PDE QUALIFYING EXAM-SPRING 2022

LINFENG LI

1. Let $u \in C^{2}(U)$ be a subharmonic function (i.e., $\Delta u \geq 0$ in U).
(a) Show that

$$
u(x) \leq f_{\partial B(x, r)} u(y) d S(y)
$$

for every $x \in U$ and $r>0$ such that $\overline{B(x, r)} \subset U$.
(b) Show that if U is open with a C^{1} boundary and $u \in C(\bar{U})$ then the maximum principle

$$
\max _{\bar{U}} u=\max _{\partial U} u
$$

holds.
(c) Show that if additionally $v \in C^{2}(U) \cap C(\bar{U})$ is superharmonic (i.e., $\Delta v \leq 0$ in U) and $u \leq v$ on ∂U then $u \leq v$ in U.

Solution. (a) Let

$$
f(r)=f_{\partial B(x, r)} u(y) d S(y)=f_{\partial B(0,1)} u(x+r z) d S(z)
$$

Taking derivative with respect to r, we obtain

$$
f^{\prime}(r)=f_{\partial B(0,1)} D u(x+r z) \cdot z d S(z)
$$

from where

$$
\begin{aligned}
f^{\prime}(r) & =\frac{1}{m(\partial B(0,1))} \int_{\partial B(0,1)} D u(y) \cdot \frac{y-x}{r} d S(y) \frac{m(\partial B(0,1))}{m(\partial B(0, r))} \\
& =f_{\partial B(x, r)} \frac{\partial u}{\partial \nu} d S(y)=\frac{r}{n} f_{B(x, r)} \Delta u(y) d y \geq 0
\end{aligned}
$$

In the last equality, we have used the Green's formula. Consequently, we infer that $f(r)$ is non-decreasing and thus

$$
u(x)=\lim _{r \rightarrow 0} f(r) \leq f_{\partial B(x, r)} u(y) d S(y)
$$

(b) Assume that the subharmonic function u attains a maximum at some $x_{0} \in U$.

There exists a constant $r>0$ such that $B\left(x_{0}, r\right) \subset U$ and $u\left(x_{0}\right) \leq f_{\partial B\left(x_{0}, r\right)} u(y) d S(y)$. However, $u\left(x_{0}\right) \geq u(y)$ for any $y \in \underset{1}{B}\left(x_{0}, r\right)$ which implies that $u\left(x_{0}\right)=u(y)$ for
$y \in B\left(x_{0}, r\right)$. Using the above argument and choosing appropriate $r>0$, we then obtain $\max _{\bar{U}} u=\max _{\partial U} u$.
(c) Let $w=u-v$. Then w is subharmonic since $\Delta w=\Delta u-\Delta v \geq 0$. By the maximal principal (b) we infer that

$$
\max _{\bar{U}} w=\max _{\partial U} w \leq 0
$$

Consequently, we have that $u-v \leq 0$ in U.
2. Find all classical solutions of the equation

$$
u_{t}-\Delta u=t \sin 2 x \sin 2 y
$$

in $U=(0, \pi)^{2} \times \mathbb{R}_{+}$, such that

$$
\left\{\begin{array}{l}
\left.u\right|_{\partial U}=11 \\
u(x, y, 0)=\sin x \sin 2 y-3 \sin 3 x \sin y+11 \quad \text { for }(x, y) \in U
\end{array}\right.
$$

Solution. Set $v=u-11$. The problem is reduced to solving the equation

$$
v_{t}-\Delta v=t \sin 2 x \sin 2 y
$$

in $U=(0, \pi)^{2} \times \mathbb{R}_{+}$, such that

$$
\left\{\begin{array}{l}
\left.v\right|_{\partial U}=0 \\
v(x, y, 0)=\sin x \sin 2 y-3 \sin 3 x \sin y \quad \text { for }(x, y) \in U
\end{array}\right.
$$

First we consider the homogeneous version of this initial value problem without the source term. We look for solution of the form $v(x, y, t)=f(t) g(x) h(y)$. Direct computation shows that

$$
\frac{\partial_{t} f}{f}=\frac{\Delta g}{g}+\frac{\Delta h}{h}=\lambda
$$

It follows that

$$
g(x)=C_{1} \sin (k x)+C_{2} \cos (k x)
$$

and

$$
h(y)=C_{3} \sin (m y)+C_{4} \cos (m y)
$$

where $\lambda=-k^{2}-m^{2}$. Moreover, we have $f(t)=C_{k, m} e^{-\left(k^{2}+m^{2}\right) t}$. Using the boundary condition, we infer that $C_{2}=C_{4}=0$. Therefore, we conclude

$$
v(x, y, t)=\sum_{k, m=0}^{\infty} \tilde{C_{k, m}} e^{-\left(k^{2}+m^{2}\right) t} \sin (k x) \sin (m y)
$$

The initial condition then implies that $\tilde{C_{1,2}}=1$ and $\tilde{C_{3,1}}=-3$. Consequently, we arrive at

$$
v(x, y, t)=e^{-5 t} \sin (x) \sin (2 y)-3 e^{-10 t} \sin (3 x) \sin (y)
$$

Now we need to bring back the inhomogeneous term, which relies on the variation of parameter formula for first order ODE.
3. Let $u(x, t)$ be a solution of the wave equation $u_{t t}=u_{x x}$ for $(x, t) \in \mathbb{R} \times(0, \infty)$ such that $u(x, 0)=g(x), u_{t}(x, 0)=0$, where $g \in C^{2}(\mathbb{R})$ has compact support. Show that

$$
v(x, t):=\frac{1}{2 \sqrt{\pi t}} \int_{-\infty}^{\infty} e^{\frac{-s^{2}}{4 t}} u(x, s) d s
$$

solves the heat equation with initial condition $v(x, 0)=g(x)$.

Solution. Using the d'Alembert formula, we get

$$
u(x, t)=\frac{1}{2}(g(x+t)+g(x-t)) .
$$

Therefore,

$$
\begin{aligned}
v(x, t) & =\frac{1}{4 \sqrt{\pi t}} \int_{-\infty}^{\infty} e^{\frac{-s^{2}}{4 t}} g(x+s) d s+\frac{1}{4 \sqrt{\pi t}} \int_{-\infty}^{\infty} e^{\frac{-s^{2}}{4 t}} g(x-s) d s \\
& =\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{\frac{-s^{2}}{4 t}} g(x-s) d s,
\end{aligned}
$$

which solve the one-dimensional heat equation with initial data $v(x, 0)=g(x)$.

