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1. Let u ∈ C2(U) be a subharmonic function (i.e., ∆u ≥ 0 in U).

(a) Show that

u(x) ≤
 
∂B(x,r)

u(y)dS(y)

for every x ∈ U and r > 0 such that B(x, r) ⊂ U .
(b) Show that if U is open with a C1 boundary and u ∈ C(Ū) then the

maximum principle
max
Ū

u = max
∂U

u

holds.
(c) Show that if additionally v ∈ C2(U)∩C(Ū) is superharmonic (i.e., ∆v ≤ 0

in U) and u ≤ v on ∂U then u ≤ v in U .

Solution. (a) Let

f(r) =

 
∂B(x,r)

u(y)dS(y) =

 
∂B(0,1)

u(x+ rz)dS(z).

Taking derivative with respect to r, we obtain

f ′(r) =

 
∂B(0,1)

Du(x+ rz) · zdS(z),

from where

f ′(r) =
1

m(∂B(0, 1))

ˆ
∂B(0,1)

Du(y) · y − x
r

dS(y)
m(∂B(0, 1))

m(∂B(0, r))

=

 
∂B(x,r)

∂u

∂ν
dS(y) =

r

n

 
B(x,r)

∆u(y)dy ≥ 0.

In the last equality, we have used the Green’s formula. Consequently, we infer that

f(r) is non-decreasing and thus

u(x) = lim
r→0

f(r) ≤
 
∂B(x,r)

u(y)dS(y).

(b) Assume that the subharmonic function u attains a maximum at some x0 ∈ U .

There exists a constant r > 0 such that B(x0, r) ⊂ U and u(x0) ≤
ffl
∂B(x0,r)

u(y)dS(y).

However, u(x0) ≥ u(y) for any y ∈ B(x0, r) which implies that u(x0) = u(y) for
1



y ∈ B(x0, r). Using the above argument and choosing appropriate r > 0, we then

obtain maxŪ u = max∂U u.

(c) Let w = u − v. Then w is subharmonic since ∆w = ∆u − ∆v ≥ 0. By the

maximal principal (b) we infer that

max
Ū

w = max
∂U

w ≤ 0.

Consequently, we have that u− v ≤ 0 in U . �
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2. Find all classical solutions of the equation

ut −∆u = t sin 2x sin 2y

in U = (0, π)2 × R+, such that{
u|∂U = 11

u(x, y, 0) = sin x sin 2y − 3 sin 3x sin y + 11 for (x, y) ∈ U.

Solution. Set v = u− 11. The problem is reduced to solving the equation

vt −∆v = t sin 2x sin 2y

in U = (0, π)2 × R+, such that{
v|∂U = 0

v(x, y, 0) = sin x sin 2y − 3 sin 3x sin y for (x, y) ∈ U.
First we consider the homogeneous version of this initial value problem without the

source term. We look for solution of the form v(x, y, t) = f(t)g(x)h(y). Direct

computation shows that

∂tf

f
=

∆g

g
+

∆h

h
= λ.

It follows that

g(x) = C1 sin(kx) + C2 cos(kx)

and

h(y) = C3 sin(my) + C4 cos(my),

where λ = −k2−m2. Moreover, we have f(t) = Ck,me
−(k2+m2)t. Using the boundary

condition, we infer that C2 = C4 = 0. Therefore, we conclude

v(x, y, t) =
∞∑

k,m=0

˜Ck,me
−(k2+m2)t sin(kx) sin(my).

The initial condition then implies that C̃1,2 = 1 and C̃3,1 = −3. Consequently, we

arrive at

v(x, y, t) = e−5t sin(x) sin(2y)− 3e−10t sin(3x) sin(y).

Now we need to bring back the inhomogeneous term, which relies on the variation of

parameter formula for first order ODE. �
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3. Let u(x, t) be a solution of the wave equation utt = uxx for (x, t) ∈ R× (0,∞)
such that u(x, 0) = g(x), ut(x, 0) = 0, where g ∈ C2(R) has compact support.
Show that

v(x, t) :=
1

2
√
πt

ˆ ∞
−∞

e
−s2

4t u(x, s)ds

solves the heat equation with initial condition v(x, 0) = g(x).

Solution. Using the d’Alembert formula, we get

u(x, t) =
1

2
(g(x+ t) + g(x− t)).

Therefore,

v(x, t) =
1

4
√
πt

ˆ ∞
−∞

e
−s2

4t g(x+ s)ds+
1

4
√
πt

ˆ ∞
−∞

e
−s2

4t g(x− s)ds

=
1√
4πt

ˆ ∞
−∞

e
−s2

4t g(x− s)ds,

which solve the one-dimensional heat equation with initial data v(x, 0) = g(x). �
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