PDE QUALIFYING EXAM-SPRING 2020

LINFENG LI

1. Let u(x, y) be a harmonic function on \mathbb{R}^2 , and suppose that $\iint_{\mathbb{R}^2} |\nabla u(x, y)|^2 dx dy < \infty.$ Show that u is a constant function.

Solution. Since $\nabla u(x, y)$ is also harmonic, the mean value property holds for $\nabla u(x, y)$. Namely, we have

$$\nabla u(x) = \frac{\iint_{B(x,r)} \nabla u(t,s) dt ds}{m(B(x,r))}, \qquad r > 0, \qquad x \in \mathbb{R}^2,$$

where $m(\cdot)$ denotes the two-dimensional Lebesgue measure. We appeal to the Cauchy-Schwarz inequality, obtaining

$$\begin{aligned} |\nabla u(x)| &= \frac{\left| \iint_{B(x,r)} \nabla u(t,s) dt ds \right|}{m(B(x,r))} \\ &\leq m(B(x,r))^{-1} (\iint_{B(x,r)} |\nabla u(t,x)|^2 dt ds)^{\frac{1}{2}} (\iint_{B(x,r)} 1 dt ds)^{\frac{1}{2}} \\ &\leq m(B(x,r))^{-\frac{1}{2}} C, \end{aligned}$$

for some constant C > 0, since $\iint_{\mathbb{R}^2} |\nabla u(x,y)|^2 dx dy < \infty$. Sending $r \to \infty$, we infer that $\nabla u(x) = 0$ for all $x \in \mathbb{R}^2$. Therefore, u is a constant function.

2. Solve the following Cauchy problem

$$\partial_t u - x \partial_x u + u - 1 = 0, \qquad (t, x) \in \mathbb{R}_+ \times \mathbb{R}$$

 $u(0, x) = \cos x, \qquad x \in \mathbb{R}.$

Discuss the behavior of $|\partial_x u(t,x)|$ for $t \to \infty$.

Solution. This is a quasilinear type PDE. Using the characteristic method, we have $Du(x,t) = (u_x, u_t)$ and $\mathbf{b} = (-x, 1)$. Moreover, we have $c = z^2 - 1$. Then the system becomes

$$\begin{cases} \dot{x} = -x, \ \dot{t} = 1, \\ \dot{z} = 1 - z^2. \end{cases}$$

Consequently,

$$\begin{cases} x(s) = e^{-s} + x_0 - 1, \ t(s) = s, \\ z(s) = \frac{1 + Ce^{-2s}}{1 - Ce^{-2s}}. \end{cases}$$

Plug in $z(0) = (1+C)/(1-C) = \cos x_0$, we get $C = (\cos x_0 - 1)/(\cos x_0 + 1)$. Thus, we arrive at

$$z(s) = \frac{e^{2s}(\cos x_0 + 1) + \cos x_0 - 1}{e^{2s}(\cos x_0 + 1) - (\cos x_0 - 1)}$$

Now, we take $(x,t) \in \mathbb{R} \times \mathbb{R}_+$. Then we have

$$\begin{cases} x = e^{-s} + x_0 - 1\\ t = s, \end{cases}$$

from where s = t and $x_0 = x - e^{-t} + 1$. Consequently, we arrive at

$$u(x,t) = z(s) = \frac{e^{2t}(\cos(x-e^{-t}+1)+1) + \cos(x-e^{-t}+1) - 1}{e^{2t}(\cos(x-e^{-t}+1)+1) - \cos(x-e^{-t}+1) + 1}$$

(b) Taking the derivative of the above solution, we conclude that $|\partial_x u|$ behaves like

$$\frac{2\sin(x+1)}{\cos(x+1)}$$

for $t \to \infty$.

3. Consider the bounded smooth solution u to the linear heat equation ∂_tu = Δu, u(0, x) = f(x)
on [0,∞) × ℝ^d, with initial data f ∈ L²(ℝ^d).

(a) Prove that ||u(t)||_{L²(ℝ^d)} ≤ ||f||_{L²(ℝ^d)} for t ≥ 0.

(b) Prove that lim_{t→+∞} ||u(t)||_{L²(ℝ^d)} = 0.

Solution. (a) Taking the inner product of equation and u, we arrive at

$$\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^d}|u|^2dx - \int_{\mathbb{R}^d}u\Delta u dx = \frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^d}|u|^2dx + \int_{\mathbb{R}^d}|\nabla u|^2dx = 0$$

where we integrated by parts in space. Integrating the above identity in time from 0 to t, we obtain

$$\int_{\mathbb{R}^d} |u(t)|^2 dx \le \int_{\mathbb{R}^d} |u(0)|^2 dx = \int_{\mathbb{R}^d} f^2 dx.$$

Thus, we have $||u(t)||_{L^2(\mathbb{R}^d)} \le ||f||_{L^2(\mathbb{R}^d)}$ for $t \ge 0$.

(b) I think the problem should be phrased as compactly supported solution in \mathbb{R}^d . From Poincare inequality we infer that

$$\|u\|_{L^2(\mathbb{R}^d)} \le C \|\nabla u\|_{L^2(\mathbb{R}^d)},$$

for some constant C > 0. The energy identity in (a) then implies that

$$\frac{1}{2}\frac{d}{dt}\|u\|_{L^2(\mathbb{R}^d)}^2 + \frac{1}{C}\|u\|_{L^2(\mathbb{R}^d)}^2 \le 0.$$

By the Gronwall inequality, we get

$$||u(t)||^2_{L^2(\mathbb{R}^d)} \le ||u(0)||^2_{L^2(\mathbb{R}^d)} e^{-Ct}$$

for some constant C > 0. As a result, we have $\lim_{t \to +\infty} ||u(t)||_{L^2(\mathbb{R}^d)} = 0$.