QUALIFYING EXAM

Ideas for solutions.

1. Suppose X_1, X_2, \ldots are iid with values in a bounded interval [a; b] with density f(x).

(a) Suppose the distribution is uniform in [a; b]. Show that $\liminf_n n(X_n - a) = 0$ a.s.

(b) Still supposing the distribution is uniform, what can you say about $\liminf_n n^2(X_n-a)$? [Answer: $+\infty$]

(c) Suppose instead that the endpoint a = 0 and the density satisfies $f(x) \sim cx^{-1/2}, x \to 0$, with $0 < c < \infty$. (Here ~ means the ratio converges to 1.) Find the new values of the lim infs in (a) and (b) [Answer: both are zero.]

Solution. By Borel-Cantelli, with (pair-wise) independent continuous random variables $Y_n > 0$ and numbers $a_n > 0$, $\sum_n P(Y_n < Ca_n) < \infty$ for all C > 0 means $\liminf_n (Y_n/a_n) = +\infty$ and $\sum_n P(Y_n < Ca_n) = +\infty$ for all C > 0 means $\liminf_n (Y_n/a_n) = 0$.

Accordingly, in parts (a) and (b), with $Y_n = X_n - a$, $P(Y_n < Ca_n) = C/n$ in (a) and $P(Y_n < Ca_n) = C/n^2$ in (b). In (c), with $Y_n = X_n$, we have $P(Y_n < Ca_n) \sim C_1 \sqrt{a_n}$.

2. Let X be a non-negative random variable. Prove that for b > 0,

$$\lim_{t \to +\infty} \frac{\log E e^{-tX}}{t} = -b$$

if and only if

$$P(X \ge b) = 1.$$

Proposition 1. Let ξ be a non-negative random variable. Then

(1) $\mathbb{E}e^{-\lambda\xi} \ge p_0 > 0$ if and only if $\mathbb{P}(\xi = 0) \ge p_0$; (2) $\mathbb{E}e^{-\lambda\xi} \le e^{-\lambda\varepsilon_0}$ if and only if $\mathbb{P}(\xi \ge \varepsilon_0 > 0) = 1$.

Proof. If $\mathbb{P}(\xi = 0) \ge p_0 > 0$, then

$$\mathbb{E}e^{-\lambda\xi} \ge \mathbb{E}\Big(1(\xi=0)\Big) = \mathbb{P}(\xi=0) \ge p_0.$$

If $\mathbb{E}e^{-\lambda\xi} \ge p_0$, then, for every $n \ge 1$,

(1)
$$p_0 \leq \mathbb{P}(\xi = 0) \leq \mathbb{E}e^{-\lambda\xi} = \mathbb{E}\left(e^{-\lambda\xi}\mathbf{1}(\xi \leq 1/n)\right) + \mathbb{E}\left(e^{-\lambda\xi}\mathbf{1}(\xi > 1/n)\right)$$
$$\leq \mathbb{P}(\xi \leq 1/n) + e^{-\lambda/n},$$

that is,

$$p_0 \le \mathbb{P}(\xi \le 1/n) + e^{-\lambda/n},$$

or, after passing to the limit $\lambda \to +\infty$,

$$\mathbb{P}(\xi \le 1/n) \ge p_0.$$

Then

$$\mathbb{P}(\xi = 0) = \mathbb{P}\left(\bigcap_{n} (\xi \le 1/n)\right) \ge p_0.$$

If $\mathbb{P}(\xi \geq \varepsilon_0 > 0) = 1$, then

(2)
$$\mathbb{E}e^{-\lambda\xi} = \mathbb{E}\left(e^{-\lambda\xi}\mathbf{1}(\xi \ge \varepsilon_0)\right) \le e^{-\lambda\varepsilon_0}$$

If $\mathbb{E}e^{-\lambda\xi} \leq e^{-\lambda\varepsilon_0}$, then, for every $\delta < \varepsilon_0$,

$$e^{-\lambda\varepsilon_0} \ge \mathbb{E}\left(e^{-\lambda\xi}\mathbf{1}(\xi \le \delta)\right) \ge e^{-\lambda\delta}\mathbb{P}(\xi \le \delta),$$

that is

$$\mathbb{P}(\xi \le \delta) \le e^{-\lambda(\varepsilon_0 - \delta)},$$

or, after passing to the limit $\lambda \to +\infty$,

$$\mathbb{P}(\xi \le \delta) = 0$$

for every $\delta < \varepsilon_0$, meaning that $\mathbb{P}(\xi < \varepsilon_0) = 0$.

Proposition 2. Let ξ be a non-negative random variable. Then

- (1) $\lim_{\lambda \to +\infty} \mathbb{E}e^{-\lambda\xi} = p_0 > 0$ is equivalent to $\mathbb{P}(\xi = 0) = p_0;$ (2) $\lim_{\lambda \to +\infty} \frac{\ln \mathbb{E}e^{-\lambda\xi}}{\lambda} = -\varepsilon_0 < 0$ is equivalent to $\varepsilon_0 = \inf \{t > 0 : \mathbb{P}(\xi \ge t) = 1\}.$

Proof. If $\mathbb{P}(\xi = 0) = p_0 > 0$, then $\lim_{\lambda \to +\infty} \mathbb{E}e^{-\lambda\xi} = p_0$ after passing to the limit

$$\lim_{n \to +\infty} \lim_{\lambda \to +\infty}$$

in (1).

By the same argument, if $\lim_{\lambda \to +\infty} \mathbb{E}e^{-\lambda\xi} = p_0 > 0$, then $\mathbb{P}(\xi = 0) = p_0$. If $\varepsilon_0 > 0$ is such that $\mathbb{P}(\xi \ge \varepsilon_0) = 1$, then (2) implies

$$\lim_{\lambda \to +\infty} \frac{\ln \mathbb{E} e^{-\lambda\xi}}{\lambda} \le -\varepsilon_0$$

If in addition $\mathbb{P}(\varepsilon_0 \leq \xi \leq \varepsilon_0 + \delta) > 0$ for every $\delta > 0$, then

$$\mathbb{E}e^{-\lambda\xi} = \mathbb{E}\left(e^{-\lambda\xi}\mathbf{1}(\xi \ge \varepsilon_0)\right) \ge e^{-\lambda(\varepsilon_0 + \delta)}\mathbb{P}(\varepsilon_0 \le \xi \le \varepsilon_0 + \delta),$$

that is,

$$\lim_{\lambda \to +\infty} \frac{\ln \mathbb{E} e^{-\lambda\xi}}{\lambda} \ge -\varepsilon_0 - \delta.$$

Since $\delta > 0$ is arbitrary, we conclude that

(3)
$$\lim_{\lambda \to +\infty} \frac{\ln \mathbb{E}e^{-\lambda\xi}}{\lambda} = -\varepsilon_0$$

If (3) holds, then take $\delta > 0$ and assume that $\mathbb{P}(\xi \leq \varepsilon_0 - \delta) > 0$. Then

$$\mathbb{E}e^{-\lambda\xi} \ge \mathbb{E}\left(e^{-\lambda\xi}\mathbf{1}(\xi \le \varepsilon_0 - \delta)\right) \ge e^{-\lambda(\varepsilon - \delta)}\mathbb{P}(\xi \le \varepsilon_0 - \delta).$$

Applying $\lambda^{-1}\ln(\cdot)$ to both sides and passing to the limit $\lambda \to +\infty$ leads to a contradiction $-\varepsilon_0 \geq -(\varepsilon_0 - \delta)$. Therefore, $\mathbb{P}(\xi < \varepsilon_0) = 0$. A similar contradiction results from the assumption that $\mathbb{P}(\xi < \varepsilon_0 + \delta) = 0$ for some $\delta > 0$.

3. Suppose that $0 < \alpha \leq 2$, that X, X_1, X_2, \ldots are independent and identically distributed, and that $S_n = X_1, \cdots, X_n$. Assume that X has characteristic function

$$\phi(u) := \mathbf{E}e^{iuX} = e^{-|u|^{\alpha}}$$

a) Is X symmetric (meaning X and -X have the same distribution)? [Yes, because ϕ is real and so the pdf of X, which exists because ϕ is integrable, is an even function.]

b) Find a function f(n), depending on n, such that $S_n/f(n)$ has the same distribution as X. [Look at the characteristic function of $S_n/f(n)$ to conclude that $f(n) = n^{1/\alpha}$.]

c) For what values of α does S_n/\sqrt{n} converge in distribution to a Gaussian random variable with positive variance [Only for $\alpha = 2$.]

d) For what values of α does S_n/n converge to 0 in probability? [For $\alpha > 1$; the convergence is, in fact, with probability one.]

For parts c) and d) note, by looking at differentiability of ϕ at zero, that $\mathbb{E}|X| < \infty$ for $\alpha > 1$ and $\mathbb{E}X^2 < \infty$ only for $\alpha = 2$.