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1. Let u(x, y) be a smooth function satisfying

∆u(x) = f(u(x)), x ∈ B(0, 1)

u(x) = 0, x ∈ ∂B(0, 1),

where B(0, 1) is the unit ball in Rn and f is continuous.

(a) Show that if f(t) has the same sign of t, then u must be identically zero
in B(0, 1).

(b) What can you say about the solution when f(t) = t4.

Solution. (a) Suppose that there exists some x0 ∈ B(0, 1) such that u(x0) 6= 0.

Without loss of generality, we assume that u(x0) > 0 and hence f(u(x0)) > 0. Let

U = {x ∈ B(0, 1) : u(x) > 0} be an open set. It is clear that U 6= ∅ and −∆u < 0 on

U . By the maximal principal of the subharmonic function, we have

max
Ū

u = max
∂U

u > 0.

However, the boundary ∂U either lies on ∂B(0, 1) or u(x) = 0 for x ∈ ∂U (this can

be justified by assuming otherwise and use the continuity argument). So we arrive

at a contradiction from the maximal principal.

(b) When f(t) = t4, the function u is subharmonic in B(0, 1). Maximal principle

then implies that maxB(0,1) u ≤ 0. �
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2. Suppose u = u(t, x) is smooth and bounded, and solves the nonlinear heat
equation

(∂t −∆)u = |∇u|2, (t, x) ∈ R+ × Rn

u(0, x) = f(x), x ∈ Rn.

(a) Prove that v = eu solves the linear heat equation (∂t −∆)v = 0.
(b) Find an explicit formula for u in terms of f .

Solution. (a) Direct computation shows that

∂tv −∆v = eu∂tu− eu∆u− eu|∇u|2 = 0.

As a consequence, v = eu solves the linear heat equation (∂t −∆)v = 0.

(b) Since v = eu solves

∂tv −∆v = 0

v(0, x) = ef(x).

By the fundamental solution of the heat equation, we have

v(t, x) =
1

(4πt)n/2

ˆ
Rn

e−
|x−y|2

4t ef(y)dy, x ∈ Rn, t > 0.

Therefore,

u(t, x) = −n
2

log(4πt) + log(

ˆ
Rn

e−
|x−y|2

4t ef(y)dy)

is an explicit solution. �
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3. Suppose u = u(t, x) solves the following initial-boundary value problem

(1 + t)∂2
t u−∆u+ ∂tu = 0, (t, x) ∈ R+ × Ω

u(t, x) = 0, (t, x) ∈ R+ × ∂Ω

u(0, x) = u0(x), x ∈ Ω

∂tu(0, x) = u1(x), x ∈ Ω

where Ω is a smooth and bounded domain in R3, and u0(x) and u1(x) are
smooth and compactly supported in Ω.

(a) Show that the L2 norm of the solution u is bounded for all 0 < t <∞.
(b) What can you say about the L2 norm of ∂tu as t→∞.

Solution. (a) Taking the inner product of the first equation with ∂tu, we obtainˆ
Ω

(1 + t)∂2
t u∂tu−

ˆ
Ω

∆u∂tu+

ˆ
Ω

|∂tu|2 = 0.

Using integration by parts and the Dirichlet boundary condition (the second equa-

tion), we arrive atˆ
Ω

(1 + t)
1

2

d

dt
|∂tu|2 +

1

2

d

dt

ˆ
Ω

|∇u|2 +

ˆ
Ω

|∂tu|2 = 0,

from where
d

dt

ˆ
Ω

(1 + t)|∂tu|2 +
d

dt

ˆ
Ω

|∇u|2 +

ˆ
Ω

|∂tu|2 = 0.

Integrating in time from 0 to τ , we getˆ
Ω

(1 + τ)|∂tu(τ)|2 +

ˆ
Ω

|∇u(τ)|2 ≤
ˆ

Ω

|∂tu(0)|2 +

ˆ
Ω

|∇u(0)|2

= ‖u1‖2
L2 + ‖∇u0‖2

L2 .

(1)

Therefore, we infer that ‖∂tu(τ)‖2
L2 ≤ C/(1 + τ), for some constant C > 0. Using the

fundamental theorem of calculus, we have

u(T ) = u(0) +

ˆ T

0

∂tu(τ)dτ.

From the Jensen’s inequality it follows that

‖u(T )‖2
L2 ≤ C‖u0‖2

L2 + C

ˆ T

0

‖∂tu(τ)‖2
L2dτ ≤ C +

ˆ T

0

C

1 + τ
dτ

≤ C + C log(1 + T ).

Consequently, the L2 norm of the solution u is bounded for all 0 < t <∞.

(b) From (1) we infer that ‖∂tu(τ)‖2
L2 ≤ C/(1+τ). Thus, the L2 norm of ∂tu tends

to 0 as t→∞. �
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