PDE QUALIFYING EXAM-SPRING 2022

LINFENG LI

1. Let $U \subset \mathbb{R}^{n}$ be an open set and let $u: U \rightarrow \mathbb{R}$ be a harmonic function in U such that $u\left(x_{0}\right)+u\left(y_{0}\right)=M$ for some $M \in \mathbb{R}$, and $x_{0}, y_{0} \in U$. Show that there exists infinitely many pairs $(x, y) \in U \times U$ such that $u(x)+u(y)=M$.

Solution. Let $E \subset U$ be a connected open set containing x_{0}. By the maximal principal, we have $\max _{\bar{E}} u=\max _{\partial E} u \geq u\left(x_{0}\right)$ and $\min _{\bar{E}} u=\min _{\partial E} u \leq u\left(x_{0}\right)$. The equality cannot be achieved unless u is a constant function, in which case the claim is trivial. Thus, there exists some $x_{1}, x_{2} \in \bar{E} \subset U$ such that $u\left(x_{1}\right)<u\left(x_{0}\right)<u\left(x_{2}\right)$. Similarly, there exists some $y_{1}, y_{2} \in U$ such that $u\left(y_{1}\right)<u\left(y_{0}\right)<u\left(y_{2}\right)$. As a result, we have that

$$
u\left(x_{1}\right)+u\left(y_{1}\right)<M_{0}<u\left(x_{2}\right)+u\left(y_{2}\right) .
$$

The intermediate value theorem then implies that there exists infinitely many pairs $(x, y) \in U \times U$ such that $u(x)+u(y)=M$.
2. Let $U \subset \mathbb{R}^{n}$ be open and bounded and let $U_{T}:=U \times(0, T)$. Let $u: \bar{U}_{T} \rightarrow \mathbb{R}$ be continuous, C^{1} with respect to time variable and C^{2} with respect to spatial variable, in U_{T}. Suppose that u satisfies

$$
u_{t}-\Delta u \leq 0 \quad \text { in } U_{T}
$$

Show that

$$
\max _{\overline{U_{T}}} u=\max _{\partial U \times[0, T] \cup U \times\{0\}} u
$$

Solution. Similar proof to Theorem 3 (mean value property for the hear equation) in Evans shows that

$$
u(x, t) \leq \frac{1}{4 r^{n}} \iint_{E(x, t ; r)} u(y, s) \frac{|x-y|^{2}}{(t-s)^{2}} d y d s
$$

Now, suppose that there exists some point $\left(x_{0}, t_{0}\right) \in U_{T}$ such that $u\left(x_{0}, t_{0}\right)=M=$ $\max _{U_{T}} u$. Take $r>0$ sufficiently small so that $E\left(x_{0}, t_{0} ; r\right) \subset U_{T}$ so that we obtain

$$
\begin{aligned}
M=u\left(x_{0}, t_{0}\right) & \leq \frac{1}{4 r^{n}} \iint_{E\left(x_{0}, t_{0} ; r\right)} u(y, s) \frac{\left|x_{0}-y\right|^{2}}{(t-s)^{2}} d y d s \\
& \leq \frac{M}{4 r^{n}} \iint_{E\left(x_{0}, t_{0} ; r\right)} \frac{\left|x_{0}-y\right|^{2}}{(t-s)^{2}} d y d s=M
\end{aligned}
$$

where we used $\iint_{E\left(x_{0}, t_{0} ; r\right)} \frac{\left|x_{0}-y\right|^{2}}{(t-s)^{2}} d y d s=4 r^{n}$. By continuity, u is a constant in $E\left(x_{0}, t_{0} ; r\right)$. Therefore, we may extend this heat ball so that it reaches to the boundary \bar{U}_{T}. The claim is thus proven.
3. Let u be a classical solution of the problem

$$
\begin{cases}u_{t t}=u_{x x} & \text { in } \mathbb{R} \times \mathbb{R}_{+} \\ u(x, 0)=g(x) & \text { for } x \in \mathbb{R} \\ u_{t}(x, 0)=h(x) & \text { for } x \in \mathbb{R}\end{cases}
$$

where $g, h: \mathbb{R} \rightarrow \mathbb{R}$ are smooth functions and have compact supports. Show that there exists $t_{0}>0$ such that

$$
\int_{-\infty}^{\infty} u_{t}^{2}(x, t) d x=\int_{-\infty}^{\infty} u_{x}^{2}(x, t) d x
$$

for all $t>t_{0}$.

Solution. By the d'Alembert formula, we have

$$
u(x, t)=\frac{1}{2}(g(x+t)+g(x-t))+\frac{1}{2} \int_{x-t}^{x+t} h(y) d y .
$$

Direct computation shows that

$$
u_{x}=\frac{1}{2}\left(g^{\prime}(x+t)+g^{\prime}(x-t)\right)+h(x+t)-h(x-t)
$$

and

$$
u_{t}=\frac{1}{2}\left(g^{\prime}(x+t)-g^{\prime}(x-t)\right)+h(x+t)+h(x-t) .
$$

It is sufficient to prove that

$$
\int_{-\infty}^{\infty}\left(u_{t}-u_{x}\right)\left(u_{t}+u_{x}\right) d x=0
$$

which is equivalent to

$$
I:=\int_{-\infty}^{\infty}\left(g^{\prime}(x+t)+2 h(x+t)\right)\left(g^{\prime}(x-t)-2 h(x-t)\right) d x=0 .
$$

There exists a constant $t_{0}>0$ such that g^{\prime} and h are compactly supported in $\left[-t_{0}, t_{0}\right]$. It is clear that

$$
\int_{-\infty}^{0}\left(g^{\prime}(x+t)+2 h(x+t)\right)\left(g^{\prime}(x-t)-2 h(x-t)\right) d x=0
$$

and

$$
\int_{0}^{\infty}\left(g^{\prime}(x+t)+2 h(x+t)\right)\left(g^{\prime}(x-t)-2 h(x-t)\right) d x=0
$$

for $t>t_{0}$. The claim is then proved.

