PDE QUALIFYING EXAM-FALL 2020

LINFENG LI

1. Let $u(x, y)$ be a smooth function satisfying

$$
\begin{aligned}
\Delta u(x) & =f(u(x)), \quad x \in B(0,1) \\
u(x) & =0, \quad x \in \partial B(0,1),
\end{aligned}
$$

where $B(0,1)$ is the unit ball in \mathbb{R}^{n} and f is continuous.
(a) Show that if $f(t)$ has the same sign of t, then u must be identically zero in $B(0,1)$.
(b) What can you say about the solution when $f(t)=t^{4}$.

Solution. (a) Suppose that there exists some $x_{0} \in B(0,1)$ such that $u\left(x_{0}\right) \neq 0$. Without loss of generality, we assume that $u\left(x_{0}\right)>0$ and hence $f\left(u\left(x_{0}\right)\right)>0$. Let $U=\{x \in B(0,1): u(x)>0\}$ be an open set. It is clear that $U \neq \emptyset$ and $-\Delta u<0$ on U. By the maximal principal of the subharmonic function, we have

$$
\max _{\bar{U}} u=\max _{\partial U} u>0 .
$$

However, the boundary ∂U either lies on $\partial B(0,1)$ or $u(x)=0$ for $x \in \partial U$ (this can be justified by assuming otherwise and use the continuity argument). So we arrive at a contradiction from the maximal principal.
(b) When $f(t)=t^{4}$, the function u is subharmonic in $B(0,1)$. Maximal principle then implies that $\max _{B(0,1)} u \leq 0$.
2. Suppose $u=u(t, x)$ is smooth and bounded, and solves the nonlinear heat equation

$$
\begin{aligned}
\left(\partial_{t}-\Delta\right) u & =|\nabla u|^{2}, \quad(t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{n} \\
u(0, x) & =f(x), \quad x \in \mathbb{R}^{n} .
\end{aligned}
$$

(a) Prove that $v=e^{u}$ solves the linear heat equation $\left(\partial_{t}-\Delta\right) v=0$.
(b) Find an explicit formula for u in terms of f.

Solution. (a) Direct computation shows that

$$
\partial_{t} v-\Delta v=e^{u} \partial_{t} u-e^{u} \Delta u-e^{u}|\nabla u|^{2}=0 .
$$

As a consequence, $v=e^{u}$ solves the linear heat equation $\left(\partial_{t}-\Delta\right) v=0$.
(b) Since $v=e^{u}$ solves

$$
\begin{aligned}
\partial_{t} v-\Delta v & =0 \\
v(0, x) & =e^{f(x)} .
\end{aligned}
$$

By the fundamental solution of the heat equation, we have

$$
v(t, x)=\frac{1}{(4 \pi t)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-\frac{|x-y|^{2}}{4 t}} e^{f(y)} d y, \quad x \in \mathbb{R}^{n}, t>0
$$

Therefore,

$$
u(t, x)=-\frac{n}{2} \log (4 \pi t)+\log \left(\int_{\mathbb{R}^{n}} e^{-\frac{|x-y|^{2}}{4 t}} e^{f(y)} d y\right)
$$

is an explicit solution.
3. Suppose $u=u(t, x)$ solves the following initial-boundary value problem

$$
\begin{aligned}
(1+t) \partial_{t}^{2} u-\Delta u+\partial_{t} u & =0, \quad(t, x) \\
u(t, x) & =0, \quad(t, x) \in \mathbb{R}_{+} \times \Omega \\
u(0, x) & =u_{0}(x), \quad x \in \Omega \Omega \\
\partial_{t} u(0, x) & =u_{1}(x), \quad x \in \Omega
\end{aligned}
$$

where Ω is a smooth and bounded domain in \mathbb{R}^{3}, and $u_{0}(x)$ and $u_{1}(x)$ are smooth and compactly supported in Ω.
(a) Show that the L^{2} norm of the solution u is bounded for all $0<t<\infty$.
(b) What can you say about the L^{2} norm of $\partial_{t} u$ as $t \rightarrow \infty$.

Solution. (a) Taking the inner product of the first equation with $\partial_{t} u$, we obtain

$$
\int_{\Omega}(1+t) \partial_{t}^{2} u \partial_{t} u-\int_{\Omega} \Delta u \partial_{t} u+\int_{\Omega}\left|\partial_{t} u\right|^{2}=0 .
$$

Using integration by parts and the Dirichlet boundary condition (the second equation), we arrive at

$$
\int_{\Omega}(1+t) \frac{1}{2} \frac{d}{d t}\left|\partial_{t} u\right|^{2}+\frac{1}{2} \frac{d}{d t} \int_{\Omega}|\nabla u|^{2}+\int_{\Omega}\left|\partial_{t} u\right|^{2}=0
$$

from where

$$
\frac{d}{d t} \int_{\Omega}(1+t)\left|\partial_{t} u\right|^{2}+\frac{d}{d t} \int_{\Omega}|\nabla u|^{2}+\int_{\Omega}\left|\partial_{t} u\right|^{2}=0
$$

Integrating in time from 0 to τ, we get

$$
\begin{align*}
\int_{\Omega}(1+\tau)\left|\partial_{t} u(\tau)\right|^{2}+\int_{\Omega}|\nabla u(\tau)|^{2} & \leq \int_{\Omega}\left|\partial_{t} u(0)\right|^{2}+\int_{\Omega}|\nabla u(0)|^{2} \tag{1}\\
& =\left\|u_{1}\right\|_{L^{2}}^{2}+\left\|\nabla u_{0}\right\|_{L^{2}}^{2} .
\end{align*}
$$

Therefore, we infer that $\left\|\partial_{t} u(\tau)\right\|_{L^{2}}^{2} \leq C /(1+\tau)$, for some constant $C>0$. Using the fundamental theorem of calculus, we have

$$
u(T)=u(0)+\int_{0}^{T} \partial_{t} u(\tau) d \tau
$$

From the Jensen's inequality it follows that

$$
\begin{aligned}
\|u(T)\|_{L^{2}}^{2} & \leq C\left\|u_{0}\right\|_{L^{2}}^{2}+C \int_{0}^{T}\left\|\partial_{t} u(\tau)\right\|_{L^{2}}^{2} d \tau \leq C+\int_{0}^{T} \frac{C}{1+\tau} d \tau \\
& \leq C+C \log (1+T)
\end{aligned}
$$

Consequently, the L^{2} norm of the solution u is bounded for all $0<t<\infty$.
(b) From (1) we infer that $\left\|\partial_{t} u(\tau)\right\|_{L^{2}}^{2} \leq C /(1+\tau)$. Thus, the L^{2} norm of $\partial_{t} u$ tends to 0 as $t \rightarrow \infty$.

