PDE QUALIFYING EXAM-SPRING 2020

LINFENG LI

1. Let $u(x, y)$ be a harmonic function on \mathbb{R}^{2}, and suppose that

$$
\iint_{\mathbb{R}^{2}}|\nabla u(x, y)|^{2} d x d y<\infty .
$$

Show that u is a constant function.

Solution. Since $\nabla u(x, y)$ is also harmonic, the mean value property holds for $\nabla u(x, y)$. Namely, we have

$$
\nabla u(x)=\frac{\iint_{B(x, r)} \nabla u(t, s) d t d s}{m(B(x, r))}, \quad r>0, \quad x \in \mathbb{R}^{2}
$$

where $m(\cdot)$ denotes the two-dimensional Lebesgue measure. We appeal to the CauchySchwarz inequality, obtaining

$$
\begin{aligned}
|\nabla u(x)| & =\frac{\left|\iint_{B(x, r)} \nabla u(t, s) d t d s\right|}{m(B(x, r))} \\
& \leq m(B(x, r))^{-1}\left(\iint_{B(x, r)}|\nabla u(t, x)|^{2} d t d s\right)^{\frac{1}{2}}\left(\iint_{B(x, r)} 1 d t d s\right)^{\frac{1}{2}} \\
& \leq m(B(x, r))^{-\frac{1}{2}} C,
\end{aligned}
$$

for some constant $C>0$, since $\iint_{\mathbb{R}^{2}}|\nabla u(x, y)|^{2} d x d y<\infty$. Sending $r \rightarrow \infty$, we infer that $\nabla u(x)=0$ for all $x \in \mathbb{R}^{2}$. Therefore, u is a constant function.
2. Solve the following Cauchy problem

$$
\begin{aligned}
\partial_{t} u-x \partial_{x} u+u-1 & =0, & (t, x) & \in \mathbb{R}_{+} \times \mathbb{R} \\
u(0, x) & =\cos x, & x & \in \mathbb{R} .
\end{aligned}
$$

Discuss the behavior of $\left|\partial_{x} u(t, x)\right|$ for $t \rightarrow \infty$.

Solution. This is a quasilinear type PDE. Using the characteristic method, we have $D u(x, t)=\left(u_{x}, u_{t}\right)$ and $\mathbf{b}=(-x, 1)$. Moreover, we have $c=z^{2}-1$. Then the system becomes

$$
\left\{\begin{array}{l}
\dot{x}=-x, \dot{t}=1 \\
\dot{z}=1-z^{2}
\end{array}\right.
$$

Consequently,

$$
\left\{\begin{array}{l}
x(s)=e^{-s}+x_{0}-1, t(s)=s \\
z(s)=\frac{1+C e^{-2 s}}{1-C e^{-2 s}}
\end{array}\right.
$$

Plug in $z(0)=(1+C) /(1-C)=\cos x_{0}$, we get $C=\left(\cos x_{0}-1\right) /\left(\cos x_{0}+1\right)$. Thus, we arrive at

$$
z(s)=\frac{e^{2 s}\left(\cos x_{0}+1\right)+\cos x_{0}-1}{e^{2 s}\left(\cos x_{0}+1\right)-\left(\cos x_{0}-1\right)} .
$$

Now, we take $(x, t) \in \mathbb{R} \times \mathbb{R}_{+}$. Then we have

$$
\left\{\begin{array}{l}
x=e^{-s}+x_{0}-1 \\
t=s
\end{array}\right.
$$

from where $s=t$ and $x_{0}=x-e^{-t}+1$. Consequently, we arrive at

$$
u(x, t)=z(s)=\frac{e^{2 t}\left(\cos \left(x-e^{-t}+1\right)+1\right)+\cos \left(x-e^{-t}+1\right)-1}{e^{2 t}\left(\cos \left(x-e^{-t}+1\right)+1\right)-\cos \left(x-e^{-t}+1\right)+1}
$$

(b) Taking the derivative of the above solution, we conclude that $\left|\partial_{x} u\right|$ behaves like

$$
\frac{2 \sin (x+1)}{\cos (x+1)}
$$

for $t \rightarrow \infty$.
3. Consider the bounded smooth solution u to the linear heat equation

$$
\partial_{t} u=\Delta u, \quad u(0, x)=f(x)
$$

on $[0, \infty) \times \mathbb{R}^{d}$, with initial data $f \in L^{2}\left(\mathbb{R}^{d}\right)$.
(a) Prove that $\|u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}$ for $t \geq 0$.
(b) Prove that $\lim _{t \rightarrow+\infty}\|u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}=0$.

Solution. (a) Taking the inner product of equation and u, we arrive at

$$
\frac{1}{2} \frac{d}{d t} \int_{\mathbb{R}^{d}}|u|^{2} d x-\int_{\mathbb{R}^{d}} u \Delta u d x=\frac{1}{2} \frac{d}{d t} \int_{\mathbb{R}^{d}}|u|^{2} d x+\int_{\mathbb{R}^{d}}|\nabla u|^{2} d x=0
$$

where we integrated by parts in space. Integrating the above identity in time from 0 to t, we obtain

$$
\int_{\mathbb{R}^{d}}|u(t)|^{2} d x \leq \int_{\mathbb{R}^{d}}|u(0)|^{2} d x=\int_{\mathbb{R}^{d}} f^{2} d x
$$

Thus, we have $\|u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}$ for $t \geq 0$.
(b) I think the problem should be phrased as compactly supported solution in \mathbb{R}^{d}. From Poincare inequality we infer that

$$
\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq C\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)},
$$

for some constant $C>0$. The energy identity in (a) then implies that

$$
\frac{1}{2} \frac{d}{d t}\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+\frac{1}{C}\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} \leq 0 .
$$

By the Gronwall inequality, we get

$$
\|u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} \leq\|u(0)\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} e^{-C t}
$$

for some constant $C>0$. As a result, we have $\lim _{t \rightarrow+\infty}\|u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}=0$.

