PDE QUALIFYING EXAM-SPRING 2022

LINFENG LI

1. Solve the following initial value problems and verify your solutions
(a) $2 u_{x}+3 u_{t}=u^{2}, \quad u(x, 0)=h(x), t>0, \quad x \in \mathbb{R}, \quad$ (here h is given)
(b) $u_{t}=x^{2} u u_{x}, \quad u(x, 0)=x, t>0, \quad x \in \mathbb{R}$
(c) $x u_{x}+y u_{y}+u_{z}=u, \quad u(x, y, 0)=h(x, y), \quad z>0, \quad(x, y) \in \mathbb{R}^{2} \quad$ (here h is given)
(d) $u_{x}^{2}+u_{y}^{2}=u^{2} \quad$ (here find the characteristic equations only)

Solution. (a) This is a quasilinear PDE. Using the method of characteristic, we have $D u=\left(u_{t}, u_{x}\right), \mathbf{b}=(2,3)$, and $c=-z^{2}$. It follows that

$$
\left\{\begin{array}{l}
\dot{t}(s)=2, \dot{x}(s)=3, \\
\dot{z}(s)=z^{2}
\end{array}\right.
$$

Solving the above system with the initial data, we obtain

$$
\left\{\begin{array}{l}
t(s)=2 s, x(s)=3 s+x_{0} \\
z(s)=\frac{1}{\frac{1}{z_{0}}-s}=\frac{1}{\frac{1}{h\left(x_{0}\right)}-s}
\end{array}\right.
$$

For $(t, x) \in \mathbb{R}_{+} \times \mathbb{R}$, we get

$$
\left\{\begin{array}{l}
s=\frac{t}{2} \\
x_{0}=x-\frac{3 t}{2}
\end{array}\right.
$$

from where

$$
u(t, x)=z(s)=\frac{1}{\frac{1}{h(x-3 t / 2)}-t / 2}=\frac{h\left(x-\frac{3 t}{2}\right)}{1-\frac{t}{2} h\left(x-\frac{3 t}{2}\right)} .
$$

(b) Using the method of characteristic, we have $D u=\left(u_{t}, u_{x}\right), \mathbf{b}=\left(1,-x^{2} z\right)$, and $c=0$. It follows that

$$
\left\{\begin{array}{l}
t(s)=s, x(s)=\frac{x_{0}}{x_{0}^{2} s+1} \\
z(s)=x_{0}
\end{array}\right.
$$

For $(t, x) \in \mathbb{R}_{+} \times \mathbb{R}$, we get

$$
\left\{\begin{array}{l}
s=t \\
x_{0}=\frac{1 \pm \sqrt{1-4 x t}}{2 x t} \\
1
\end{array}\right.
$$

from where

$$
u(t, x)=z(s)=\frac{1 \pm \sqrt{1-4 x t}}{2 x t}
$$

(c) We have $D u=\left(u_{x}, u_{y}, u_{z}\right), \mathbf{b}=(x, y, 1)$, and $c=-1$. It follows that

$$
\left\{\begin{array}{l}
x(s)=x_{0} e^{s}, y(s)=y_{0} e^{s}, z(s)=s \\
w(s)=h\left(x_{0}, y_{0}\right) e^{s} .
\end{array}\right.
$$

For $(x, y, z) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}_{+}$, we get

$$
\left\{\begin{array}{l}
s=z \\
x_{0}=x e^{-z}, y_{0}=y e^{-z}
\end{array}\right.
$$

from where

$$
u(x, y, z)=z(s)=e^{z} h\left(x e^{-z}, y e^{-z}\right)
$$

(d) This is a fully nonlinear PDE. Here $F(p, z, x)=p_{1}^{2}+p_{2}^{2}-z^{2}$, so that the characteristic becomes

$$
\left\{\begin{array}{l}
\dot{p_{1}}=2 z p_{1}, \dot{p_{2}}=2 z p_{2} \\
\dot{z}=\left(2 p_{1}, 2 p_{2}\right) \cdot\left(p_{1}, p_{2}\right)=2 p_{1}^{2}+2 p_{2}^{2} \\
\dot{x}=2 p_{1}, \dot{y}=2 p_{2} .
\end{array}\right.
$$

2. Let B be the unit disc in \mathbb{R}^{2}, and ∂B the unit circle. Let f and g be two analytic functions defined on ∂B.
(a) Prove that for any point $x \in \partial B$, there exists a neighborhood U of x and a function u harmonic in $U \cap B$, such that $u=f$, and the outward normal derivative $\partial_{\nu} u=g$, on $U \cap \partial B$.
(b) Does there always exist a function u harmonic in B, such that $u=f$ and $\partial_{\nu} u=g$ on ∂B ? Why or why not?

Solution. (a) This is a direct consequence of Cauchy-Kovalevskaya extension theorem.
(b) Not always. Let $f \equiv 0$ and $g \equiv 1$. If u is harmonic in B with $u=0$ on ∂B, then u must equal to zero due to the maximal principal. However, this is contradicting with the normal derivative $\partial_{\nu} u=1$.
3. Let $\theta(x, t)$ be a strictly positive smooth solution of the following heat equation

$$
\theta_{t}-\nu \theta_{x x}=0, \quad x \in \mathbb{R}, t>0
$$

where $\nu>0$ is a positive constant.
(a) Show that $u=-\frac{2 \nu \theta_{x}}{\theta}$ satisfies

$$
\begin{equation*}
u_{t}+u u_{x}-\nu u_{x x}=0, \quad x \in \mathbb{R}, t>0 \tag{1}
\end{equation*}
$$

(b) For $u_{0} \in C_{c}^{2}$, find a solution to (1) with initial data $u(x, 0)=u_{0}(x)$ for which $\lim _{t \rightarrow \infty} u(x, t)=0$.

Solution. (a) Direct computation shows that

$$
\begin{aligned}
u_{t}+u u_{x}-\nu u_{x x}= & \frac{-2 \nu\left(\theta \theta_{x t}-\theta_{t} \theta_{x}\right)}{\theta^{2}}+\frac{4 \nu^{2} \theta_{x}\left(\theta_{x x} \theta-\theta_{x}^{2}\right)}{\theta^{3}} \\
& +\frac{2 \nu^{2}\left(\theta_{x x x} \theta^{3}+\theta_{x} \theta_{x x} \theta^{2}-4 \theta^{2} \theta_{x} \theta_{x x}+2 \theta \theta_{x}^{3}\right)}{\theta^{4}}=0 .
\end{aligned}
$$

(b) For $u_{0} \in C_{c}^{2}$, we solve the first order linear differential equation

$$
\theta_{0}^{\prime}+\frac{\theta_{0} u_{0}}{2 \nu}=0
$$

Moreover, we require that θ_{0} is compactly supported. By the fundamental solution of the heat equation, we get

$$
\theta(t, x)=\int_{\mathbb{R}} K(t, x-y) \theta_{0}(y) d t
$$

where $K(\cdot)$ is the one-dimensional heat kernel. It follows that

$$
u=-\frac{2 \nu \theta_{x}}{\theta}
$$

solves (1) with the initial data $u_{0}(x)$. Direct computation shows that

$$
u(t, x)=\frac{1}{t} \frac{\nu \int_{\mathbb{R}}(x-y) K(t, x-y) \theta_{0}(y) d y}{\int_{\mathbb{R}} K(t, x-y) \theta_{0}(y) d y}
$$

It is clear that the numerator of the second term is bounded from above, while the denominator is bounded from below, for all $t>0$. Consequently, we have $\lim _{t \rightarrow \infty} u(t, x)=0$.

