi n} \to x + 0$$

as $n \to \infty$. Thus, $X_n \implies X$, where $P(X \le x) = x$, i.e, X is uniform on [0, 1]. (b) Let $a_n = -\log n$. Then

$$P(\frac{1}{a_n}\log X_n > 2) = P(X_n < n^{-2}) = n^{-2} + \frac{1 - \cos(2\pi n \cdot n^{-2})}{2\pi n} = n^{-2} + O(n^{-3})$$

Notice $\sum P(\frac{1}{a_n} \log X_n > 2) < \infty$. By Borel-Cantelli, $P(\frac{1}{a_n} \log X_n > 2 \text{ i.o.}) = 0$, proving $\limsup_n \frac{1}{a_n} \log X_n \le 2$ a.s. Furthermore,

$$P(\frac{1}{a_n}\log X_n > 1) = P(X_n < n^{-1}) = n^{-2} + \frac{1 - \cos(2\pi)}{2\pi n} = n^{-1}$$

So by Borel-Cantelli again, $P(\frac{1}{a_n} \log X_n > 1 \text{ i.o.}) = 1$, so the limsup will be at least 1 almost surely.

2. (a) possibly wrong solution: The following proof did not at any point use sup Var X_n < ∞, so I suspect I made a mistake. Please check to make sure my logic is correct. Given n, for each m we can variables i.i.d. X¹_m,...,Xⁿ_m so

$$X_m^1 + \dots + X_m^n \stackrel{d}{=} X_m^1$$

We first show that the sequence $X_1^1, X_2^1, X_3^1 \dots$ is tight. Since $X_m^i > A$ for each *i* implies that $\sum_i X_m^i \ge nA$, and $X_m^1 \stackrel{d}{=} \sum_1 X_m^i$, we have

$$P(X_m^1 > A)^n = P\left(\bigcap_{1}^n X_m^i > A\right) \le P(X_m > nA) \le P(|X_m| > nA).$$

Similarly, $P(X_m^1 < -A)^n \le P(|X_m| > nA)$, so

$$\sup_{m} P(|X_{m}^{1}| > A) = \sup_{m} P(X_{m}^{1} > A) + P(X_{m}^{1} < -A) \le \sup_{m} 2P(|X_{m}| > nA)^{1/n}$$

By tightness of X_m , the right hand side of above approaches 0 as $A \to \infty$, proving the left does as well, so the sequence $\{X_m^1\}_{m\to\infty}$ is tight.

By Helly's selection theorem, there exists a subsequence $X_{m_k}^1$ and a random variable X^1 so that $X_{m_k}^1 \implies X^1$. Since $X_m^i \stackrel{d}{=} X_m^1$, this means $X_{m_k}^i \implies X^i$, where $X^i \stackrel{d}{=} X^1$. Since $Z_n \implies Z$, $Y_n \implies Y$ and Z_n, Y_n being independent implies $Z_n + Y_n \implies Z + Y$ (to prove this, look at characteristic functions), it follows that

$$X_{m_k} \stackrel{d}{=} \sum_{1}^{n} X_{m_k}^i \implies \sum_{1}^{n} X^i.$$

But we also have $X_{m_k} \implies X$ so we must have $X \stackrel{d}{=} \sum_{i=1}^{n} X^i$. This shows X has been written as a sum of n iid random variables, so X is infinitely divisible.

(b) In general, if X is any variable where $|X| \leq 1$ a.s, then X is not infinitely divisible. If $X_1 + \ldots X_n \stackrel{d}{=} X$, then it must mean that each $X_i \leq \frac{1}{n}$ a.s. If not, for some $\varepsilon > 0$ then there would be a possibility that each $X_i > \frac{1}{n} + \varepsilon$, implying $\sum X_i > 1$, which is a contradiction, since X has the same distribution as $\sum X_i$, and $X \leq 1$ always. Similarly, $X_i \geq -\frac{1}{n}$ a.s., so $|X_i| \leq \frac{1}{n}$ a.s. implying

$$\operatorname{Var} X_i \le E X_i^2 \le \frac{1}{n^2} \tag{1}$$

However, we also have

$$\operatorname{Var}(X) = \sum \operatorname{Var}(X_i) = n \operatorname{Var}(X_1)$$

so that

$$\operatorname{Var}\left(X_{i}\right) = \frac{\operatorname{Var}X}{n} \tag{2}$$

But (1) and (2) are in contradiction for large enough n, so X is not infinitely divisible.

(c) We could just run through the same argument above to show that U is not infinitely divisible.

I think they were going for this argument: if U' has the same distribution as U, and is independent of U, then $U+U' \stackrel{d}{=} X$ (you can check this). Thus, if you could divide U into any number of parts, n, then you could do the same for U', and then use this to divide $X \stackrel{d}{=} U + U'$ into 2n parts. This, doesn't *quite* contradict the fact that X is non infinitely divisible, but it's close.

3. 🙁

1. (a) We have that

$$E(X_{i,n}^{2}\mathbf{1}(|X_{i,n}| > \varepsilon)) = E((\frac{X_{i}}{\sqrt{n}})^{2}; \mathbf{1}(|\frac{X_{i}}{\sqrt{n}}| > \varepsilon)) = \frac{1}{n}E(X_{1}^{2}\mathbf{1}(|X_{1}| > \varepsilon\sqrt{n}))$$

 \mathbf{SO}

$$L_{n,\varepsilon} = \sum_{1}^{n} E(X_{i,n}^2 \mathbf{1}(|X_{i,n}| > \varepsilon)) = E(X_1^2 \mathbf{1}(|X_1| > \varepsilon \sqrt{n}))$$

Since $X_1^2 \mathbf{1}(|X_1| > \varepsilon \sqrt{n}) \to 0$ almost surely as $n \to \infty$, and $EX_1^2 < \infty$, by the DCT, the last quantize approaches 0 as $n \to \infty$.

(b) Using Jensen's inequality, $E|X_{i,n}|^p = E((X_{i,n}^2)^{p/2}) \ge (EX_{i,n}^2)^{p/2} \ge EX_{i,n}^2$, so

$$L_{n,\varepsilon} = \sum_{1}^{n} E(X_{i,n}^2 \mathbf{1}(|X_{i,n}| > \varepsilon)) \le \sum_{1}^{n} E|X_{i,n}|^p \to 0$$

(c) Let $X_{i,n}$ have normal distribution $N(0, \frac{2^{k-2}}{2^{n-1}})$ when $i \geq 2$, and $X_{1,n}$ have distribution $N(0, \frac{1}{2^{n-1}})$. Then because $Z_1 \sim N(0, \sigma_1^2)$ and $Z_2 \sim N(0, \sigma_2^2)$ implies $Z_1 + Z_2 \sim N(0, \sigma_1^2 + \sigma_2^2)$, we have that

$$W_n \sim N\left(0, \frac{1+1+2+\dots+2^{n-2}}{2^{n-1}}\right) = N(0,1)$$

so that not only does $W_n \to N(0,1)$ in distribution, but each W_n is equal to N(0,1) in distribution.

However, the Lindeberg condition does not hold, since $X_{n,n} \sim N(0, \frac{2^{n-2}}{2^{n-1}}) = N(0, \frac{1}{2})$, so

$$\sum_{1}^{n} E(X_{i,n}^{2}; \mathbf{1}(|X_{i,n}| > \varepsilon)) \ge E(X_{n,n}^{2}; \mathbf{1}(|X_{n,n}| > \varepsilon)) \ge \varepsilon P(X_{n,n} > \varepsilon) \not\to 0$$

where the last quantity does not approach zero since each $X_{n,n}$ have the same $N(0, \frac{1}{2})$ distribution, so $P(X_{n,n} > \varepsilon)$ is constant in n.

2. (a) By definition, a matrix M is nonneggative semidefinite if $x^T M x \ge 0$ when x is any column vector. Given a column vector $x = [a_0 \ a_1 \ \dots \ a_{n-1}]$, expand out the right side of the inequality

$$0 \le E\left((a_0 + a_1X + a_2X^2 + \dots + a_{n-1}X^{n-1})^2\right)$$

then distribute the E over all of the terms, so each X^k becomes m_k . You will see that the result is exactly $x^T H_n x$, proving $x^T H_n x \ge 0$, so H_n is nonnegative semidefinite.

(b) First of all, what does $\Delta^k m_n$ mean? First of all, they don't just mean $\Delta m_n = m_{n+1} - m_n$, they mean that for any sequence a_n , $\Delta a_n = a_{n+1} - a_n$. So, Δa_n is itself a sequence, and you can apply Δ to that, getting $\Delta^2 a_n$. For example,

$$\Delta^2 m_n = \Delta (m_{n+1} - m_n) = (m_{n+2} - m_{n+1}) - (m_{n+1} - m_n) = m_{n+2} - 2m_{n+1} + m_n$$

$$\Delta^3 m_n = m_{n+3} - 2m_{n+2} + m_{n+1} - (m_{n+2} - 2m_{n+1} + m_n) = m_{n+3} - 3m_{n+2} + 3m_{n+1} - m_n$$

$$\Delta^4 m_n = m_{n+4} - 4m_{n+3} + 6m_{n+2} - 4m_{n+1} + m_n$$

Fans of combinatorics will notice Pascal's triangle appearing on the RHS of each equation. In fact, you can prove by induction that

$$\Delta^k m_n = \sum_{j=0}^k \binom{k}{j} (-1)^{j+k} m_{n+k}$$

Using this, and the binomial theorem, we have that

$$0 \le EX^{n}(1-X)^{k} = E\sum_{j=0}^{k} \binom{k}{j}(-1)^{j}X^{n+j} = (-1)^{k}\sum_{j=0}^{k} \binom{k}{j}(-1)^{j+k}m_{n+k} = (-1)^{k}\Delta^{k}m_{n+k}$$

3. (a) First, we find the c.f. for Y_k , which has pdf e^{-x} :

$$\phi(t) = Ee^{itY_k} = \int_0^\infty e^{ity} e^{-y} \, dy = \frac{1}{it-1} e^{y(it-1)} \Big|_0^\infty = \frac{1}{1-it}$$

This means that the c.f. for $\frac{Y_k-1}{k} = \frac{1}{1-it/k}e^{-it/k}$. Let $W_n = \gamma + \sum_{k=1}^n \frac{Y_k-1}{k}$. Since $W_n \to W$ a.s., so that $e^{itW_n} \to e^{itW}$, and each $|e^{itW_n}| \leq 1$, it follows by DCT that

$$\varphi(t) = Ee^{itW} = \lim_{n} Ee^{itW_n} = \lim_{n} e^{i\gamma t} \prod_{1}^{n} \frac{e^{-it/k}}{1 - it/k} = e^{i\gamma t} \prod_{1}^{\infty} \frac{e^{-it/k}}{1 - it/k}$$

As far as I can tell, this is the only way to express the characteristic function.

$$\begin{aligned} |\varphi(t)| &= \left| e^{i\gamma t} \prod_{1}^{\infty} \frac{e^{-it/k}}{1 - it/k} \right| = \left| e^{i\gamma t} \right| \prod_{1}^{\infty} \frac{\left| e^{-it/k} \right|}{|1 - it/k|} = \prod_{1}^{\infty} \frac{1}{\sqrt{1^2 + t^2/k^2}} \\ &= \exp\left(\sum_{k=1}^{\infty} -\frac{1}{2} \log(1 + t^2/k^2) \right) \le \exp\left(-\frac{1}{2} \log(1 + t^2) - \frac{1}{2} \log(1 + t^2/4) \right) \end{aligned}$$

Using the concavity of log, so that $\log x$ lies above the secant line joining (1,0) and $(1+t^2, \log(1+t^2))$, for any $1 \le x \le t^2$ is true that

$$\log x \ge \frac{\log(1+t^2) - \log(1)}{1+t^2 - 1} \cdot (x-1) = \frac{\log(1+t^2)}{t^2} (x-1),$$

and setting $x = 1 + t^2/4$ implies $\log(1 + t^2/4) \ge \frac{\log t^2}{4}$, so

$$|\varphi(t)| \le \exp\left(-\frac{1}{2}\left(\log(1+t^2) + \frac{\log(1+t^2)}{4}\right)\right) = \exp(\log(1+t^2)^{-5/8}) = (\sqrt{1+t^2})^{-5/4}$$

Since $\sqrt{1+t^2} \ge \max(1,t)$ it follows that

$$\int |\varphi(t)|], dt < \int_{-\infty}^{\infty} (\sqrt{1+t^2})^{-5/4} \le \int_{-\infty}^{\infty} \min\left(1, \frac{1}{|t|^{5/4}}\right) < \infty.$$

- (c) It does follow that W has an absolutely continuous distribution.
- (d) ^(c) The inversion formula gives

$$f_W(w) = \int_{-\infty}^{\infty} e^{-itw} \varphi(t) \, dt = \int_{-\infty}^{\infty} e^{-itw} \varphi(t) \, dt$$

(b)

1. (a) It does follow that $S_n/n \to X$. We first show that $X_n \to X$ in L_1 . Note that $|X| \leq 1$ a.s, because if $P(|X| > 1 + \delta) = \varepsilon > 0$, then $P(|X_n - X| > \delta) \geq \varepsilon \neq 0$. In particular, $|X_n - X| \leq 2$. Thus, given any $\varepsilon \geq 0$,

$$\limsup_{n} E|X_n - X| = \limsup_{n} E(|X_n - X| \mathbf{1}_{|X_n - X| < \varepsilon}) + E(|X_n - X| \mathbf{1}_{|X_n - X| > \varepsilon})$$
$$\leq \limsup_{n} \varepsilon + 2P(|X_n - X| > \varepsilon) = \varepsilon$$

This holds for all ε , proving $E|X_n - X| \to 0$. Let $|X_n - X|_1 = E|X_n - X|$, and given ε , choose N so that n > N implies $|X_n - X|_1 < \varepsilon$. Then, for n > N,

$$|S_n/n - X|_1 \le \sum_{1}^{\infty} \frac{1}{n} |X_i - X|_1$$

= $\frac{1}{n} \sum_{1}^{N} |X_i - X|_1 + \sum_{N+1}^{n} \frac{1}{n} |X_i - X|_1$
 $\le \frac{1}{n} \sum_{1}^{N} |X_i - X|_1 + \sum_{N+1}^{n} \frac{1}{n} \cdot \varepsilon$
 $\le \frac{1}{n} \sum_{1}^{N} |X_i - X|_1 + \varepsilon \to \varepsilon \quad \text{as } n \to \infty$

Taking the lim sup of the above inequality, the last sum converges to 0, proving $S_n/n \to X$ in L_1 , and therefore in probability.

(b) Now the claim does not follow. Let

$$X_n = \begin{cases} 0 & \text{with probability } 1 - \frac{1}{n} \\ n & \text{with probability } \frac{1}{n} \end{cases}$$

so that $X_n \to 0$ in probability. However, we can show that $P(S_n/n \ge \frac{1}{2}) \ge \frac{1}{2}$ for all n. In order for S_n/n to be bigger than $\frac{1}{2}$, it suffices for some X_k to equal k, for $k \ge \frac{n}{2}$. Thus, noting that the below product is telescoping, we get

$$P(S_n/n \ge \frac{1}{2}) \ge P\left(\bigcup_{k=n/2}^n X_k = k\right) = 1 - \prod_{k=n/2}^n \frac{k-1}{k} = 1 - \frac{n/2 - 1}{n} \ge \frac{1}{2}$$

This shows $S_n/n \not\to 0$ in probability.

2. (a) This follows from $E(X) = \int_0^\infty P(X > x) \, dx$, and applying \int_0^∞ to below:

$$P(X > \lceil x \rceil) \leq P(X > x) \leq P(X > \lfloor x \rfloor)$$

(b) Applying part (i) to $|X_n|/k$,

$$\sum P(|X_n| > kn) = \sum P(|X_n|/k > n) \ge E|X_n/k| = \infty$$

Using Borel-Cantelli, this says that for all k, $P(|X_n|/n > k \text{ i.o.}) = 1$. Thus, $P\left(\bigcap_{k\geq 1}\{|X_n|/n > k \text{ i.o.}\}\right) = 1$, proving that $\limsup_n |X_n|/n = \infty$ a.s.

Note that

$$|S_n/n| = |X_n/n + \frac{n-1}{n} \frac{S_{n-1}}{n-1}| \ge |X_n/n| - |\frac{n-1}{n}| \cdot |\frac{S_{n-1}}{n-1}| \ge |X_n/n| - |\frac{S_{n-1}}{n-1}|$$

 \mathbf{SO}

$$\limsup_{n} \left| \frac{S_n}{n} \right| + \left| \frac{S_{n-1}}{n-1} \right| \ge \limsup |X_n/n| = \infty \qquad a.s.$$

Thus, almost surely the sequence $|\frac{S_n}{n}| + |\frac{S_{n-1}}{n-1}|$ is unbounded, proving that $|S_n/n|$ is unbounded almost surely as well.

3. Note that $E(X_iY_i) = 0$, and $Var(X_iY_i) = E(X_i^2Y_i^2) = EX_i^2 = VarX_i^2 + (EX_i)^2 = \sigma^2 + \mu^2$. Thus, by CLT,

$$\frac{\sum X_k Y_k}{\sqrt{n}} \implies N(0, \sigma^2 + \mu^2)$$

Furthermore, we have $\frac{1}{n} \sum X_k \to \mu$ a.s. by SLLN, so that

$$\frac{n}{\sum X_k} \to \frac{1}{\mu} \qquad a.s.$$

Using Slutsky's to multiply these two gives us

$$\frac{\sqrt{n}\sum X_k Y_k}{\sum X_k} \to N(0, 1 + \frac{\sigma^2}{\mu^2})$$

1. (a) We have Var $(S_n) = \sum \operatorname{Var} X_i \leq nC$, so

$$E(S_n/n-\mu)^2 \le \operatorname{Var} (S_n/n) \le \frac{Cn}{n^2} \to 0$$

proving convergence in L_2 .

(b) For all $\varepsilon > 0$,

$$P(S_n/\mu - \mu > \varepsilon) = P((S_n/n - \mu)^2 > \varepsilon^2) \le \frac{\operatorname{Var}(S_n/n)}{\varepsilon^2} \to 0.$$

- (c) There will be a subsequence $S_{n(k)}/n(k) \to \mu$ a.s. You won't have a.s. convergence in general, since you need independence, not just uncorrelation (I can't think of a specific counterexample though).
- 2. (a) Let E_n be the event that he wins games 2n and 2n + 1. The E_n are indpendent, and $\sum P(E_n) = \sum \frac{1}{\sqrt{2n(2n+1)}} = \infty$, so by second Borel Cantelli, $P(E_n \text{ i.o.})$. Since he gets a dollar each time E_n occurs, his winnings will be infinite a.s.
 - (b) Let F_n be the event he wins games n, n+1 and n+2. Then $P(F_n \text{ i.o.}) = 0$, since $\sum P(F_n) = \sum \frac{1}{\sqrt{n(n+1)(n+2)}} < \infty$. So, almost surely, he only gets finite monies.
- 3. Let

$$a_n = \frac{1}{2} \sum_{1}^{n} k^2$$
 $b_n = \sqrt{\sum_{1}^{n} \frac{k^4}{12}}$

We'll use the Lindeberg-Feller CLT to show that $\frac{\sum X_k - a_n}{b_n} \to N(0, 1)$. Let $Y_{n,k} = (X_k - \frac{k^2}{2})/b_n$, so $EY_{n,k} = 0$. We have

$$\sum_{1}^{n} EY_{n,k}^{2} = \sum_{1}^{n} \operatorname{Var} (Y_{n,k}) = \frac{\sum_{1}^{n} \operatorname{Var} X_{k}}{b_{n}^{2}} = \frac{\sum_{1}^{n} k^{4}/12}{b_{n}^{2}} = 1$$

Furthermore, for any $\varepsilon > 0$, consider

$$\sum_{1}^{n} EY_{n,k}^2 \mathbb{1}_{\{|Y_{n,k}| > \varepsilon\}}$$

Note that $|Y_{n,k}| < \frac{n^2/2}{b_n} \to 0$ as $n \to \infty$. Thus, for large n, $Y_{n,k}^2 \mathbb{1}_{|Y_{n,k}| > \varepsilon} = 0$ always, so $\lim_{n \to \infty} n$ of the above sum is zero.

Thus, by the Lindberg Feller CLT, we have

$$\sum_{1}^{n} Y_{n,k} = \frac{\sum_{1}^{n} X_k - a_n}{b_n} \implies N(0,1)$$
2014 Fall

1. (a) (\implies) Assume that $P(E_n \text{ i.o.}) = 1$. Let A be an event where P(A) > 0. Then

$$1 = P(E_n \text{ i.o.})$$

= $P(\{E_n \text{ i.o.}\} \cap A) + P(\{E_n \text{ i.o.}\} \cap A^c)$
 $\leq P(\{E_n \text{ i.o.}\} \cap B) + P(A^c)$

 \mathbf{SO}

$$P(\{E_n \text{ i.o.}\} \cap A) \ge 1 - P(A^c) = P(A) > 0.$$

Since the event $\{E_n \text{ i.o.}\} \cap A$ is the same as the event $\{E_n \cap A \text{ i.o.}\}$, the above shows that $P(E_n \cap A \text{ i.o.}) > 0$. By the (contrapositive of the) Borel-Cantelli lemma, this means that $\sum P(E_n \cap A) = \infty$.

(\Leftarrow) Assume that, whenever P(A) > 0, we have $\sum P(E_n \cap A) = \infty$. Let $A = \{E_n \text{ i.o.}\}^c$, and consider

$$\sum_{n\geq 1} P(E_n \cap A)$$

Notice that only finitely many of the above terms can be nonzero: if $\omega \in A$, then ω is in only finitely many E_n , so only finitely many $E_n \cap A$ are nonempty. Thus, the above sum is finite. Since such sums are always infinite when P(A) > 0, this means P(A) = 0, so that $P(A^c) = P(E_n \text{ i.o.}) = 1$.

- (b) This is false. For the prabability space (0, 1) with Lesbegue measure, let $E_n = (0, 1/n)$. Then $P(E_n \text{ i.o.}) = 0$, but $\sum P(E_n \cap (0, 1)) = \sum 1/n = \infty$.
- 2. Given $\varepsilon > 0$, choose x so the distribution function of X is continuous at x and $P(X \le x) < \varepsilon$. Then

$$P(X_n + Y_n \le c) \le P(\{X_n \le x\} \cup \{Y_n \le c - x\}) \le P(X_n \le x) + P(Y_n \le c - x)$$

 \mathbf{SO}

$$\limsup_{n} P(X_n + Y_n \le c) \le \limsup_{n} P(X_n \le x) + P(Y_n \le c - x) = \varepsilon + 0$$

Thus, for all $\varepsilon > 0$, $\limsup_n P(X_n + Y_n \le c) \le \varepsilon$, so $P(X_n + Y_n \le c) \to 0$.

3. The answer is that $Y_n \to 0$ a.s. iff a < e. Note $Y_n \to 0$ a.s. $\iff \log Y_n \to -\infty$ a.s. We have

$$E \log X_1 = \int_0^a \log x \cdot \frac{1}{a} \, dx = \log(a) - 1$$

By SLLN,

$$\frac{\log Y_n}{n} = \frac{1}{n} \sum_{1}^{n} \log X_i \to \log(a) - 1 \qquad a.s.$$

Thus, when a < e, we have $\frac{1}{n} \log Y_n$ a.s. converges to a negative constant, so $\log Y_n \rightarrow -\infty$ a.s. When a > e, the same reasoning shows $\log Y_n \not\rightarrow -\infty$. When a = e, CLT tells us that

$$\frac{\log Y_n}{\sigma\sqrt{n}} \implies N(0,1)$$

where $\sigma^2 = \text{Var } \log X_1$. In particular, $P(\log Y_n > 0) = P(Y_n > 1) \rightarrow \frac{1}{2}$. Since $Y_n \rightarrow 0$ a.s. would imply $P(Y_n > 1) \rightarrow 0$, this means that $Y_n \not\rightarrow 0$ a.s.