Ideas for solutions.

1. Suppose X_{1}, X_{2}, \ldots are iid with values in a bounded interval $[a ; b]$ with density $f(x)$.
(a) Suppose the distribution is uniform in $[a ; b]$. Show that $\liminf _{n} n\left(X_{n}-a\right)=0$ a.s.
(b) Still supposing the distribution is uniform, what can you say about $\lim _{\inf }^{n} n^{2}\left(X_{n}-a\right)$? [Answer: $+\infty$]
(c) Suppose instead that the endpoint $a=0$ and the density satisfies $f(x) \sim c x^{-1 / 2}, x \rightarrow 0$, with $0<c<\infty$. (Here \sim means the ratio converges to 1.) Find the new values of the lim infs in (a) and (b) [Answer: both are zero.]

Solution. By Borel-Cantelli, with (pair-wise) independent continuous random variables $Y_{n}>0$ and numbers $a_{n}>0, \sum_{n} P\left(Y_{n}<C a_{n}\right)<\infty$ for all $C>0$ means $\liminf _{n}\left(Y_{n} / a_{n}\right)=$ $+\infty$ and $\sum_{n} P\left(Y_{n}<C a_{n}\right)=+\infty$ for all $C>0$ means $\liminf _{n}\left(Y_{n} / a_{n}\right)=0$.

Accordingly, in parts (a) and (b), with $Y_{n}=X_{n}-a, P\left(Y_{n}<C a_{n}\right)=C / n$ in (a) and $P\left(Y_{n}<C a_{n}\right)=C / n^{2}$ in (b). In (c), with $Y_{n}=X_{n}$, we have $P\left(Y_{n}<C a_{n}\right) \sim C_{1} \sqrt{a_{n}}$.
2. Let X be a non-negative random variable. Prove that for $b>0$,

$$
\lim _{t \rightarrow+\infty} \frac{\log E e^{-t X}}{t}=-b
$$

if and only if

$$
P(X \geq b)=1
$$

Proposition 1. Let ξ be a non-negative random variable. Then
(1) $\mathbb{E} e^{-\lambda \xi} \geq p_{0}>0$ if and only if $\mathbb{P}(\xi=0) \geq p_{0}$;
(2) $\mathbb{E} e^{-\lambda \xi} \leq e^{-\lambda \varepsilon_{0}}$ if and only if $\mathbb{P}\left(\xi \geq \varepsilon_{0}>0\right)=1$.

Proof. If $\mathbb{P}(\xi=0) \geq p_{0}>0$, then

$$
\mathbb{E} e^{-\lambda \xi} \geq \mathbb{E}(1(\xi=0))=\mathbb{P}(\xi=0) \geq p_{0}
$$

If $\mathbb{E} e^{-\lambda \xi} \geq p_{0}$, then, for every $n \geq 1$,

$$
\begin{align*}
p_{0} & \leq \mathbb{P}(\xi=0) \leq \mathbb{E} e^{-\lambda \xi}=\mathbb{E}\left(e^{-\lambda \xi} 1(\xi \leq 1 / n)\right)+\mathbb{E}\left(e^{-\lambda \xi} 1(\xi>1 / n)\right) \\
& \leq \mathbb{P}(\xi \leq 1 / n)+e^{-\lambda / n} \tag{1}
\end{align*}
$$

that is,

$$
p_{0} \leq \mathbb{P}(\xi \leq 1 / n)+e^{-\lambda / n}
$$

or, after passing to the limit $\lambda \rightarrow+\infty$,

$$
\mathbb{P}(\xi \leq 1 / n) \geq p_{0}
$$

Then

$$
\mathbb{P}(\xi=0)=\mathbb{P}\left(\bigcap_{n}(\xi \leq 1 / n)\right) \geq p_{0}
$$

If $\mathbb{P}\left(\xi \geq \varepsilon_{0}>0\right)=1$, then

$$
\begin{equation*}
\mathbb{E} e^{-\lambda \xi}=\mathbb{E}\left(e^{-\lambda \xi} 1\left(\xi \geq \varepsilon_{0}\right)\right) \leq e^{-\lambda \varepsilon_{0}} \tag{2}
\end{equation*}
$$

If $\mathbb{E} e^{-\lambda \xi} \leq e^{-\lambda \varepsilon_{0}}$, then, for every $\delta<\varepsilon_{0}$,

$$
e^{-\lambda \varepsilon_{0}} \geq \mathbb{E}\left(e^{-\lambda \xi} 1(\xi \leq \delta)\right) \geq e^{-\lambda \delta} \mathbb{P}(\xi \leq \delta)
$$

that is

$$
\mathbb{P}(\xi \leq \delta) \leq e^{-\lambda\left(\varepsilon_{0}-\delta\right)}
$$

or, after passing to the limit $\lambda \rightarrow+\infty$,

$$
\mathbb{P}(\xi \leq \delta)=0
$$

for every $\delta<\varepsilon_{0}$, meaning that $\mathbb{P}\left(\xi<\varepsilon_{0}\right)=0$.

Proposition 2. Let ξ be a non-negative random variable. Then
(1) $\lim _{\lambda \rightarrow+\infty} \mathbb{E} e^{-\lambda \xi}=p_{0}>0$ is equivalent to $\mathbb{P}(\xi=0)=p_{0}$;
(2) $\lim _{\lambda \rightarrow+\infty} \frac{\ln \mathbb{E} e^{-\lambda \xi}}{\lambda}=-\varepsilon_{0}<0$ is equivalent to $\varepsilon_{0}=\inf \{t>0: \mathbb{P}(\xi \geq t)=1\}$.

Proof. If $\mathbb{P}(\xi=0)=p_{0}>0$, then $\lim _{\lambda \rightarrow+\infty} \mathbb{E} e^{-\lambda \xi}=p_{0}$ after passing to the limit

$$
\lim _{n \rightarrow+\infty} \lim _{\lambda \rightarrow+\infty}
$$

in (1).
By the same argument, if $\lim _{\lambda \rightarrow+\infty} \mathbb{E} e^{-\lambda \xi}=p_{0}>0$, then $\mathbb{P}(\xi=0)=p_{0}$.
If $\varepsilon_{0}>0$ is such that $\mathbb{P}\left(\xi \geq \varepsilon_{0}\right)=1$, then (2) implies

$$
\lim _{\lambda \rightarrow+\infty} \frac{\ln \mathbb{E} e^{-\lambda \xi}}{\lambda} \leq-\varepsilon_{0}
$$

If in addition $\mathbb{P}\left(\varepsilon_{0} \leq \xi \leq \varepsilon_{0}+\delta\right)>0$ for every $\delta>0$, then

$$
\mathbb{E} e^{-\lambda \xi}=\mathbb{E}\left(e^{-\lambda \xi} 1\left(\xi \geq \varepsilon_{0}\right)\right) \geq e^{-\lambda\left(\varepsilon_{0}+\delta\right)} \mathbb{P}\left(\varepsilon_{0} \leq \xi \leq \varepsilon_{0}+\delta\right),
$$

that is,

$$
\lim _{\lambda \rightarrow+\infty} \frac{\ln \mathbb{E} e^{-\lambda \xi}}{\lambda} \geq-\varepsilon_{0}-\delta .
$$

Since $\delta>0$ is arbitrary, we conclude that

$$
\begin{equation*}
\lim _{\lambda \rightarrow+\infty} \frac{\ln \mathbb{E} e^{-\lambda \xi}}{\lambda}=-\varepsilon_{0} \tag{3}
\end{equation*}
$$

If (3) holds, then take $\delta>0$ and assume that $\mathbb{P}\left(\xi \leq \varepsilon_{0}-\delta\right)>0$. Then

$$
\mathbb{E} e^{-\lambda \xi} \geq \mathbb{E}\left(e^{-\lambda \xi} 1\left(\xi \leq \varepsilon_{0}-\delta\right)\right) \geq e^{-\lambda(\varepsilon-\delta)} \mathbb{P}\left(\xi \leq \varepsilon_{0}-\delta\right)
$$

Applying $\lambda^{-1} \ln (\cdot)$ to both sides and passing to the limit $\lambda \rightarrow+\infty$ leads to a contradiction $-\varepsilon_{0} \geq-\left(\varepsilon_{0}-\delta\right)$. Therefore, $\mathbb{P}\left(\xi<\varepsilon_{0}\right)=0$. A similar contradiction results from the assumption that $\mathbb{P}\left(\xi<\varepsilon_{0}+\delta\right)=0$ for some $\delta>0$.
3. Suppose that $0<\alpha \leq 2$, that X, X_{1}, X_{2}, \ldots are independent and identically distributed, and that $S_{n}=X_{1}, \cdots, X_{n}$. Assume that X has characteristic function

$$
\phi(u):=\mathrm{E} e^{i u X}=e^{-|u|^{\alpha}} .
$$

a) Is X symmetric (meaning X and $-X$ have the same distribution)? [Yes, because ϕ is real and so the pdf of X, which exists because ϕ is integrable, is an even function.]
b) Find a function $f(n)$, depending on n, such that $S_{n} / f(n)$ has the same distribution as X. [Look at the characteristic function of $S_{n} / f(n)$ to conclude that $f(n)=n^{1 / \alpha}$.]
c) For what values of α does S_{n} / \sqrt{n} converge in distribution to a Gaussian random variable with positive variance [Only for $\alpha=2$.]
d) For what values of α does S_{n} / n converge to 0 in probability? [For $\alpha>1$; the convergence is, in fact, with probability one.]

For parts c) and d) note, by looking at differentiabilty of ϕ at zero, that $\mathbb{E}|X|<\infty$ for $\alpha>1$ and $\mathbb{E} X^{2}<\infty$ only for $\alpha=2$.

