PDE QUALIFYING EXAM-FALL 2022

LINFENG LI

1. Consider a solution u to the nonlinear equation

$$
\begin{cases}-\Delta u=\lambda u^{2}(1-u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\lambda>0$ is a constant and Ω is a bounded domain with smooth boundary. Prove that $0 \leq u \leq 1$ in Ω.

Solution. Suppose that there exist some $x_{0} \in \Omega$ such that $u\left(x_{0}\right)<0$. Then $U_{0}:=$ $\{x \in U: u(x)<0\}$ is an nonempty open set. From the first equation we have that $-u$ is subharmonic in U_{0} which leads to

$$
\max _{\partial U_{0}}(-u)=\max _{\bar{U}_{0}}(-u)=0
$$

Thus, we obtain $u \geq 0$ in \bar{U}_{0} which contradicts the definition of U_{0}. Now, we assume there exists some $x_{0} \in U$ such that $u\left(x_{0}\right)>1$. Then $U_{0}:=\{x \in U: u(x)>1\}$ is an nonempty open set. The first equation then implies that u is subharmonic in U_{0} which leads to

$$
\max _{\partial U_{0}} u=\max _{\bar{U}_{0}} u=1
$$

However, the above equation implies that $u \leq 1$ in U_{0}, contradicting to the definition of U_{0}. In conclusion, we have $0 \leq u \leq 1$ in Ω.
2. Let $u(x, t)$ be a smooth solution of the initial value problem

$$
\begin{cases}u_{t t}-\Delta u=0 & \text { in } \mathbb{R}^{3} \times(0, \infty) \\ u(x, 0)=g(x), u_{t}(x, 0)=h(x) & \text { for } x \in \mathbb{R}^{3}\end{cases}
$$

where $g, h \in C^{\infty}\left(\mathbb{R}^{3}\right)$ are supported in the ball $B(0, R)$.
(a) Use the Kirchoff formula to show that

$$
|t \cdot u(x, t)| \leq C\left(2+\frac{1}{t}\right)|\partial B(x, t) \cap B(0, R)|
$$

for all $(x, t) \in \mathbb{R}^{3} \times(0, \infty)$, where $|\cdot|$ denotes two-dimensional Lebesgue measure.
(b) Show that for some $t_{0}>0$ the measure $|\partial B(x, t) \cap B(0, R)|$ can be bounded by a constant independent of $t \geq t_{0}$, and conclude that

$$
|u(x, t)| \leq \frac{C}{t}
$$

for all $(x, t) \in \mathbb{R}^{3} \times(0, \infty)$, where $C>0$ is a constant.

Solution. (a) The Kirchoff formula implies that

$$
\begin{aligned}
|t \cdot u(x, t)| \leq & \left|f_{\partial B(x, t)} t^{2} h(y) d S(y)\right|+\left|f_{\partial B(x, t)} t g(y) d S(y)\right| \\
& +f_{\partial B(x, t)} t|D g(y)||y-x| d S(y) \\
\leq & C|\partial B(x, t) \cap B(0, R)|+\frac{C}{t}|\partial B(x, t) \cap B(0, R)| \\
& +C|\partial B(x, t) \cap B(0, R)|=C\left(2+\frac{1}{t}\right)|\partial B(x, t) \cap B(0, R)| .
\end{aligned}
$$

(b)

The cosine formula implies that

$$
R^{2}=K_{2}^{2}+l^{2}-2 K l \cos \theta
$$

The surface area equals

$$
2 \pi K h=2 \pi K(K-K \cos \theta)=2 \pi K\left(K-\frac{K^{2}+l^{2}-R^{2}}{2 l}\right)
$$

Maximizing over $K-R \leq l \leq K+R$, where we take K sufficiently large, we get $l=\sqrt{K^{2}-R^{2}}$. Thus, the surface area equals

$$
\begin{aligned}
2 \pi K\left(K-\frac{2 K^{2}-2 R^{2}}{2 \sqrt{K^{2}-R^{2}}}\right) & =2 \pi K\left(K-\sqrt{K^{2}-R^{2}}\right) \\
& =\frac{2 \pi K R^{2}}{K+\sqrt{K^{2}-R^{2}}}=\frac{2 \pi R^{2}}{1+\sqrt{1-(R / K)^{2}}} \leq 2 \pi R^{2}
\end{aligned}
$$

for $K>0$ sufficiently large. Thus, we have

$$
|u(x, t)| \leq C\left(\frac{1}{t}+\frac{1}{t^{2}}\right) \leq \frac{C}{t}
$$

for $t \geq t_{0}$. For $0<t<t_{0}$, we have

$$
|u(x, t)| \leq \frac{C\left(1+\frac{1}{t}\right) t t_{0}}{t} \leq \frac{C}{t}
$$

where $C>0$ is a constant depending on t_{0}. In conclusion, we have $|u(x, t)| \leq C / t$ for all $(x, t) \in \mathbb{R}^{2} \times(0, \infty)$.
3. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain and assume that $u(x, t)$ is a nonnegative function in $C^{2}(\bar{\Omega} \times[0, \infty))$, which solves the heat conduction equation with heat loss due to radiation

$$
\begin{cases}\left(\partial_{t}-\Delta\right) u=-u^{4} & \text { in } \Omega \\ u=0 & \text { on } \Omega\end{cases}
$$

Prove that we can find a constant C independent of the initial data $u(0)$, such that

$$
E(1):=\int_{\Omega} u(x, 1)^{2} d x \leq C .
$$

Solution. Taking the inner product of the equation with u, we obtain

$$
\frac{1}{2} \frac{d}{d t}\|u\|_{L^{2}}^{2}+\int_{\Omega}|\nabla u|^{2}=-\int_{\Omega}|u|^{5}
$$

where we integrated by parts in space and used the Dirichlet boundary condition. By the Cauchy-Schwarz inequality, we have

$$
\int_{\Omega}|u|^{2} \leq C\left(\int_{\Omega}|u|^{5}\right)^{\frac{2}{5}},
$$

where $C>0$ is a constant depending on $|\Omega|$. Therefore, we arrive at

$$
\frac{d}{d t}\|u\|_{L^{2}}^{2} \leq-C\left(\|u\|_{L^{2}}^{2}\right)^{\frac{5}{2}}
$$

for some constant $C>0$. Let $g(t)=\|u(t)\|_{L^{2}}^{-3}$. Then we have

$$
g^{\prime}(t)=-\frac{3}{2}\left(\|u(t)\|_{L^{2}}\right)^{-5} \frac{d}{d t}\|u(t)\|_{L^{2}}^{2} \geq C>0
$$

Consequently, we get $g(1) \geq g(0)+C$, which leads to

$$
\left(\|u(1)\|_{L^{2}}^{2}\right)^{\frac{3}{2}} \leq \frac{\|u(0)\|_{L^{2}}^{3}}{1+C\|u(0)\|_{L^{2}}^{3}} \leq \frac{1}{C}
$$

where $C>0$ is independent of the initial data $u(0)$. The claim is thus proven.

